三芳胺端基含量可调的主链含S,S‑二氧‑二苯并噻吩的聚合物及其制备方法与应用与流程

文档序号:11097086阅读:867来源:国知局
三芳胺端基含量可调的主链含S,S‑二氧‑二苯并噻吩的聚合物及其制备方法与应用与制造工艺

本发明涉及有机光电发光材料领域,具体涉及三芳胺端基含量可调的主链含S,S-二氧-二苯并噻吩的聚合物及其制备方法与应用。



背景技术:

1990年,英国剑桥大学卡文迪许实验室发表了第一个利用共轭高分子PPV制备的聚合物薄膜电致发光器件,从而正式拉开了聚合物发光二极管(PLED)研究的序幕。与小分子发光二极管一样,聚合物发光二极管也具有高效、低电压驱动,易于大面积制备等优点。此外,聚合物发光二极管还有其独特的优越性:(1)可通过溶液旋涂、卷对卷等方法制备大面积薄膜;(2)共轭聚合物电子结构、发光颜色很容易通过化学结构的改变和修饰进行调节;(3)共轭聚合物通过修饰可以避免结晶,进而提高器件稳定性。

PLED器件由阴极、阳极和中间的有机层构成,有机层一般包括电子传输层、发光层和空穴传输层,首先电子和空穴分别从阴阳两极注入,并分别在功能层中进行迁移,然后电子和空穴在合适的位置形成激子,激子在一定范围内进行迁移,最后激子发光。

主链含S,S-二氧-二苯并噻吩的聚合物发光材料是PLED研究领域的明星材料。Martin R.Bryce和杨伟课题组合成了一系列基于S,S-二氧-二苯并噻吩的高效率红、绿、蓝三种颜色光的聚合物[Macromolecules,2010,43,4481-4488;Advanced Functional Materials,2013,23,4366-4376]。然而大部分基于S,S-二氧-二苯并噻吩的高效率器件结果都是在双层器件结构下实现的,通常是在PEDOT:PSS和发光层之间再增加一层PVK作为空穴传输层。原因在于S,S-二氧-二苯并噻吩单元的引入会降低聚合物的HOMO能级,提高器件的空穴注入势垒,降低空穴传输性能;另外一方面,S,S-二氧-二苯并噻吩单元的引入会大幅提高聚合物的电子传输性能。空穴和电子传输此消彼长使得单层器件的载流子传输不平衡,激子复合几率下降,器件效率和稳定降低。因此平衡载流子传输是提高S,S-二氧-二苯并噻吩聚合物器件效率的关键所在。



技术实现要素:

本发明的目的在于针对主链含S,S-二氧-二苯并噻吩的聚合物载流子传输不平衡的缺点,提供一种三芳胺类封端的,且三芳胺端基含量可调的主链含S,S-二氧-二苯并噻吩的聚合物材料。

本发明聚合物材料端基引入三芳胺类空穴传输小分子,三芳胺类化合物是典型的P型材料,具有较高的空穴迁移率和较浅的HOMO能级;同时三芳胺端基的含量可通过聚合物分子量的控制来调节,使得聚合物具有更好的电子和空穴传输能力,可以平衡载流子的传输,使得更多的激子有效复合,进而提高聚合物的发光效率和稳定性。

本发明的目的还在于提供所述三芳胺端基含量可调的主链含S,S-二氧-二苯并噻吩的聚合物材料的制备方法。

本发明的目的还在于提供所述三芳胺端基含量可调的主链含S,S-二氧-二苯并噻吩的聚合物材料在制作发光二极管的发光层中的应用。

本发明的具体技术方案如下。

三芳胺端基含量可调的主链含S,S-二氧-二苯并噻吩的聚合物,具有如下化学结构式:

式中,x,y为单体组分的摩尔分数,满足:0<x≤0.5,x+y=1;n为重复单元数,n=10~300;Ar1为三芳胺端基封端单元,Ar2为烷基化的芳香单元。

进一步地,聚合物中,三芳胺端基的摩尔含量为:通过控制聚合物的重复单元数10≤n≤300,实现三芳胺端基的摩尔含量mol%在0.67%~20%之间可控调节。

进一步地,Ar1为如下化学结构式中的任意一种:

进一步地,Ar2为如下化学结构式中的一种以上:

其中,Z1或Z2为H、F、CN、烯基、炔基、腈基、胺基、硝基、酰基、烷氧基、羰基或砜基;

