用压电振荡器雾化液体的控制系统的制作方法

文档序号:3801934阅读:253来源:国知局
专利名称:用压电振荡器雾化液体的控制系统的制作方法
相关申请的交叉引证本申请是1999年3月5日提交的第60/124,155号临时申请的接续申请。
本发明的背景技术本发明涉及利用压电振荡器进行液体的雾化作用,更确切地讲是涉及以经济、有效的方式控制该雾化作用的新的方法和装置。
本发明还涉及利用压电装置、使液体活性材料例如香水、空气清新剂、杀虫剂组分或者其它材料以细小液滴的形式分配而进行良好喷射的装置。特别要指出的是,本发明直接涉及一种利用机电或者电波致动器生成液滴或者液体悬浮物的压电液体传送系统。尤其要指出的是,本发明涉及一种和这种装置一起使用的改进的控制电路。
相关技术的描述利用压电振荡器雾化液体是公知技术,在美国专利5,164,740号和4,632,311和4,533,734号专利中对这种装置已举例说明。通常,这些装置向压电件施加一交变电压,使该压电件膨胀和收缩。压电件与多孔孔板连接,该多孔孔板顺序与液体源接触。
压电件的膨胀和收缩使孔板上下振动,驱动液体穿过孔板上的穿孔,然后,以细密的成烟雾状散开的液滴形式向上喷射。
希望提供一种驱动压电致动器的电池,这种电池工作时间长,而其性能不会降低,同时可以使用廉价的碱性电池,这种碱性电池的输出电压在电池的整个使用寿命上减小是公知的。
经济地驱动压电致动器的一种方法是在由睡眠周期间隔开的驱动周期内控制压电致动器的操作,因此,使液体在驱动周期内以连续短喷吹方式雾化。但是,在两次喷吹之间的睡眠周期内,液体聚积在孔板上;为了开始下一个驱动周期的连续喷吹操作,必须以大振幅驱动孔板。
电池操作压电喷雾器、使其能经济地操作的另一种方法是在该振动系统的谐振频率下驱动压电喷雾器,该振动系统包含孔板、压电件和在孔板和元件之间的任一机械连接件。但是,这样就产生一个问题,因为从装置到装置的谐振频率会有点变化,因此,每个装置都必须设定不同的驱动频率。
通过细密的喷射或者雾化的形式实现液体的扩散是公知的。实现这种扩散的一种方法是利用超声波压电振荡器产生声振动而雾化液体。这种方法的示例在美国专利4,702,418号中表示出来,其中公开了一种气雾剂分配器,该分配器包含一容纳被分配液体的喷嘴腔和一至少构成喷嘴腔一部分的隔膜。其中设置一气雾剂分配喷嘴,带有将液体从容器引导到喷嘴的节流通道。一个与低压电源连接的脉冲发生器用于驱动一压电弯曲模膛,该压电弯曲模膛迫使液体从容器穿过喷嘴产生气雾剂喷射。
在美国专利5,518,179号中表示了另一种雾化器喷射装置,该装置教导了一种液滴产生装置,包含一孔板,该孔板通过带有组合薄壁结构的致动器进行振动,同时该孔板设计成以弯曲模式操作。液体被直接供应到孔板的表面,并且液体在孔板的振动下形成细密的液滴而喷射出来。
美国专利5,297,734和5,657,926号教导的超声波雾化装置包含压电振荡器,该压电振荡器带有与其连接的振动板。
在美国专利5,297,734中,所描述的振动板带有大量的供液体通过的微小的孔。
在另外一些专利中公开的通过超声波雾化作用进行液体扩散或者有时间间隔地扩散的方法中,它们仅在对例如香水这种材料进行有效的雾化作用中取得了中等进步。这一点见美国专利3,543,122、3,615,041、4,479,609、4,533,082和4,790,479。前面述及的已公开的这些专利以及所有其它的本文引用的出版物,在此引入,作为参考。
这种雾化器没有提供一种便携式的操作分配器(采用了一个与压电件机械连接的孔板)的电池,该电池在只有一点或者没有振动时,可以长时间使用。而且,由于雾化器压电泵元件的加工工艺不同,因此这些雾化器的效率不通。因此,产生了对使活性液体例如芳香剂和杀虫剂扩散的雾化器或者分配器进行改进的需求,这种雾化器高效、节能且能够提供宽的液体分配范围。
发明概述本发明从各个方面克服了上述问题。
一方面,本发明涉及一种操作振动液体雾化器的新方法,其中,在该液体雾化器内,提供被雾化液体的孔板振动,而从其表面以细密的悬浮的液滴形式驱动液体。这种新方法的步骤有开始以相对高的振幅振动孔板,使液体开始雾化;然后,以相对较低的足以保持雾化作用的振幅振动孔板。
