基于2-羟基萘酰亚胺功能化柱[5]芳烃的超分子传感器及其合成和应用的制作方法

文档序号:15679387发布日期:2018-10-16 20:24阅读:234来源:国知局

本发明涉及一种功能化柱[5]芳烃的超分子传感器,尤其涉及一种基于2-羟基萘酰亚胺功能化柱[5]芳烃的超分子传感器及其合成,可用于连续性检测fe3+和f-,属于化学合成领域和阴阳离子的连续性检测技术领域。



背景技术:

铁(fe3+)是动植物中必不可少的微量元素,在细胞代谢、酶催化、以及血红蛋白转运中起着重要的作用。异常的fe3+波动是贫血、帕金森、血色素沉着、关节炎、肝炎、糖尿病和癌症等疾病的特征。此外,fe3+还是环境的重要污染源。同时,氟离子(f-)作为生物系统中最重要的离子之一,由于其在生物过程和健康科学中的重要作用而受到越来越多的关注。适量的氟摄入可以预防龋齿和氟骨症,但是,过量的氟摄入可能导致急性疾病,甚至导致死亡。因此,有必要准确地检测和监测环境中的fe3+和f-。传统的检测不同离子的方法包括伏安法、分光光度法、原子吸收光谱法等,这些方法需要精密的仪器和繁琐的样品制备程序,从而限制了它们的实际应用。

柱芳烃是一种新型的大环主体分子,它不仅具有独特的对称和刚性结构,而且易于功能化以及在主客体化学方面拥有许多优良性能,这为构建各种超分子体系提供了一个良好的平台。值得注意的是,虽然许多基于柱芳烃的超分子传感器已经被报道过,但是,大多数相关的传感器没有很好的识别位点,而且这些报道很少提到相应的离子可以被有效地去除。因此,为了扩大柱芳烃的应用范围,有必要设计和合成具有良好识别位点的新型柱芳烃衍生物来检测和去除相应的离子。



技术实现要素:

本发明的目的是提供一种基于2-羟基萘酰亚胺功能化柱[5]芳烃的超分子传感器;

本发明的另一目的是提供一种基于2-羟基萘酰亚胺功能化柱[5]芳烃的超分子传感器的合成方法;

本发明还有一目的,就是提供一种上述基于功能化柱[5]芳烃的超分子传感器用于连续荧光识别fe3+和f-的方法。

一、超分子传感器及其合成

基于功能化柱[5]芳烃的超分子传感器,其结构式如下:

超分子传感器的合成:以无水乙醇为溶剂,冰醋酸为催化剂,在氮气保护下,氨基功能化的柱[5]芳烃与2-羟基-1-萘甲醛以1.2:1~1.5:1的摩尔比,在80~85℃油浴锅中搅拌反应8~12h,反应结束后,冷却至室温,加入硅胶,拌样、旋干,再用柱层析法纯化,即得。标记为hnp5。

二、hnp5对阳离子的识别实验

1、hnp5对fe3+的荧光响应

分别移取0.5ml含有hnp5的dmso溶液(2×10-3mol/l)于一系列10ml的比色管中,分别加入fe3+,hg2+,ag+,ca2+,cu2+,co2+,ni2+,cd2+,pb2+,zn2+,cr3+,mg2+,eu3+,tb3+(c=4×10-2mol/l)的dmso溶液0.5ml,再加入3.5mldmso,0.5mlh2o,观察溶液颜色的变化。

结果发现,当向含有hnp5的溶液中分别加入上述阳离子时,在365nm荧光灯下,只有fe3+的加入使溶液的荧光猝灭。在其相应的荧光发射光谱中,只有加入fe3+后,hnp5的溶液的荧光明显被猝灭,而其余阳离子的加入不能使hnp5溶液的荧光猝灭(如图1所示)。说明该传感器分子hnp5在dmso-h2o体系中(水的体积含量为10%)可以单一选择性识别fe3+

2、hnp5对fe3+的滴定实验

将hnp5用dmso配成2×10-3m的溶液,取该溶液0.5ml于10ml比色管中,再加入4mldmso和0.5mlh2o,摇匀、静置。移取2.5ml该溶液于荧光比色池中,用累积加样法逐渐加入dmso配制的fe3+溶液(1mol/l)。在荧光光谱中随着fe3+的逐渐加入,主体荧光逐渐被猝灭(如图2所示)。hnp5对fe3+的荧光检测限为1.21×10-7m(如图3所示),说明hnp5对fe3+的检测具有较高的灵敏性。