R为碳原子数1~30的直链或者支链烷基或烷氧基、碳原子数3~30的环烷基。

所述的三芳胺端基含量可调的主链含S,S-二氧-二苯并噻吩的聚合物的制备方法,包括如下步骤:

将二溴化S,S-二氧-二苯并噻吩、Ar2的双硼酸酯和Ar2的二溴物进行Suzuki聚合反应后,再依次用Ar2的双硼酸酯单体和单溴化的Ar1单体进行封端反应,得到所述三芳胺端基含量可调的主链含S,S-二氧-二苯并噻吩的聚合物。

进一步地,所述二溴化S,S-二氧-二苯并噻吩、Ar2的双硼酸酯和Ar2的二溴芴的量满足:总的双硼酸酯单体摩尔数=总的二溴化单体摩尔数。

进一步地,所述Suzuki聚合反应的时间为0.5~16小时,温度为50℃~80℃。

进一步地,所述封端反应中,Ar2的双硼酸酯单体和单溴化的Ar1单体进行封端反应的时间均为1~24小时,温度均为60℃~90℃。

进一步地,所述Suzuki聚合反应和封端反应的催化体系包括钯催化剂和膦配体。

更进一步地,所述钯催化剂包括醋酸钯或三(二亚苄基丙酮)二钯。

更进一步地,所述膦配体包括三环己基膦或三叔丁基膦。

所述的三芳胺端基含量可调的主链含S,S-二氧-二苯并噻吩的聚合物应用于制作发光二极管的发光层,将三芳胺端基含量可调的主链含S,S-二氧-二苯并噻吩的聚合物溶解于有机溶剂中,得到的有机溶液通过旋涂、喷墨打印或印刷成膜,得到发光二极管的发光层;制作的发光二极管可用于平板显示器的制作。

进一步地,所述有机溶剂包括甲苯、氯仿或四氢呋喃。

与现有技术相比,本发明具有以下优点:

(1)本发明提供了一种简单有效的制备方法,不需要合成新的单体,在聚合物链引入三芳胺空穴传输基团,得到更高空穴注入性能的聚合物;

(2)本发明三芳胺端基含量可调的主链含S,S-二氧-二苯并噻吩的聚合物中,三芳胺端基的含量可调,可得到不同载流子传输性能的聚合物;

(3)本发明聚合物具有更好的电子和空穴传输能力,可以平衡载流子的传输,使得更多的激子有效复合,进而提高发光效率和稳定性;

(4)本发明三芳胺端基含量可调的主链含S,S-二氧-二苯并噻吩聚合物用于制备高效稳定单层器件,通过直接在有机溶剂中溶解后,经旋涂、喷墨打印或印刷成膜,制备工艺更加简单。

附图说明

图1为聚合物P3和P4的凝胶渗透色谱图;

图2为基于聚合物P9和P10的电致发光器件的循环伏安谱图;

图3为基于聚合物P9和P10的电致发光器件的电致发光光谱图;

图4为基于聚合物P9和P10的单层器件流明效率-电流密度图。

具体实施方式

下面结合实施例,对本发明作进一步地详细说明,但本发明的实施方式不限于此。

实施例1

不同分子量聚(2,7-芴-co-3,7-S,S-二氧-二苯并噻吩)的合成(P1-P6)

聚合物P1的合成:氮气保护下,将2,7-二(4,4,5,5-四甲基-1,3-二氧-2-硼烷基)-9,9-二正辛基芴(192.6mg,0.3mmol),2,7-二溴-9,9-二正辛基芴(131.6mg,0.24mmol)和2,7-二溴-S,S-二氧-二苯并噻吩(22.4mg,0.06mmol)溶解在8mL甲苯中,再加入四乙基羟胺水溶液(1mL,wt%=25%),醋酸钯(2mg),三环己基膦(4mg);80℃下反应0.5小时,反应停止,冷却后,将有机相沉析在甲醇(200mL)中,过滤,干燥,得到聚合物P1。通过GPC测试得到聚合物分子量。(P1:Mn=4400,PDI=2.64)

聚合物P2:除Suzuki聚合时间为1h外,其他反应条件与聚合物P1一样;通过GPC测试得到聚合物分子量。(P2:Mn=1.04×104,PDI=2.35)

聚合物P3:除Suzuki聚合时间为2h外,其他反应条件与聚合物P1一样;通过GPC测试得到聚合物分子量。(P3:Mn=1.89×104,PDI=2.42)

