一种1,6‑己二酸连续酯化加氢生产1,6‑己二醇的方法与流程

文档序号:12775964阅读:453来源:国知局

本发明属于精细化学品合成领域,涉及到一种1,6-己二酸连续酯化加氢生产1,6-己二醇的方法。



背景技术:

1,6-己二醇(C6H14O2),外观为白色晶体,溶于乙醇、醋酸乙酯和水,不溶于甲苯。1,6-己二醇是一种重要的精细化工材料,在聚氨酯、聚酯、卷材涂料、光固化剂等领域有着越来越广泛的应用,被誉为有机合成的新基石。1,6-己二醇可以由苯、乙炔、丙酮和氢氧化钾进行反应生成己炔二醇钾盐,经过中和、分离得到己炔二醇苯溶液,再经蒸馏、结晶、离心分离、脱苯后得到己炔二醇溶液,再经加氢得到1,6-己二醇溶液,最后结晶、过滤得到1,6-己二醇成品。此工艺路线复杂,生产成本高。

德国巴斯夫公司开发了一种从环氧丁二烯制备1,6-己二醇的工艺方法,但其原料环氧丁二烯市场资源少,价格较高,不具备工业化的条件。日本三菱化学公司曾提出羧酸不经过酯化直接加氢还原成醇的技术方案。日本宇部兴产公司和旭化成公司也分别做了混合酸或己二酸直接加氢的研究工作。虽然理论上步序简单,成本低廉,但关键在于开发合适的催化剂,目前为止没有工业化装置见于公开报道。目前世界上1,6-己二醇年总产量约在7-8万吨左右,生产能力利用率已近最大值。全球对1,6-己二醇需求量仍呈逐年稳步增长趋势,尤其亚洲地区需求增长迅猛。世界范围内1,6-己二醇产不足需现状仍较为明显。全球市场对该产品的需求正以5-8%的年增长率增长,预计世界1,6-己二醇每年需求缺口在4-5万吨左右。

随着1,6-己二醇用量的不断增加,制备高纯度1,6-己二醇变得越来越重要对于用1,6-己二酸作为原料与甲醇/乙醇发生酯化反应生成己二酸二甲酯/乙酯,再经加氢得到1,6-己二醇。该技术条件温和,原料易得,产生“三废”较少,反应收率较高。而且加氢各产物用普通精馏可实现分离变得尤为重要。下述的已知技术,都存在一些不足:

中国专利,公开号:CN 101265158B,介绍一种生产1,6-己二醇的方法。常压下,先釜式预酯化,再连续酯化生成己二酸二甲酯,再经过加氢、精馏制备出1,6-己二醇,由于酯化催化剂活性不高,酯化过程需要两步,必须要经过釜式间歇预酯化,所以致使整个工艺很难连续化生产。

中国专利,公开号:CN 102659516A,介绍一种己二醇的生产方法,己二酸通过甲酯化、加氢反应得到粗己二醇,再经过精馏工序脱出其中甲醇、其它低沸物以及其它重组分等,最后得到己二醇产品。己二酸酯化采用间歇釜式反应,受热力学平衡的限制己二酸转化率很难超过90%,后续分离困难,简写操作较为麻烦,生产不稳定,制备过程很难实现连续化大生产。



技术实现要素:

本发明提供了一种1,6-己二酸连续酯化加氢生产1,6-己二醇的方法。以资源合理利用1,6-己二酸为目的,针对1,6-己二酸酯化过程容易腐蚀装置和污染问题。以正三价稀土金属离子交换的ReHY沸石、磺酸树脂和铌酸的混合物替代传统的无机酸(硫酸、硝酸)酯化催化剂,并采用催化蒸馏连续酯化技术打破间歇酯化技术中热力学平衡限定的己二酸转化率,可大幅度提高1,6-己二酸的转化率。此外,开发了低温酯加氢催化剂,解决酯加氢需要高温高压问题。本发明开发的1,6-己二酸连续酯化加氢生产1,6-己二醇的方法,可实现连续化生产,1,6-己二醇纯度可达99.5%。

本发明的技术方案:

一种1,6-己二酸连续酯化加氢生产1,6-己二醇的方法,步骤如下:

将加热至100℃的1,6-己二酸从塔中连续注入上层装蒸馏填料、下层装催化蒸馏酯化催化剂的催化蒸馏酯化塔进行酯化反应;催化蒸馏酯化塔塔底连续注入甲醇或乙醇,甲醇或乙醇蒸汽在催化蒸馏酯化催化剂表面与流下的己二酸发生酯化反应;催化蒸馏酯化塔塔顶出未反应的甲醇或乙醇回用,侧线采出反应生成的水;催化蒸馏酯化塔塔底产品进入减压蒸馏塔,减压蒸馏塔塔底出副产物己二酸单酯及未反应的己二酸,减压蒸馏塔塔顶出纯度大于99.5%的己二酸二甲酯或乙酯,经加压与氢气混合注入装有加氢催化剂的加氢塔中进行酯加氢反应,加氢反应后产品直接进入减压精馏塔塔,塔顶蒸出甲醇或乙醇回用,测线采出副产轻组分,塔底出纯度达99.5%的1,6-己二醇产品。

