一种高效表达碱性果胶酶的菌株及其构建与应用

文档序号:10588989阅读:365来源:国知局
一种高效表达碱性果胶酶的菌株及其构建与应用
【专利摘要】本发明公开了一种高效表达碱性果胶酶的菌株及其构建与应用,属于基因工程技术领域。本发明采用基因重组技术将毕赤酵母的ERO1及UBC1基因组合克隆连接到毕赤酵母表达载体pPGAZA上,并转化至Pichiapastoris GS115?pPIC9K?PGL菌株中,得到一株较原有菌株高效表达碱性果胶酶的菌株GS115/PGL?ERO1?UBC1,摇瓶发酵时相比于使用该方法前的菌株Pichiapastoris GS115?pPIC9K?PGL酶活提高49.4%,有明显提高,在3L发酵罐发酵培养时重组菌株Pichiapastoris GS115/PGL?ERO1?UBC1最大酶活达到1362.31U/ml,实现碱性果胶酶高效表达,为碱性果胶酶的大规模生产奠定了良好的基础。
【专利说明】
一种高效表达碱性果胶酶的菌株及其构建与应用
技术领域
[0001] 本发明涉及一种高效表达碱性果胶酶的菌株及其构建与应用,属于基因工程技术 领域。
【背景技术】
[0002] 果胶酶是一种复合酶,能够将果胶聚合物分解成不饱和寡聚半乳糖醛酸。该酶分 布广泛,在部分寄生线虫、植物和微生物内都有发现。果胶酶应用广泛,已有40多年的工业 应用史。根据最适反应pH的不同将果胶酶分为酸性果胶酶和碱性果胶酶PGL。其中酸性果胶 酶主要应用于澄清果汁果酒,提取果蔬汁,果实脱皮等方面。PGL应用主要应用于纺织、食 品、造纸行业和环境领域。应用酶法作用上述领域相关反应具有环保、节约原料耗材和反应 条件温和等优点。然而目前对PGL进行分子改造研究较少,进行商品化的PGL也很少。
[0003] 目前对碱性果胶酶研究比较深入的菌株主要是毕赤酵母、枯草芽孢杆菌和大肠杆 菌。综合比较可表达碱性果胶酶的不同宿主,毕赤酵母表达蛋白易于纯化,产量高,但异源 蛋白过量表达会导致生长胁迫压力引起未折叠蛋白效应(UPR),导致碱性果胶酶的产量不 能进一步提高,限制了碱性果胶酶的工业化生产。

【发明内容】

[0004] 本发明要解决的第一个技术问题是提供一种高效表达碱性果胶酶的重组菌株。
[0005] 所述重组菌是将毕赤酵母ER01及UBC1基因组合连接到毕赤酵母表达载体pGAPZA, 并转化至重组表达碱性果胶酶的毕赤酵母中。
[0006] 所述ER01基因的序列是NCBI中GenBank登录号XM_002489600.1记载的序列,所述 UBC1基因的序列是NCBI中GenBank登录号XM_002493814.1记载的序列。
[0007] 本发明还提供所述重组菌的构建方法,步骤如下:
[0008] (1)合成获得ER01及UBC1基因;
[0009] (2)将步骤(1)获得的ER01及UBC1基因分别连接到毕赤酵母表达载体pGAPZA上,得 到重组质粒pGAPZA-EROl,pGAPZA-UBCl;
[0010] (3)将步骤(2)获得的重组质粒pGAPZA-ER01、pGAPZA-UBCl,根据Bgl Π 与BamH I 为同尾酶效应构建双基因组合共表达载体pGAPZA-EROl-UBCl;
[0011] (4)将步骤(3)获得的重组质粒pGAPZA-EROl-UBCl转化重组表达碱性果胶酶的毕 赤酵母中得到分泌增强型基因工程菌株。
[0012] 在本发明的一种实施方式中,所述重组表达碱性果胶酶的毕赤酵母是将核苷酸序 列如SEQ ID NO. 1所示的碱性果胶酶基因,连接到表达载体pPIC9K上,然后转化到毕赤酵母 宿主菌株GS115中得到的。
[0013] 本发明还提供应用所述重组菌发酵生产碱性果胶酶的方法。
[0014] 在本发明的一种实施方式中,所述方法是将重组菌活化后接种至生长培养基BMGY 中于30°C、220rpm条件下培养24h,然后再转接入诱导培养基BMMY中,于23°C、220rpm下每 24h添加1.5%的甲醇诱导碱性果胶酶的表达。所述生长培养基BMGY(IL):蛋白胨20g,酵母 粉10g,甘油40g,YNB13.4g,以pH6.0的0.1M的磷酸盐缓冲液调pH至pH6.0。所述诱导培养基 BMMY(1L):蛋白胨20g,酵母粉1 Og,甲醇9 %,YNB 13.4g,以pH6.0的0.1M的磷酸盐缓冲液调 pH至ρΗ6·0。