3、hnp5在识别fe3+的过程中的抗干扰检测

为了测定hnp5在识别fe3+的过程中的抗干扰能力,我们进行了如下测试:取15支10ml的比色管,并且分别加入0.5ml上述含有hnp5的dmso溶液(2×10-3mol/l),向第1支比色管中加入4mldmso,0.5mlh2o;向第2支比色管中加入0.5mlfe3+,然后加入3.5mldmso,0.5mlh2o;向其余13支比色管中分别加入0.5mlfe3+,再依次加入0.5mlhg2+,ag+,ca2+,cu2+,co2+,ni2+,cd2+,pb2+,zn2+,cr3+,mg2+,eu3+,tb3+(c=4×10-2m)的dmso溶液,3mldmso,0.5mlh2o。混合均匀后,测定其荧光强度的变化。

图4为hnp5对fe3+识别的荧光抗干扰谱图。结果发现,加入其他阳离子后,hnp5对fe3+的识别基本不受其它阳离子的干扰。

基于hnp5对fe3+的单一选择性识别性能,可将hnp5用于环境水体中fe3+吸附。

4、络合物hnp5-fe3+荧光打开检测f-

分别移取0.5ml含有hnp5的dmso溶液(2×10-3m)于一系列10ml的比色管中,然后加入0.5ml用dmso配制的fe3+(c=4×10-2m),再分别加入0.5ml用dmso配制的f-,cl-,br-,i-,aco-,hso4-,clo4-,cn-,scn-溶液(c=0.1m),3mldmso,0.5mlh2o,混合均匀。结果发现,在365nm荧光灯下,只有f-的加入使溶液的荧光再次打开(如图5所示)。

5、hnp5-fe3+对f-的滴定实验

取0.5ml含有hnp5的dmso溶液(2×10-3m)于一支10ml的比色管中,然后加入0.5ml用dmso配制的fe3+(c=4×10-2m),3.5mldmso,0.5mlh2o,混合均匀后,移取2.5ml该溶液于荧光比色池中,用累积加样法逐渐加入dmso配制的f-溶液(0.1mol/l)。在荧光光谱中随着f-的逐渐加入,主体荧光逐渐打开(如图6所示)。hnp5-fe3+对f-的荧光检测限为1.34×10-7m(如图7所示),说明hnp5-fe3+对f-的检测具有较高的灵敏性。

6、hnp5-fe3+在识别f-的过程中的抗干扰检测

为了测定hnp5-fe3+在识别f-的过程中的抗干扰能力,我们进行了如下测试:取10支10ml的比色管,向第1支比色管中加入0.5ml用dmso配制的hnp5溶液(2×10-3m),0.5ml用dmso配制的fe3+溶液(4×10-2m),3.5mldmso,0.5mlh2o。然后向其余的比色管中分别加入0.5ml的hnp5溶液(2×10-3m),0.5ml的fe3+溶液(4×10-2m),0.5ml用dmso配制的f-溶液(0.1m)。向第2支比色管中再加入3mldmso,0.5mlh2o。向其余的比色管中再分别加入0.5ml其他阴离子,2.5mldmso,0.5mlh2o。混合均匀后,测定其荧光强度的变化。图8为hnp5-fe3+对f-识别的荧光抗干扰谱图。结果发现,加入其他阴离子后,hnp5-fe3+对f-的识别基本不受其它阴离子的干扰。

基于hnp5对fe3+和f-的连续性荧光检测可以用于imp逻辑门的制作。

7、基于hnp5的离子检测试纸

将试纸剪成长方形并浸泡在hnp5的dmso-h2o体系中(水的体积含量为10%)约10min,然后取出试纸晾干,该试纸在365nm荧光灯下呈蓝色荧光。

向试纸上分别滴加fe3+,hg2+,ag+,ca2+,cu2+,co2+,ni2+,cd2+,pb2+,zn2+,cr3+,mg2+,eu3+,tb3+的dmso溶液,结果只有滴加fe3+能使试纸的荧光被猝灭。再向滴加了fe3+的试纸上分别滴加f-,cl-,br-,i-,aco-,hso4-,clo4-,cn-,scn-的dmso溶液,结果,只有滴加f-能使试纸的蓝色荧光再次恢复。