另一方面,本发明涉及一种操作压电振动液体雾化器的新方法,其中,利用交变电压激励压电致动件,使该压电致动件膨胀和收缩,从而振动孔板,由此供应被雾化的液体,因此,孔板的振动使所说液体雾化并使所说液体以细密的悬浮液滴形式从孔板喷射出来。这种新方法的步骤有首先向所说压电致动件施加一个相对高的交变电压,使其以高振幅振动孔板,使液体开始雾化;然后,向压电致动件施加一个相对较低的交变电压,保持雾化作用。
再一方面,本发明涉及一种新的振动液体雾化器,其包含一孔板;一液体管道,向孔板供应将被雾化的液体;以及一振动致动器,其首先在驱动周期、以相对高的振幅振动孔板,使液体开始雾化,然后,在同一驱动周期内,以相对较低的足以保持雾化作用的振幅振动孔板。
再一方面,本发明涉及一种新的振动液体雾化器,其包含一安装好的可振动的孔板;一液体供应管道,向正在振动的孔板供应液体;一压电件,其与孔板连接,在压电件膨胀和收缩时使该孔板振动;以及一供电系统,该供电系统在驱动周期内向致动件供应交变电压,使致动件膨胀和收缩,从而振动孔板,使液体雾化并以细密的悬浮液滴形式喷射出来。供电系统包含电路,该电路首先向所说压电致动件供应一高的交变电压,使压电致动件以相对高的振幅振动孔板,从而使液体进行开始雾化,然后,向压电致动件施加一个相对较低的交变电压,保持雾化作用。
本发明的主要目的是提供一种分配例如香水、空气清新剂或者其它液体的高效的方法。其它液体包括家用清洁材料、卫生消毒剂、消毒剂、防护剂、杀虫剂、芳香剂(aromatherapy formulations)、药物、治疗液或者其它液体或者雾化使用更有利的液体悬浮物。这些组合物可以是水状的或者是包含各种溶剂的。
本发明的目的是提供改进的控制电路,该控制电路使用时便于携带、电池操作分配器,分配器采用了与压电件机械连接的半球形孔板。压电泵能够在低压电池上有效地工作数月,同时在整个工作期间保持恒定的输送操作。压电雾化器可以使用的电源有9伏的电池,例如“A”、“AA”、“AAA”、“C”等传统的干电池和“D”电池、钮扣电池、手表电池和太阳能电池。本发明使用的能源最好是“AA”和“AAA”电池。
压电泵带有对泵元件总的机械加工偏差予以补偿的整机电路。这一整机电路的电力是可以是程序控制的,并可以设定一个精确的输送率(以毫克每小时表示,此后用mg/hr表示)。另一方面,整机电路可以使消费者按照个人的爱好、效能或者房间大小而调整其强度或者效果。
在本发明的优选实施例中,本发明的这些和其它目的可以通过雾化器对芳香剂、杀虫剂和前面提到的其它液体进行雾化而实现,其中,雾化系统包含一容纳将被分配的液体的腔室;从所说腔室向分配液体的孔板供应液体的装置;一压电件;一电源;以及改进的驱动和控制压电件的整机电路。可以看到,通过控制驱动压电件的信号的振幅和频率,可以得到优良的结果。因此,本发明提供了一种在整个分配周期使被分配的液体更均匀雾化的装置,因此,在分配开始时单位时间的分配量不会比分配接近结束或结束时的分配量有很大的变化。本发明的这些或者其它的目的或者优点从下面的说明书,即仅仅是优选实施例中可以清楚地看出来。因此,应该对权利要求书给予重视,以更好的理解本发明的整个范围。
本发明还涉及下面将讲到的其它的特殊特征;这些特征与前面的特征结合,就可以提供附加的特征。


图1是可以使用的本发明雾化装置的纵剖图;图2是本发明图1所示装置的工作过程的时间图;图3是本发明控制系统的元件设置的简化方框图;图4是适用于本发明优选实施例中压电雾化器内的电路板的局部立体图;图5是适于将液体送到孔板表面的液体容器和液体输送装置的立体图;图6是表示在组装在一起后,液体容器、送液装置和压电件关系的剖视图;图7是图6中封闭在环形内的区域的放大图;图8是优选实施例中的压电件和安装在支架上的印制电路板的顶视图;图9表示适用于本发明优选实施例中的压电泵组件的更简单的剖视图;图10是用于驱动压电件的优选控制电路的方框图;图11表示图10中的控制机械的细节图;图12是控制电路输出信号的调制说明图。