聚合物P4:除Suzuki聚合时间为4h外,其他反应条件与聚合物P1一样;通过GPC测试得到聚合物分子量。(P4:Mn=2.65×104,PDI=2.11)

聚合物P5:除Suzuki聚合时间为8h外,其他反应条件与聚合物P1一样;通过GPC测试得到聚合物分子量。(P5:Mn=3.38×104,PDI=1.75)

聚合物P6:除Suzuki聚合时间为16h外,其他反应条件与聚合物P1一样;通过GPC测试得到聚合物分子量。(P6:Mn=5.57×104,PDI=1.94)

图1为聚合物P3和P4的凝胶渗透色谱图,由图1可知,Suzuki聚合反应的时间不同(聚合物P3和P4分别为2小时和4小时),所得的两个聚合物具有不同分子量;其中,聚合物P3的数均分子量Mn=1.89×104,多分散系数PDI=2.42,聚合物P4的数均分子量Mn=2.65×104,多分散系数PDI=2.11。

实施例2

不同三苯胺端基含量聚(2,7-芴-co-3,7-S,S-二氧-二苯并噻吩)的合成(P7-P12)

聚合物P7的合成:氮气保护下,将实施例1所得聚合物P1(150mg)和2,7-二(4,4,5,5-四甲基-1,3-二氧-2-硼烷基)-9,9-二正辛基芴(38.5mg,0.06mmol)溶于10mL甲苯,加入1mL四乙基羟胺水溶液(1mL,wt%=25%),醋酸钯(2mg),三环己基膦(4mg),80℃下反应6小时;再加入单溴三苯胺M1(77.8mg,0.24mmol)封端反应6小时。反应停止,冷却后,将有机相沉析在甲醇(200mL)中,过滤,干燥后,粗产物先后用甲醇,丙酮,正己烷抽提。用甲苯溶解聚合物,以甲苯为淋洗剂,用中性氧化铝进行柱层析提纯。浓缩聚合物的甲苯溶液,再次沉析在甲醇溶液中,过滤,干燥,得到淡黄绿色纤维状聚合物P7。

1H NMR结果表明所得到的聚合物为目标产物;元素分析测试得到P7中N元素含量为0.61%,对应三苯胺的摩尔含量为18.60mol%。

聚合物P8-P12的合成方法和条件与P7相同。

P2通过两次封端反应得到P8,元素分析测试得到P8中N元素含量为0.25%,对应三苯胺的摩尔含量为7.45mol%。

P3通过两次封端反应得到P9,元素分析测试得到P9中N元素含量为0.15%,对应三苯胺的摩尔含量为4.36mol%。

P4通过两次封端反应得到P10,元素分析测试得到P10中N元素含量为0.11%,对应三苯胺的摩尔含量为3.09mol%。

P5通过两次封端反应得到P11,元素分析测试得到P11中N元素含量为0.08%,对应三苯胺的摩尔含量为2.43mol%。

P6通过两次封端反应得到P12,元素分析测试得到P12中N元素含量为0.05%,对应三苯胺的摩尔含量为1.46mol%。

实施例3

不同分子量聚(2,7-芴-co-3,7-S,S-二氧-二苯并噻吩-co-4,7苯并噻二唑)的合成(P13-P16)

聚合物P13的合成:氮气保护下,将2,7-二(4,4,5,5-四甲基-1,3-二氧-2-硼烷基)-9,9-二正辛基芴(192.6mg,0.3mmol),2,7-二溴-9,9-二正辛基芴(115.2mg,0.21mmol),2,7-二溴-S,S-二氧-二苯并噻吩(22.4mg,0.06mmol)和4,6-二溴苯并噻二唑(8.8mg,0.03mmol)溶解在8mL甲苯中,再加入四乙基羟胺水溶液(1mL,wt%=25%),醋酸钯(2mg),三环己基膦(4mg);在50℃下反应8小时,反应停止,冷却后,将有机相沉析在甲醇(200mL)中,过滤,干燥,得到聚合物P13。通过GPC测试得到聚合物分子量。(P13:Mn=8500,PDI=2.55)

聚合物P14:除Suzuki聚合为60℃外,其他反应条件与聚合物P13一样;通过GPC测试得到聚合物分子量。(P14:Mn=1.13×104,PDI=2.28)

聚合物P15:除Suzuki聚合为70℃外,其他反应条件与聚合物P13一样;通过GPC测试得到聚合物分子量。(P15:Mn=2.19×104,PDI=1.95)