[0015]在本发明的一种实施方式中,所述方法是将活化后的菌液接种于装液量20~30% 的发酵培养基中,初始搅拌转速为500~550r/min,通气量为1.5~2vvm,控制ρΗ5.5-6.0,生 长期培养温度为28-30°C;当甘油耗尽溶氧反弹时以指数流加方式补加甘油,待甘油再次耗 尽溶氧反弹时,饥饿培养1~2h,开始流加诱导培养基,同时将温度降低至20-22Γ,搅拌转 速升高至900-1000r/min,诱导PGL表达。
[0016]在本发明的一种实施方式中,所述发酵培养基含有:85%磷酸26.7ml/L,CaS〇4 0.93g/L,K2S〇4 18.2g/L,MgS〇4.7H20 14.9g/L,K0H 4.13g/L,甘油40.0g/L,PTMi 4.35ml/ L。所述诱导培养基是含有12ml/L PTMj^甲醇。
[0017] 在本发明的一种实施方式中,诱导培养基采用分阶段流加方式:0_8h流速2ml/h, 8-90h流速9.6ml/h,>90h流速2ml/h。
[0018] 有益效果:相对于现有的基因工程菌株Pichia pastoris GS115/PGL(直接以 pGAPZA表达碱性果胶酶)而言,本发明的基因工程菌株Pichia pastoris GS115/PGL-ER01-UBC1在摇瓶发酵时酶活提高了49.4%,且相比单独共表达单个分子伴侣的重组菌株Pichia pastoris GS115/PGL-ER01 及Pichia pastoris GS115/PGL-UBC1 也分别提高了10.3%及 22.1%,在3L发酵罐培养时Pichia pastoris GS115/PGL-ER01-UBC1 最大酶活达到 1362.31U/ml,相比于未共表达分子伴侣的重组菌株GS115/PGL的934.34U/ml有明显提高, 提高了 45.8%,实现了碱性果胶酶高效表达。本发明的碱性果胶酶可在碱性条件下催化通 过反式消去作用聚半乳糖醛酸的α-1,4糖苷键裂解,广泛应用于食品、纺织和造纸等行业。
【附图说明】
[0019]图1:克隆表达质粒不意图。
[0020]图2:分批补料发酵过程中发酵上清SDS-PAGE电泳分析;泳道1-5分别为诱导24h、 48h、72h、96h、120h发酵上清样品。
[0021 ]图3:共表达重组菌株摇瓶发酵性能。
[0022] 图4:重组菌株在分批补料发酵过程发酵性能。
【具体实施方式】:
[0023] 培养基:
[0024]种子培养基YPD:胰蛋白胨20g/L、酵母粉10g/L、葡萄糖20g/L。
[0025]生长培养基 BMGY(IL):蛋白胨 20g,酵母粉10g,甘油 40g,YNB13.4g,&pH6.(^0.1M 的磷酸盐缓冲液调pH至pH6.0。
[0026] 诱导培养基BMMY(IL):蛋白胨20g,酵母粉10g,甲醇9%,YNB13.4g,以pH6.0的0.1M 的磷酸盐缓冲液调pH至pH6.0。
[0027]碱性果胶酶酶活测定:
[0028]采用分光光度法测定。单位酶活定义:单位时间裂解聚半乳糖醛酸产生Ιμπιο?的不 饱和聚半乳糖醛酸所用的酶量。酶活测定条件为:酶活力检测:发酵液SOOOrpm离心10min, 胞外PGL即包含于发酵上清液之中,取一定量做检测。PGL反应体系:含0.2 %聚半乳糖醛酸 (底物)的甘氨酸-NaOH 缓冲液(0.2mol · L-SOj-mol · L-1 的 CaCl2,pH9.4)2mL,待测样品 20 yL,无活性的酶液为空白对照。PGL反应条件为:将反应体系置于45 °C下水浴15min,用3mL磷 酸溶液(〇.〇3mol · Γ1)终止反应,在235nm处测定吸光度值。
[0029]实施例1:重组菌的构建及鉴定
[0030] 提取毕赤酵母RNA,反转录为cDNA,以cDNA为模板,设计引物,通过PCR的方法获得 ER01及UBC1基因,将其克隆至表达载体pGAPZA上,获得重组质粒pGAPZA-EROl及pGAPZA-UBC1,再根据Bgl Π 与BamH I为同尾酶效应构建双基因组合共表达载体pGAPZA-EROl-UBCl (克隆表达质粒示意图见附图1),将重组载体PGAPZA-ER01-UBC1转化Pichia pastoris GS115-pPIC9K-PGL(将核苷酸序列如SEQ ID NO. 1所示的碱性果胶酶基因,连接到表达载体 PPIC9K上,然后转化到毕赤酵母宿主菌株GS115中得到的),经筛选鉴定获得共表达重组菌 株Pichia pastoris GS115PGL-ER01-UBC1。