附图说明

图1为hnp5对不同阳离子的荧光响应光谱图(λex=395nm)。

图2为hnp5对fe3+的荧光滴定光谱图(λex=395nm)。

图3为hnp5识别fe3+的线性范围。

图4为hnp5对fe3+荧光响应的抗干扰光谱图(λex=395nm)。

图5为hnp5-fe3+对不同阴离子-的荧光响应光谱图(λex=395nm)。

图6为hnp5-fe3+对f-的荧光滴定光谱图(λex=395nm)。

图7为hnp5-fe3+识别f-的线性范围。

图8为hnp5-fe3+对f-荧光响应的抗干扰光谱图(λex=395nm)。

图9为基于hnp5对fe3+和f-连续性检测的imp逻辑门。

具体实施方式

下面通过具体实施例对超分子传感器hnp5的合成、应用等作进一步说明。

实施例1、超分子传感器hnp5的合成

(1)化合物w的合成:将4-甲氧基苯酚(1.24g,10.0mmol),k2co3(6.91g,50mmol),ki(1.66g,10mmol),1,10-二溴癸烷(12.0g,40mmol)和丙酮(300.0ml)加入到500ml圆底瓶中,在65℃油浴锅中搅拌72小时(氮气保护),反应结束后,抽滤,加硅胶拌样、旋干,再用柱层析法纯化,得到的白色固体即为目标化合物w(3.07g,产率为90%),w的熔点是60~62℃。1hnmr(cdcl3,600mhz),δ/ppm:6.83(s,4h),3.91-3.89(t,j=6.6hz,2h),3.76(s,3h),3.41-3.39(t,j=6.9hz,2h),1.86-1.82(m,2h),1.77-1.72(m,2h)。1.45-1.41(m,2h),1.35-1.30(m,10h)。13cnmr(cdcl3,151mhz),δ/ppm:153.64,153.27,115.41,114.59,68.62,55.73,34.01,32.81,30.47,29.42,29.36,29.33,28.72,28.14,26.02。esi-msm/z:calcdforc17h27bro2[w]:342.12;found:342.01。

(2)化合物p5的合成:称取化合物w(1.72g,5mmol),1,4-二甲氧基苯(8.29g,60mmol)和多聚甲醛(3.00g,100mmol)加入到1,2-二氯乙烷(250ml)溶液中,先在室温下搅拌30min,然后加入三氟化硼乙醚(6ml,47.6mmol),再在30℃油浴锅中搅拌40min。反应结束后将混合物用ch2cl2和蒸馏水洗涤三次,有机层用无水na2so4干燥,过滤,加硅胶拌样,旋干,再用柱层析法纯化,得到白色固体即为目标化合物p5(1.67g,产率为35%)。p5的熔点是170-172℃。1hnmr(cdcl3,600mhz),δ/ppm:6.95-6.80(m,10h),3.98-3.96(t,j=6.2hz,2h),3.80-3.70(m,37h),2.93-2.61(m,2h),1.83-1.71(m,4h),1.34-1.31(m,2h),1.25-0.68(m,10h)。13cnmr(cdcl3,151mhz),δ/ppm:150.56,150.40,150.32,150.22,150.12,149.54,128.39,128.23,128.08,127.90,127.83,114.60,113.91,113.27,113.19,113.08,68.10,55.69,55.36,55.26,33.62,31.56,29.30,29.27,29.24,29.15,29.08,27.59。esi-msm/z:calcdforc54h71brno10[p5+nh4]+:972.43;found:972.43。

(3)化合物np5的合成:称取化合物p5(0.95g,1.0mmol)与邻苯二甲酰亚胺钾(0.21g,1.1mmol),在30mldmf中搅拌32小时(140℃),反应结束后,冷却,加入蒸馏水(100ml),过滤,烘干,然后将产物溶于thf(30ml),甲醇(3ml)和水合肼(3ml)的混合液中,在50℃油浴锅中搅拌24小时后,再用柱层析法纯化,得到的白色固体即为目标化合物np5(0.70g,产率为65%)。np5的熔点是138-140℃。1hnmr(dmso-d6,600mhz),δ/ppm:7.98-7.95(m,2h),6.81-6.74(m,10h),3.81-3.79(t,j=6.4hz,2h),3.68-3.61(m,37h),2.67-2.65(t,j=7.5hz,2h),1.73-1.71(m,2h),1.46-1.40(m,4h),1.29-1.15(m,10h)。13cnmr(dmso-d6,151mhz),δ/ppm:150.42,150.36,150.31,149.68,127.94,127.86,127.83,127.80,127.78,115.55,114.40,113.68,113.61,113.55,68.12,61.26,55.78,55.74,55.70,55.68,55.62,41.82,33.13,33.02,29.33,29.27,26.42,25.98,25.87。esi-msm/z:calcdforc54h69no10[np5]:892.50;found:892.28。