聚合物P16:除Suzuki聚合为80℃外,其他反应条件与聚合物P13一样;通过GPC测试得到聚合物分子量。(P16:Mn=3.28×104,PDI=1.83)

通过比较聚合物P13~P16的分子量可以发现,在相同聚合催化剂、配体及反应时间相同的条件下,随着聚合反应温度升高,聚合物的分子量也随之提高,实现了分子量的梯度调节,这是由于聚合反应速率随反应温度升高而增大。

实施例4

不同三芴胺端基含量聚(2,7-芴-co-3,7-S,S-二氧-二苯并噻吩-co-4,7苯并噻二唑)的合成(P17-P20)

聚合物P17的合成:氮气保护下,将实施例3所得聚合物P13(150mg)和2,7-二(4,4,5,5-四甲基-1,3-二氧-2-硼烷基)-9,9-二正辛基芴(38.5mg,0.06mmol)溶于10mL甲苯,加入1mL四乙基羟胺水溶液(1mL,wt%=25%),醋酸钯(2mg),三环己基膦(4mg),80℃下反应6小时;再加入单溴三芴胺M2(161.4mg,0.24mmol)封端反应6小时;反应停止,冷却后,将有机相沉析在甲醇(200mL)中,过滤,干燥后,粗产物先后用甲醇,丙酮,正己烷抽提。用甲苯溶解聚合物,以甲苯为淋洗剂,用中性氧化铝进行柱层析提纯。浓缩聚合物的甲苯溶液,再次沉析在甲醇溶液中,过滤,干燥,得到淡黄绿色纤维状聚合物P17。

1H NMR结果表明所得到的聚合物为目标产物;根据GPC测试结果计算出三芴胺的摩尔含量为9.65mol%。

聚合物P18-P20的合成方法和条件与P17相同。

P14通过两次封端反应得到P18,根据GPC测试结果计算出三芴胺的摩尔含量为7.26mol%。

P15通过两次封端反应得到P19,根据GPC测试结果计算出三芴胺的摩尔含量为3.75mol%。

P16通过两次封端反应得到P20,根据GPC测试结果计算出三芴胺的摩尔含量为2.50mol%。

实施例5

不同分子量聚(2,7-芴-co-3,7-S,S-二氧-二苯并噻吩-co-4,7噻吩基-苯并噻二唑)的合成

聚合物P21的合成:氮气保护下,将2,7-二(4,4,5,5-四甲基-1,3-二氧-2-硼烷基)-9,9-双(4-(2-乙基己烷氧基)苯基)芴(248.0mg,0.30mmol),2,7-二溴-9,9-双(4-(2-乙基己烷氧基)苯基)芴(153.8mg,0.21mmol),2,7-二溴-S,S-二氧-二苯并噻吩(22.4mg,0.06mmol)和4,7-双(5-溴(4-己基噻吩)-2-基)-2,1,3-苯并噻二唑(18.8mg,0.03mmol)溶解在8mL甲苯中,再加入四乙基羟胺水溶液(1mL,wt%=25%),醋酸钯(2mg),三环己基膦(4mg);在80℃下反应1小时,反应停止,冷却后,将有机相沉析在甲醇(200mL)中,过滤,干燥,得到聚合物P21。通过GPC测试得到聚合物分子量。(P21:Mn=1.92×104,PDI=2.28)

聚合物P22:除Suzuki聚合反应的催化剂和配体换成三(二亚苄基丙酮)二钯和三叔丁基膦外,其他反应条件与聚合物P20一样;通过GPC测试得到聚合物分子量。(P22:Mn=9800,PDI=2.56)

通过比较聚合物P21和P22的分子量可以发现,在相同反应温度及反应时间的条件下,用醋酸钯和三环己基膦为催化剂和配体合成的P21分子量比用三(二亚苄基丙酮)二钯和三叔丁基膦为催化剂和配体合成的P22分子量要大。由此,通过不同催化剂及配体的催化活性的区别,实现了聚合物的分子量的梯度调节。

实施例6

不同联三苯胺基含量聚(2,7-芴-co-3,7-S,S-二氧-二苯并噻吩-co-4,7噻吩基-苯并噻二唑)的合成(P23-P24)