具体实施例方式
图1表示一种可以按照本发明操作的振动雾化装置。这种装置包含一圆环形的设有一中心孔12的压电致动器10;一圆形孔板14,该孔板14横过孔12在致动器下面延伸并和致动器的内部区域15稍微重叠。孔板14在重叠区域15内与致动器10下面固定。可以采用任何适用的粘结方法使元件14与压电件10固定;但是,一旦装置用于雾化腐蚀性或者侵害性的液体时,就会有溶解和软化使孔板与压电致动器粘固的材料的趋势,较可取的方法是利用锡铅或者银焊料将孔板焊到压电件上。
压电致动器10可以由任何具有压电特性的材料制成,该压电特性使压电致动件沿与施加电场方向垂直的方向产生尺寸变化。因此,如图所示实施例,当横跨压电致动器的上和下表面施加电场时,压电致动器10应该沿径向膨胀或者收缩。压电致动器10例如可以是由锆钛酸铅(PNT)或者偏铌酸铅(PN)制成的陶瓷材料。在本实施例中,压电致动器的外径大约0.382英寸、厚度大约0.025英寸。中心孔直径大约0.177英寸。这些尺寸并非关键数字,只是举例说明。
本实施例中,孔板的直径大约0.250英寸、厚度大约0.002英寸。孔板14由略呈圆顶形的中心区域16和环绕的挠性凸缘区域18构成,该凸缘区域在圆顶形中心区域16和孔板与致动器固定的区域之间延伸。圆顶形中心区域16的直径是大约0.103英寸,其伸出孔板平面外大约0.0065英寸。圆顶形中心区域包含数个(例如85个)小射孔20,这些小射孔的直径大约是0.000236英寸、它们彼此间隔是大约0.005英寸。在凸缘区域18内形成一对沿直径方向相对的孔22。这对孔的直径大约是0.029英寸。
再者,这些尺寸并不是关键数字,只是为了说明特殊实施例。
应该注意到,中心区域16的圆顶包含射孔20,使该区域不易弯曲,所以该区域在操作期间不弯曲,而包含孔22的凸缘区域18保持柔软性,因此,在操作期间该凸缘区域弯曲。圆顶形中心区域可以是球形结构,还可以采用能够保持不弯曲的任何结构。例如,中心区域16可以是抛物形的或者弓形的结构。
孔板14最好通过电铸工艺形成,在电铸过程中形成射孔20和孔22。但是,孔板也可以用其它的方法例如轧制而形成,射孔和孔可以单独形成。为了便于加工,在孔板内形成射孔18后,再使中心区域16变成圆顶形。
孔板最好用镍制成(也可以用其它的材料),以使孔板具有足够的强度和挠性,从而使其在受到弯曲力作用时能保持孔板的形状。可以采用的合金有镍钴和镍钯合金。
压电致动器可以用任何适用的方式支承,这种方式可以将压电致动器夹持在给定位置而不会干扰其振动。因此,致动器可以由垫圈式安装方式(未示出)支承。涂层可以由其它的导电材料例如银和镍形成。
压电件10的上、下表面涂有例如铝的导电材料。如图所示,电接线柱26和28焊接到致动器10的上、下表面的导电涂层上。这些接线柱从交变电压源(未示出)延伸。
一容纳将被雾化的液体31的液体容器30安装在致动器10和孔板14的下面。一芯子32从容器内向孔板14的下侧面延伸,其在中心区域16与孔板轻微接触并与射孔20接触。但是,芯子不会与孔22接触,这些孔与芯子横向偏离。芯子32可以由多孔的柔软材料制成,对容器30内的液体起到良好的毛细管作用,因而能将液体吸引到孔板14的下侧面上。同时,芯子应该足够柔软,以致芯子不能向孔板施加干扰孔板振动的压力。在满足这些条件下,芯子32可以用任何材料例如纸、尼龙、棉织物、聚丙烯、玻璃丝等制成。芯子32的优选形式是尼龙绳绒线,在芯子接触到孔板的位置,芯子自己弯回。这就使很薄的一根纤维伸向孔板表面。这些很薄的纤维能够产生毛细管作用,将液体带到孔板上;但是,这些薄的纤维不会在孔板上施加任何明显的干扰孔板振动运动的力。
在雾化器的操作当中,从外部电源来的交变电压通过接线柱26和28施加到致动器10的上、下表面的导电涂层上。由此在致动器材料内产生压电作用,使致动器沿径向膨胀和收缩。这样产生的结果是,中心孔12的直径根据这些交变电压的作用而增大和减小。直径内产生的这些变化就象在孔板14上施加了径向力;结果,凸缘区域18弯曲并推动圆顶形中心区域16上下运动。这样,就在由芯子32带到中心区域16下侧面上的液体上产生了泵送作用。由于芯子的毛细管作用,使在孔板14下侧面上的液体压力比孔板上面的大气压力稍微高一点。结果,就迫使液体31穿过射孔20,并从孔板的上表面以细微的成烟雾状的液滴形式喷射到大气中。