(4)化合物hnp5的合成:在100ml圆形底瓶中,称取化合物np5(1.07g,1.2mmol),2-羟基-1-萘甲醛(0.17g,1.0mmol)和冰醋酸(3ml)溶于50ml无水乙醇中。将反应物在85℃油浴锅中搅拌12小时后,冷却,加硅胶拌样,旋干,再用柱层析法纯化,得到的黄色固体(0.82g,产率为78%)即为目标化合物hnp5。hnp5的熔点是63-65℃。1hnmr(cdcl3,600mhz),δ/ppm:10.82(s,1h),8.64(s,1h),7.99-7.98(d,j=10.4hz,3h),7.86-7.85(d,j=8.4hz,1h),7.67-7.65(d,j=9.3hz,1h),7.45-7.41(m,1h),6.83-6.79(t,j=10.7hz,10h),3.76-3.70(m,41h),2.92(s,2h),2.86(s,2h),2.16(s,12h)。13cnmr(cdcl3,151mhz),δ/ppm:193.24,164.92,150.42,139.12,132.87,129.45,129.10,128.14,127.78,124.47,119.16,118.57,55.55,31.89,30.88,29.67,29.25,22.66,14.09。esi-msm/z:calcdforc65h75no11[hnp5]:1045.53;found:1045.61。

化合物hnp5的合成式如下:

实施例2、溶液荧光识别fe3+、f-

在超分子传感器hnp5的dmso-h2o溶液中,分别加入fe3+,hg2+,ag+,ca2+,cu2+,co2+,ni2+,cd2+,pb2+,zn2+,cr3+,mg2+,eu3+,tb3+的dmso溶液,若溶液的蓝色荧光被猝灭,说明加入的是fe3+;若溶液的荧光没有发生变化,说明加入的不是fe3+

在超分子传感器hnp5的dmso-h2o溶液中,先加入fe3+溶液,溶液的蓝色荧光被猝灭;再向hnp5-fe3+的溶液中分别滴加f-,cl-,br-,i-,aco-,hso4-,clo4-,cn-,scn-的dmso溶液,若溶液的蓝色荧光恢复,则说明滴加的是f-,否则不是f-

实施例3、试纸检测fe3+、f-

将试纸剪成长方形并浸泡在hnp5的dmso-h2o体系中(水的体积含量为10%)约10min,然后取出试纸晾干,该试纸在365nm荧光灯下呈蓝色荧光。

向试纸上分别滴加fe3+,hg2+,ag+,ca2+,cu2+,co2+,ni2+,cd2+,pb2+,zn2+,cr3+,mg2+,eu3+,tb3+的dmso溶液,结果只有滴加fe3+能使试纸的荧光被猝灭。再向滴加了fe3+的试纸上分别滴加f-,cl-,br-,i-,aco-,hso4-,clo4-,cn-,scn-的dmso溶液,结果,只有滴加f-能使试纸的蓝色荧光再次恢复。

实施例4、hnp5对水溶液中fe3+吸附

称取hnp5(1.05mg)加入到fe(clo4)3·6h2o(5.0ml)的水溶液中,震荡一段时间后,用离心机离心20min,移取上清液于一支干净的离心管中,用电感耦合等离子体技术(icp)分析证实上清液中fe3+的含量大概是1.75×10-6m,表明hnp5能有效地去除水溶液中fe3+,并且吸附率达到98.25%。

实施例5、基于hnp5的imp逻辑门

我们将fe3+和f-的存在定义为“1”,不存在定义为“0”,其输出信号为hnp5的荧光强度,输出强的荧光强度和弱的荧光强度分别定义为“1”和“0”。在没有输入(0,0)的情况下,hnp5的荧光强度比较强,输出为“1”;仅输入fe3+(1,0)时,hnp5的荧光强度比较弱,输出为“0”;仅输入f-(0,1)时,hnp5的荧光强度比较强,输出为“1”;当系统同时输入fe3+和f-(1,1)时,hnp5的荧光强度比较强,输出信号为“1”。从而构建了一个imp逻辑门(图9)。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1