聚合物P23的合成:氮气保护下,将实施例3所得聚合物P21(150mg)和2,7-二(4,4,5,5-四甲基-1,3-二氧-2-硼烷基)-9,9-双(4-(2-乙基己烷氧基)苯基)芴(49.6mg,0.06mmol)溶于10mL甲苯,加入1mL四乙基羟胺水溶液(1mL,wt%=25%),四三苯基膦钯(10mg),80℃下反应6小时;再加入单溴联三苯胺M3(136.2mg,0.24mmol)封端反应6小时;反应停止,冷却后,将有机相沉析在甲醇(200mL)中,过滤,干燥后,粗产物先后用甲醇,丙酮,正己烷抽提。用甲苯溶解聚合物,以甲苯为淋洗剂,用中性氧化铝进行柱层析提纯。浓缩聚合物的甲苯溶液,再次沉析在甲醇溶液中,过滤,干燥,得到淡黄绿色纤维状聚合物P23。

1H NMR结果表明所得到的聚合物为目标产物;根据GPC测试结果计算出联三苯胺的摩尔含量为5.59mol%。

聚合物P24的合成方法和条件与P23相同;P22通过两次封端反应得到P24,根据GPC测试结果计算出联三苯胺的摩尔含量为10.96mol%。

实施例7

聚合物电致发光器件的制备

取预先做好的方块电阻为10Ω的氧化铟锡(ITO)玻璃,依次用丙酮,洗涤剂,去离子水和异丙醇超声清洗,等离子处理10分钟;在ITO上旋涂参杂有聚苯乙烯磺酸的聚乙氧基噻吩(PEDOT:PSS)膜,厚度为40nm;PEDOT:PSS膜在真空烘箱里80℃下干燥8小时;随后将聚合物的二甲苯溶液(1wt.%)旋涂在PEDOT:PSS膜的表面,厚度为80nm;最后在发光层上依次蒸镀一层1.5nm厚的CsF和120nm厚的金属Al层,器件结构:ITO/PEDOT:PSS/聚合物/CsF/Al。

图2为基于聚合物P9和P10的电致发光器件的循环伏安谱图,从图2可知,三苯胺封端的主链含S,S-二氧-二苯并噻吩的聚合物P9和P10具有较低的氧化电位Eox,值为1.2V,根据公式EHOMO=-(4.4+Eox),计算得到对应的最高占据分子轨道(HOMO)能级为-5.6eV,比文献报道的苯环封端的类似聚合物具有更浅的HOMO能级[Organic Electronics,2009,10,901-909],更有利于空穴的注入。

图3为基于聚合物P9和P10的电致发光器件的电致发光光谱图,从图3可知,聚合物P9和P10的电致发光最大峰均位于440nm,不同三苯胺端基含量对含S,S-二氧-二苯并噻吩的聚合物主链的电致发光光谱影响不大,所得聚合物P9和P10仍然是蓝光发射。

图4为基于聚合物P9和P10的单层器件流明效率-电流密度图,从图4可知,聚合物P9的流明效率接近4.0cd/A,聚合物P10的流明效率大于3.0cd/A,三苯胺端基含量更高的聚合物P9比P10具有更高的流明效率,说明三苯胺端基的引入提高了空穴的注入传输能力,使得发光聚合物中载流子传输更加平衡,效率提高。

以聚合物P19、P20、P23和P24为发光层分别制备的电致发光器件的性能如表1所示。

表1聚合物电致发光器件性能

由表1可知,聚合物P19的启亮电压为3.0V,流明效率为10.3cd/A,最大亮度为9856cd/m2,色坐标为(0.39,0.55);聚合物P20的启亮电压为3.2V,流明效率为9.5cd/A,最大亮度为7839cd/m2,色坐标为(0.39,0.57)。通过对比可以发现,聚合物P19和P20均有较低的启亮电压,较高的亮度,不同三芳胺端基含量对器件色坐标影响并不大;三芳胺端基含量更高的聚合物P19效率比聚合物P20器件效率更高。而聚合物P23的启亮电压为4.4V,流明效率为3.0cd/A,最大亮度为1686cd/m2,色坐标为(0.65,0.34),聚合物P24的启亮电压为4.2V,流明效率为2.7cd/A,最大亮度为1436cd/m2,色坐标为(0.65,0.33)。且聚合物P19、P20、P23和P24的单层器件效率均明显高于苯封端的类似主链结构聚合物的单层器件效率[Advanced Functional Materials,2013,23,4366-4376]。

上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其它任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化均应为等效的置换方式,都包含在本发明的保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1