图2表示本发明中压电致动件的驱动顺序。如图2所示,驱动顺序分为交替的持续5.5毫秒的驱动周期和持续9到18秒的睡眠周期。
在5.5毫秒的驱动周期内,用于驱动压电致动件10的电压按指数降低,从3.3伏下降到大约1伏。因此,压电致动件10以高幅度开始驱动,这样就从压电致动件的表面上清除液体并开始雾化;然后,以明显较低的幅度驱动,这一振幅足以保持驱动作用,但只是消耗最少量的驱动能量。可以理解,本发明在特定的驱动周期内,不仅仅局限于高和低幅度的一个循环过程,事实上,如果是维持雾化作用的需要,高和低幅度顺序可以重复数次。
在每个驱动周期之后,系统进入从9到18秒的睡眠周期。在每个睡眠周期的前4秒中,系统充电到3.3伏,这一电压保持到下一驱动周期中使用。还可以理解的是,对于一些应用方式而言,连续的高和低振幅驱动可以连续重复地进行,而无需插入睡眠周期。
可以注意到,当致动件10在供电电压仅为1.5伏被驱动时,致动件10能够以足够的振幅驱动孔板14而使液体31雾化;但是,为了实现开始的雾化作用,压电件10必须用较高的供电电压例如3.3伏驱动,以使孔板14在足够大的振幅下振动,清除在前面的睡眠周期中聚积到孔板外表面上的液体薄膜。因此,孔板14以高电力开始驱动,而产生开始进行雾化作用的高振动幅度;但是,一旦雾化作用开始,必须采用一个很低的振动幅度来保持雾化作用。由于驱动电压以指数速率从3.3伏下降到1伏,被消耗能量的总量就会减少,因此明显地延长了电池的寿命。
在每个5.5毫秒的驱动周期结束后,系统进入一个从9秒到18秒的“睡眠周期”。该睡眠周期的长度可以利用下面将讲到的转换开关设定为9秒、13.5秒或者18秒。
每个睡眠周期的前4秒用于将驱动系统从1伏到3.3充电。因此,当下一个连续的驱动周期开始时,孔板14将会在3.3的驱动电压下以高振幅开始被驱动。
孔板14的振幅不仅取决于用于产生振动的电压,还取决于用于驱动孔板的频率。这是因为包含孔板14、压电驱动致动器10以及这些元件之间的各连接件的振动系统具有一个固有的谐振频率。当在其固有谐振频率下驱动该系统时,孔板的振幅最大,同时驱动力最小。但是,由于存在制造公差,因此孔板和致动系统的谐振频率彼此不同。
为了解决这个问题,驱动频率可以在包含孔板和致动系统的谐振频率的谐波的范围上变化和摆动。因此,驱动频率应该在基本固有谐振频率的范围上或者一些高于孔板和致动系统的固有谐振频率的谐波的范围上摆动。因此,即使不知道特定系统的专有谐振频率,通过在整个频率范围上驱动该系统,该系统也会在该频率范围内的某一点产生谐振。如图2所示,驱动频率在120到160千赫的预定频率范围上摆动。在每个5.5毫秒的驱动期间内,频率范围前后至少摆动11次。与前面与关于驱动振幅的解释相似,频率还可以连续地进行摆动而无需插入睡眠周期。
图3是说明可以用于驱动本发明的压电致动件10的电路结构的简化方框图。为了达到说明的目的,该电路结构通过用虚线画出的功能单元组进行说明。这些功能单元如下(a)一操作供电单元40;(b)一驱动电压模式控制单元42;(c)一驱动信号放大单元44;(d)压电致动件10;(e)一睡眠周期控制单元46;(f)一频率模式控制单元48;以及(g)一低电池检测和控制单元50。
这些单元中一部分在同一个集成电路52(用点划线表示)内形成,其它部分与集成电路52一起固定在印制电路板(未示出)上,对此下面将详细说明。
图3所示的电路结构的操作过程,首先描述功能单元40、42、44、46、48和50的总体操作过程开始,然后再分别描述每个功能单元的各个操作过程。
功能单元的整个说明操作供电单元40将1.5伏“AA”碱性电池54的输出电压转化为3.3伏的工作电压。3.3伏的工作电压给系统中包含驱动电压模式控制单元42的其它电路供电。