[0031]引物如下:
[0036]毕赤酵母的转化采用电转化法。
[0037]具体步骤如下:挑取酵母受体菌的单菌落接种于25mLYro液体培养基中,30°C摇床 过夜;以5%接种量转接501111^?0液体培养基,30°(:摇床培养至00 = 1.3-1.5;4°(:离心, 5000rpm,5min,弃上清;用50mL冰预冷无菌水将菌体重悬;4°C离心5000rpm,5min,弃上清; 用25mL冰预冷无菌水将菌体重悬;4°C离心5000rpm,5min,弃上清;再用5mL lmol/L的冰预 冷的山梨醇洗涤1次,重悬,4°C,5000rpm离心5min,弃上清;加入适量体积lmol/L的冰预冷 的山梨醇,重悬;分装至无菌EP管中,每管80μ1,以备转化。将提取的共表达载体pGAPZA-X用 酶AvrII线性化,在80μ1酵母感受态细胞中加入用合适酶切位点线性化的质粒l-5yg冰上放 置15分钟,迅速加入0.2cm电击杯中(冰预冷),1500v电击,迅速加入lml冰预冷的山梨醇,涂 含有200μg/ml Zeocin的YPDS平板,培养3-4天后挑取单克隆。
[0038]实施例2:共表达基因工程菌株的酶活测定及蛋白电泳
[0039]培养方法:菌株在种子活化后接种到基本发酵培养基YPD,于30°C、220rpm条件下 培养14h,转接至优化后的生长培养基BMGY培养基于30°C、220rpm条件下培养24h,再将菌株 转入诱导培养基BMMY中23°C、220rpm每24h添加1.5%的甲醇,诱导碱性果胶酶的表达。
[0040] 酶活测定条件为:发酵液SOOOrpm离心10min,胞外PGL即包含于发酵上清液之中, 取一定量做检测。PGL反应体系:含0.2 %聚半乳糖醛酸(底物)的甘氨酸-NaOH缓冲液 (0.2mol · L-· L-1的CaC12,pH9.4)2mL,待测样品20yL,无活性的酶液为空白对 照。PGL反应条件为:将反应体系置于45°C下水浴15min,用3mL磷酸溶液(0.03mol · L-〇终止 反应,在235nm处测定吸光度值。
[0041] 选用碧云天SDS-PAGE凝胶电泳试剂盒配制12%分离胶和5%浓缩胶,具体操作方 法见产品说明书。样品与5X上样缓冲液以体积比4:1混合,沸水浴10min,冷却后上样。电泳 时,80V恒压电压,待指示剂进入分离胶后,电压调至150V,待指示剂至胶底时结束电泳。用 考马斯亮蓝染色液对凝胶进行染色,染色lh后脱色(SDS-PAGE图谱见附图2)。
[0042]实施例3:3L发酵罐发酵培养
[0043]从固体培养基平板上挑取单菌落接种于YPD培养基(500ml三角瓶中装液量50ml) 中30 °C,220rpm培养24h作为种子液,然后以10 %接种量接种于包含800ml分批发酵培养基 (85%磷酸26.7ml/L,CaS〇4 0.93g/L,K2S〇4 18.2g/L,MgS〇4.7H20 14.9g/L,K0H 4.13g/L, 甘油AO.Og/UPTMi 4.35ml/L)的3L发酵罐(美国NBS公司)中,初始搅拌转速为500r/min,通 气量为2vvm,50 %氨水及30 %磷酸控制pH5.5,生长期培养温度为30°C,当甘油耗尽溶氧反 弹时以指数流加方式补加50%(w/v含12ml/L PTM!)甘油,待甘油再次耗尽溶氧反弹时,饥 饿培养lh,开始流加诱导培养基(100%甲醇含12ml/L PTM!),同时温度降低至22°C,搅拌转 速升高至900r/min,诱导PGL表达。诱导培养基采用分阶段流加方式:0-8h流速2ml/h,8-90h 流速9.6ml/h,>90h流速2ml/h。每隔12h取样一次,测定生物量,酶活,蛋白含量等参数。 [0044] 摇瓶诱导发酵96h时,重组菌Pichia pastoris GS11/PGL-ER01-UBC1的酶活为 450.12U/ml,相比于比共表达分子伴侣前的出发菌株Pichia pastoris GS115_pPIC9K_PGL (酶活为301.32U/ml)及单独共表达单个分子伴侣的重组菌株Pichia pastoris GS115/ PGL-ER01 (酶活408 · 27U/ml)及Pichia pastoris GS115/PGL-UBC1 (酶活368 · 54U/ml),分别 提高了49.4%、10.3%及22.1 % (共表达重组菌株摇瓶发酵时发酵性能见附图3),同时在3L 发酵罐发酵培养时Pichia pastoris GS115/PGL-ER01-UBC1最大酶活达到1362.31U/ml(重 组菌分批补料发酵性能见图4),相比于未共表达分子伴侣的重组菌株GS115/PGL的 934.34U/ml有明显提高,提高了45.8%,实现了碱性果胶酶高效表达。
【主权项】
1. 一种高效表达碱性果胶酶的重组菌株,其特征在于,是将毕赤酵母EROl及UBCl基因 组合连接到毕赤酵母表达载体pGAPZA,并转化至重组表达碱性果胶酶的毕赤酵母中。2. 根据权利要求1所述的一种高效表达碱性果胶酶的重组菌株,其特征在于,所述重组 表达碱性果胶酶的毕赤酵母,是以Pichia pastoris GS115为宿主,以pPIC9K为表达载体, 表达基因序列如SEQ ID NO. 1所示的碱性果胶酶。3. 根据权利要求1所述的一种高效表达碱性果胶酶的重组菌株,其特征在于,所述EROl 基因的序列是NCBI中GenBank登录号XM_002489600.1记载的序列,所述UBCl基因的序列是 NCBI中GenBank登录号XM_002493814 · 1记载的序列。4. 一种构建权利要求1-3任一所述的重组菌的方法,其特征在于,步骤如下: (1) 合成获得EROl及UBCl基因; (2) 将步骤(1)获得的ERO1及UBC1基因分别连接到毕赤酵母表达载体pGAPZA上,得到重 组质粒pGAPZA-EROl,pGAPZA-UBCl; (3) 将步骤(2)获得的重组质粒pGAPZA-EROI、pGAPZA-UBCI,根据Bg 1 Π 与BamH I为同 尾酶效应构建双基因组合共表达载体PGAPZA-ER01-UBC1; (4) 将步骤(3)获得的重组质粒pGAPZA-EROl-UBCl转化重组表达碱性果胶酶的毕赤酵 母中。5. -种应用权利要求1-3任一所述重组菌发酵生产碱性果胶酶的方法。6. 根据权利要求5所述的方法,其特征在于,是将重组菌活化后接种至生长培养基BMGY 中于30°C、220rpm条件下培养24h,然后再转接入诱导培养基BMMY中,于23°C、220rpm下每 24h添加1.5%的甲醇诱导碱性果胶酶的表达。7. 根据权利要求6所述的方法,其特征在于,所述生长培养基BMGY按每升计含有:蛋白 胨20g,酵母粉IOg,甘油40g,YNB13 · 4g,以pH6 · 0的0 · IM的磷酸盐缓冲液调pH至pH6 · 0;所述 诱导培养基BMMY按每升计含有:蛋白胨20g,酵母粉IOg,甲醇90ml,YNBl3.4g,以pH6.0的 0.1 M的磷酸盐缓冲液调pH至pH6.0。8. 根据权利要求5所述的方法,其特征在于,是将活化后的菌液接种于装液量20~30 % 的发酵培养基中,初始搅拌转速为500~550r/min,通气量为1.5~2vvm,控制pH5.5-6.0,生 长期培养温度为28-30°C;当甘油耗尽溶氧反弹时以指数流加方式补加甘油,待甘油再次耗 尽溶氧反弹时,饥饿培养1~2h,开始流加诱导培养基,同时将温度降低至20-22Γ,搅拌转 速升高至900-1000r/min,诱导PGL表达。9. 根据权利要求8所述的方法,其特征在于,所述发酵培养基含有:85 %磷酸26.7ml/L, CaS〇4 0.93g/L,K2S〇4 18.2g/L,MgS〇4.7H20 14.9g/L,K0H 4.13g/L,甘油40.0g/L, PTMd. 35ml/L;所述诱导培养基是含有12ml/L PTM^甲醇。10. 权利要求1-3任一所述的重组菌在食品、纺织、环保或造纸中的应用。
【文档编号】C12R1/84GK105950491SQ201610346038
【公开日】2016年9月21日
【申请日】2016年5月23日
【发明人】刘松, 陈双全, 陈坚, 堵国成
【申请人】江南大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1