所述的催化蒸馏酯化催化剂是正三价稀土金属离子交换的ReHY沸石、磺酸树脂和铌酸的混合物,其中ReHY沸石的质量百分含量为25%,磺酸树脂的质量百分含量为20%,铌酸的质量百分含量为55%。

所述的催化蒸馏酯化塔操作条件,塔温100~110℃,1,6-己二酸空速为0.2~0.35h-1,甲醇或乙醇空速为0.3~0.5h-1

所述的减压蒸馏塔塔顶温度107~110℃、塔压1.5~2.0KPa,回流比为0.8,理论塔板数25块,在第六块塔板处进料,进料温度105℃。

所述的加氢催化剂是CuZnAlNi催化剂,其采用共沉淀法制备,其中CuO的质量百分含量为30%,ZnO的质量百分含量为63%,Al2O3的质量百分含量为5%,NiO的质量百分含量为2%。

加氢塔反应条件,反应温度180~210℃、反应压力6-10MPa、液体空速0.2~0.75h-1、氢油体积比为600~1200:1。

减压精馏塔塔压10~20KPa,理论塔板数为42块,回流比为1.2,在第十二块塔板处进料,进料温度155℃。

塔顶出甲醇回用,在第八块塔板处抽出127~131℃馏分轻组分,塔底再沸器温度为177~181℃,并出1,6-己二醇作为产品,纯度达99.5%。

本发明的催化蒸馏塔、减压蒸馏塔、加氢塔和减压精馏塔采用连续操作的方式,操作灵活、简便。

本发明采用1,6-己二酸为原料,将1,6-己二酸与甲醇/乙醇在装酸催化剂的反应精馏塔内进行连续酯化反应,再经减压蒸馏纯化己二酸二甲酯/乙酯再加氢得到甲醇/乙醇和1,6-己二醇,其中前者返回后继续酯化,后者经精馏作为产品。此方法不但具有操作简单,具有良好的经济效益及工业应用前景。

附图说明

图1为本发明的工艺流程示意图。

图中:1催化蒸馏酯化塔;2减压蒸馏塔;3加氢塔;4减压精馏塔。

具体实施方式

以下结合技术方案和附图详细叙述本发明的具体实施方式。

实施例1:催化蒸馏酯化催化剂的制备,以Al2O3为粘结剂,将正三价稀土金属离子交换的ReHY沸石、磺酸树脂和铌酸按比例混合、捏合、成型、然后烘干制成催化蒸馏酯化催化剂。为了增加耐水性及防治粉化混合过程加入质量为0.01%水泥。通过控制ReHY沸石、磺酸树脂和铌酸的比例制备出适合1,6-己二酸酯化的催化剂。将催化蒸馏用于1,6-己二酸酯化反应,能明显增加1,6-己二酸转化率及1,6-己二酸二甲酯收率。下表1见催化蒸馏酯化和普通酯化反应结果:普通酯化采用间歇釜式酯化,酯化条件为:在酯化釜内加入1,6-己二酸、催化蒸馏酯化催化剂进行搅拌,加热至100℃左右,按甲醇/1,6-己二酸的摩尔比1.5加入甲醇,酯化温度120℃,反应时间4h。催化蒸馏酯化塔反应条件条件,塔温105℃,1,6-己二酸液体空速为0.2h-1,甲醇液体空速为0.3h-1

表1

实施例2:在实施例1催化蒸馏酯化的基础上,对产物进行减压蒸馏,减压蒸馏塔操作条件为:塔顶温度107~110℃、塔压1.5~2.0KPa,回流比为0.8,理论塔板数25块,在第六块塔板处进料,进料温度105℃。经液相色谱确定,塔顶己二酸二甲酯的纯度大于99.5%,加压蒸馏塔塔底物质为未反应的己二酸,和副产高分子化合物。

实施例3:以实施例2减压蒸馏的塔顶产物为原料进行加氢反应。加氢催化剂是CuZnAlNi催化剂。采用共沉淀法制备,其中CuO含量为30%,ZnO含量为63%,Al2O3含量为5%,NiO含量为2%。加氢塔反应条件,反应温度180~210℃、反应压力6-10MPa、液体空速0.2~0.75h-1、氢油体积比为600~1200:1。下表2见己二酸二甲酯加氢反应结果。

表2

实施例4:以实施例3中反应条件为:反应压力8MPa,反应温度为200℃,氢油比600,加氢产物进行减压精馏。减压精馏塔塔压10~20KPa,理论塔板数为42块,回流比为1.2,在第十二块塔板处进料,进料温度155℃。塔顶出甲醇回用,在第八块塔板处抽出127~131℃馏分轻组分,塔底再沸器温度为177~181℃,并出1,6-己二醇作为产品,纯度达99.5%。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1