在图2所示的连续的5.5毫秒驱动周期内,驱动电压模式控制单元42使工作电压一般按照指数率从3.3伏下降到1伏。可以看到,此处的指数率下降在本发明中不是关键性的。实际上,一旦雾化作用在每个驱动周期开始时启动,只要能够保持雾化功能,电压就可以尽可能快地下降,以节约电池能源。
从驱动电压模式控制单元42来的电压,被供应到驱动信号放大控制单元44,该驱动信号放大控制单元将电压放大和转换为用于激励压电致动件10的摆动频率电压输出。
睡眠周期控制单元46控制图2所示的睡眠周期的持续时间。在图中所示的实施例中,这些睡眠周期被设定为9、13.5或者18秒。睡眠周期还可以设定为其它的持续时间,只要它们长到足以允许操作供电单元40将驱动电压模式控制单元42带回其在下一个驱动周期的3.3伏的水平即可。在本实施例中,充电到3.3伏大约需要4.5秒。
频率模式控制单元48产生一个频率在120和160千赫之间摆动的交变电压信号。该信号被施加到驱动信号放大和频率控制单元44上,该驱动信号放大和频率控制单元在这一频率和下降的振幅下顺序驱动压电致动件10,其中下降的振幅与通过驱动电压模式控制单元42设定的驱动周期电压模式对应。
低电池检测和控制单元50感应电池54的电压输出值;当该电压输出值下降到电池不能可靠工作的预定电压值时,检测和控制单元50阻止系统再进行操作。同时,单元50使电池54放电到某一值,这样,电池就不能有足够的使雾化装置偶尔进行不规则操作的输出电压。
操作供电单元操作供电单元40包含除了电池54外,还有一泵送线圈56、一稳压二极管58和一存储电容器60。电池54连接在地和泵送线圈56之间,电池的负极接地,另一端连接泵送线圈。线圈56的另一端与稳压二极管58的正极相连,同时二极管的负极与存储电容器60的一侧连接。电容器62的另一侧接地。一电压控制开关62的一侧连接在线圈56和二极管58之间,开关62的另一侧接地。开关62在由200千赫泵送振荡器64的输出的200千赫下交替地打开和关闭。一电压检测器66感应在稳压二极管58和存储电容器60之间的点上的电压。电压检测器66具有一个高感测电压输出端66a和一个低感测电压输出端66b。这些输出端分别与泵送振荡器的停止和开始输入端64a和64b连接。
泵送振荡器64的开始输入端64b还直接接收电池54输出的1.5伏电压。因此,电压检测器的低感测电压端66b和电池54的输出端通过OR门68与泵送振荡器64的开始端连接。
当首先安装上电池54时,其1.5伏的电压输出就通过OR门68施加到泵送振荡器64的开始输出端,而使振荡器开始操作。振荡器输出使开关在200千赫打开和关闭。当开关关闭时,从电池54来的电流穿过泵送线圈56流到地面。然后,当开关62打开时,电流突然被中断,同时泵送线圈的电感使其感受一个突然的电压升高,这就使电流通过稳压二极管58而进入存储电容器60。当开关62再次打开时,泵送线圈的电压下降,但是因为二极管的作用,电流不再流回去穿过线圈56。当振荡器64连续操作时,在存储电容器60上的电压增大,直到其电压升至3.3伏。
利用电压检测器66直接检测到在存储电容器60上的电压,当电压刚刚在3.3伏之上时,在高感测电压输出端66a处产生一个信号。该信号被输送到振荡器64的停止端64a,使振荡器停止振荡,同时开关62处于打开状态。结果,当电流从存储电容器流出时,其电压下降到直至电压检测器66在其低感测电压端66b处产生一个信号。
将低感测电压施加到振荡器64的开始端64a,该振荡器使开关62进行转换动作,继续并开始再向存储电容器60输送电流。
可以看出,在电容器60处的电压会在取决于电压检测器66设定的高和低电压上、略高于或略低于3.3伏之间颤抖。在电容器60上的3.3伏的电压由输出供电端70供应到其余元件,使这些元件操作。
驱动电压模板控制单元驱动电压模板控制单元42包含一电阻72,其一端与操作供电单元40内的存储电容器60的一端连接。电阻72的另一端与电压模式控制电容器74的一侧连接。该电容器的另一侧接地。电阻72和电容器74构成一个标准的RC计时电路;当连接一限定的阻抗时,电阻和电容器之间相交点处的电压以一指数比率下降。在本实施例中,相交点76处的电压在大约5.5千赫内从3.3伏下降到1伏。
驱动信号放大单元驱动信号放大单元44包含一自耦变压器78和一滑动线圈80,它们顺序连接在驱动电压模式控制单元42内的相交点76和压电致动件10的一侧之间。而且,还设有场效应晶体管82,其连接在沿自耦变压器78的点78a和地之间。场效应晶体管82起开关作用,当其从频率模式控制单元48接收到一个正电压时,该晶体管导电并将点78a接地。
点78a设置在接近自耦变压器78的上端、最接近驱动电压模式控制单元42的位置,因此,只有自耦变压器线圈的一小部分在点78a和驱动电压模式控制单元42之间。当电78a与地断开时,自耦变压器起作用,在其接近致动件10的端部产生一个很高的电压,并使致动件膨胀和收缩。从自耦变压器来的电压信号首先通过滑动线圈80,转化为一个与更接近致动件10振动模式对应的模式。
睡眠周期控制单元睡眠周期控制单元46包含一个三位转换开关84,其公共端接地,三个开关端中的两个通过时间控制电阻86和88连接到取样开关90。开关90顺序地与3.3伏的供电电压连接。第三个开关端不连通。
电阻86和88根据接地的特定开关端,向睡眠周期逻辑电路92提供不同的电压。逻辑电路92包含从电阻86和88接收的电压;同时,其输出在输出端92a处输出三个不同电压中的一个。该电压供应到作计时器使用的睡眠工作循环94,在收到从逻辑电路92来的一个信号后,该计时器在输出端94a产生9、13.5或者18秒的输出值。
系统中设置有在2千赫数值时提供时钟信号的系统计时表96。这些时钟信号用在包含工作循环电路94的装置中的所有计时电路和读表电路。
当工作循环电路94到达其已经设定的9、13.5或18秒的间隔时,该循环在输出端94a产生一个供应到频率模式控制单元48的信号,从而开始驱动压电致动件10。其动作方式在下面接合对频率模式控制单元48的说明进行描述。
在睡眠工作循环的输出端94a的信号,还供应到驱动计时器98,该计时器设定压电致动件10的驱动时间周期。在说明性的示例中,该驱动时间周期为5.5毫秒。在该时间周期的最后,驱动计时器98从输出端98a输出一个信号。该信号被传输到频率模式控制单元48,而中断对压电致动件10的驱动。
从驱动计时器的输出端98a来的信号还被传送到取样开关90,而使取样开关暂时关闭。由此,在横跨过由转换开关84的设定选择的电阻86或88上产生一个压降。如果转换开关设定在其不连接端,就不会产生压降。因此,产生的或者是一个零电压、第一电压或者第二电压,每次取样开关90都被关闭。该电压被施加到睡眠时间选择逻辑单元92上,启动一个与睡眠转换开关84的位置对应的睡眠时间周期。因此,在压电致动件10的每个驱动周期的最后,就启动了一个新的睡眠周期;该睡眠周期的长度取决于睡眠周期开始时转换开关的位置。
频率模式控制单元频率模式控制单元48包含一摆频振荡器100,在本示例中,该振荡器产生一个频率在130和160千赫之间摆动的三角波形输出值。该输出值被施加到驱动周期打开和关闭开关102上。开关102利用从睡眠工作循环电路94的输出端94a来的信号将其关闭,利用从驱动计时器98的输出端98a来的信号打开。因此,从振荡器100来的可变频率输出值只有在压电致动器10的5.5毫秒驱动周期内,才通过驱动周期打开和关闭开关102。
将通过开关102的可变频率输出值施加到波临界电压检测器104。该装置在从摆频振荡器100的每个输出循环的一个特殊点处、在输出端104a产生一个输出信号,换句话说,是指在振荡器达到一预定临界值的输出电压时,每个循环的点。
将从波临界电压检测器104来的该输出信号施加到驱动开关106上,使该开关关闭。当开关关闭时,驱动开关106将例如3.3伏电源的正极与场效应晶体管82的栅端子连接,而使其导电。
从临界电压检测器104输出的信号还施加到波分段控制计时器108。该计时器在经过小于摆频振荡器100一个循环的持续时间的一固定周期之后,产生一个输出信号。
将从计时器108来的输出信号施加到驱动器开关106并使其打开。驱动器开关106打开,使场效应晶体管82不能导电,因而电流不再从自耦变压器78的上部流到地面。在这段时间内,自耦变压器产生一个非常大的电压,施加到压电致动器10上。
从前面的描述可以看出,在摆频振荡器100的每个输出循环中,驱动控制开关106关闭一个固定周期,产生一固定量驱动压电致动件10的能量。同时,这些固定周期的连续周期之间的时间间隔,根据可变频率振荡器100的频率变换。每个驱动循环的该固定驱动周期内,在可变频率下驱动压电致动器10,同时保持驱动能量独立于频率。因此,驱动压电致动器10的驱动能量或者幅度,仅取决于驱动电压模式控制单元42内的电容74和电阻72之间的相交点76处的任一特定时间的电压。结果,在每个驱动周期内,使压电致动器10在变化的频率、下降的幅度下被驱动。值得注意的是,该频率在每个驱动周期内、130和160千赫之间大约摆动11次,同时驱动幅度下降一次。
低电池检测和控制单元低电池检测和控制单元50的操作是保持系统处于工作状态,只要电池54在一预定的时间段内(即在每个睡眠周期的第一个4秒内)能够充电到3.3伏的电压值。单元50包含一低电池计时器110,该计时器从操作供电单元40内的电压检测电路66的低压输出端66b接收一开始计时输出信号,并从电压检测电路66的高电压输出端66a接收一停止计时信号。因此,无论何时开始使供电电压充压到3.3伏的操作,低电池计时器110的计时操作就开始。
如果充压操作在计时器设定的例如4秒内完成,从电压检测器66的高电压极来的信号将停止计时操作。但是,如果充电操作持续较长的时间段,当电池情况变坏时,低电池计时器110在输出端110a产生一个信号。
从低压电池计时器110a来的信号,施加到驱动开关106的关闭端106a,保持开关关闭。这就将场效应晶体管82的栅端子锁定为3.3伏供电电压,而使晶体管保持在导电状态。结果,在电容60和74上的电压被放掉,电流从电池54通过场效应晶体管82被引到地面。该操作迫使电池排出残余电压,从而防止发生在电池损坏时常出现的由于电池恢复了少量电压而无规则地操作压电致动器10的情况。
值得注意的是,采用本发明的驱动系统,可以利用廉价的低压碱性电池驱动压电致动器;同时,即使电池本身开始损坏,致动器的操作也能保持不变。当电池变坏到一预定水平时,装置会断然停止,而不会留有任何的操作拖尾现象。
可以理解,图和此文的说明部分直接述及本发明的优选实施例,但是,发明本身比所给出的说明性示例范围宽。特别需要指出的是,本发明同样可以应用在其它型式的压电喷雾装置中,例如用在悬臂梁和/或放大板中,驱动雾化器可以使用传统的电源即墙壁插头,而不是利用电池供电。
值得注意的是,在此所表示的特殊的电路图不是本发明的极限状态,本领域的技术人员可以容易地对其进行改型。在此所提出的电路方案仅用于清楚地解释和说明本发明的重要概念。
图4表示印制电路板201和置于其中的压电件202二者之间的大概关系。可以理解,在使用中可以将电路板固定在分配器的底板上,该底板可以顺序地放在装饰的壳体状外壳或者容器(未示出)内。图8表示出底板211的顶视图,未表示出外壳。装饰的容器或者外壳可以是满足对分配器的元件进行保存和保护目的的任何型式或形状,同时其外表令顾客赏心悦目,在喷射状态时,液体能从分配器喷射到能大气中。而且,分配器外壳通过对所使用的材料进行高速模压制成,该外壳与被分配的液体接触。
如图所示压电件202可以由垫板204或者采用任何不抑制元件振动的相似的适当方法固紧在电路板201内。环状压电件202与孔板203环形固定,并与孔板凸缘粘结,从而使该压电件处于振动传输状态。压电件通常是一压电陶制材料,例如锆钛酸铅(PTZ)或者偏铌酸铅(PN),还可以是表现出压电特性的任何材料。
孔板可以由能够实现目的的任何传统材料制成,但最好由在感光性树脂层上形成电镀镍钴混合物制成,其形式方式是随后将感光性树脂层以传统方式移开,形成带有均匀孔结构的镍钴混合物,该镍钴混合物的厚度大约从10到100微米,较好的是大约20到80微米,最好是大约50微米。孔板还可以使用其它材料,例如镍、镁锆合金等各种金属、金属合金、复合材料或者塑料以及组合物。通过电镀形成镍钴层,可以生产出具有感光性树脂层轮廓的多孔结构,其穿透性是通过在出口侧形成直径大约为6微米的圆锥孔而得到的,该圆锥孔的入口侧直径较大。孔板最好是圆顶形的,即在中心部分升高一点,还可以是从平面起来的抛物线形或者半球形,或者是其它能够提高性能的适当的形状。孔板应该具有相对高的弯曲刚度,以保证其中的小孔基本能受到相同振幅的振动,从而同时喷射出沿直径均匀形成的液滴。
图中表示出环形陶瓷压电件环绕着孔板或者孔,本发明还可以使用传统的包含振动器和与隔膜接触的悬臂梁、喷嘴或者适合液滴或液雾喷射的孔板的压电件。
图6表示储存和提供被喷射的香味剂、空气清新剂、杀虫剂或者其它材料的液体容器205。如图所示,用封盖208封闭容器。如图所示,卡圈206固紧可移动封盖或盖子(未示出),该卡圈便于容器的运输和储存,当希望将容器置于喷射器内并允许使用容器中的物质时,可以将卡圈很容易地移开。从瓶口209、穿过封盖208,伸出灯芯状或圆顶形液体输送介质的液体供应装置207,为方便起见,我们宁愿使用灯芯状液体供应装置,尽管其包含数种不同形状的从硬毛细管系统到软的多孔芯子的材料。芯子的作用是从容器205向与孔板接触的位置传送液体。因此,芯子应该不受被传输液体、小孔的影响,并且能与孔板配合。芯子的多孔结构,应该能在芯子的整个柔性范围和任何形状上提供足够的均匀液流。将液体传输到孔板表面的最好的方法是,实际上芯子本身必需与孔板接触,将液体传输到孔板。液体传输到孔板的较好的方法是所有被传输的液体都应通过表面张力粘附和传输到孔板表面。在适用的芯子材料中,较可取的是采用例如纸或尼龙纤维、棉、聚丙烯、玻璃纤维等材料。芯子最好呈与孔板的表面相符的形状并与其并置,芯子由位于液体容器205的封盖208的瓶口209内的芯子夹持器或固定器210固紧在适当的位置上。由于液体的粘性和张力的作用,液体就迅速地从芯子流到孔板。可以注意到,芯子是液体再供应装置的必要部分,该液体再供应装置包含容器、液体、瓶盖、芯子和芯子夹持器或固定器,以及密封储存和装运装置的顶盖。该装置包含一个用于分配器的补充瓶,在消费者方便时置于分配器内。最后,液体容器205可以带有固定装置201,瓶盖208插入底板211内的适当接收装置中,在将顶盖或盖子移开口,使瓶盖锁定在适当的操作位置。
图6表示本发明优选实施例中的液体容器205、芯子207、压电件202和孔板203之间组装后关系的横断面图。压电件202例如通过垫板204或者任何不限制压电件振动的适当装置定位在印制电路板201内。在本发明的优选实施例中,围绕孔板203的环形压电件采用机械连接方式。孔板顺序地与芯子207接触,将液体从容器205散布到孔板,这一传输操作通过表面张力接触产生。图中未示出的分配器的底板珠,在适当的位置夹持着电路板和液体容器,使芯子207与孔板203并置。芯子207通过芯子夹持器210夹持在封盖208的开口处,其能够保持柔性芯子207的自由程度,调整其范围,同时能确保芯子的尾部215在容器205的全部液体内得到充分的利用。该自由度使芯子可相对孔板的表面进行自身调整,以弥补由于制造中不可预测的变化而引起的位置变化,并且能够顺应输送装置,将液体从容器输送到孔板的表面。显然,对于本领域的技术人员来讲,如图6和7所示,可以通过调整芯子高度而改变液体缝隙214,如图7所示,表示出芯子和孔板之间适当的接触程度。图中更详细地表示出芯子和孔板之间的关系,这一点从图6的局部放大图——图7中能够直接看到,图中表示出环形芯子207,其与圆顶形孔板203并置,因而产生一液体缝隙214,其中,被传输的液体与孔板表面张力接触。如图7所示,芯子和孔板没有真正地接触,可以理解该缝隙仅作说明之用,孔板203实际上与已芯子207接触,以传输液体。如图所示,穿过封盖元件208内的开口209的芯子207分段,由芯子夹持器/固定器210控制。图7中还表示出压电件202的安装垫板204、孔板203和孔板凸缘212以及将可移动盖(未示出)固紧在瓶盖208上的卡圈206。
图8是表示电路板201、压电件202、孔板203、安装垫板204和底板211之间关系的顶视图。如前所述,与孔板203呈环形关系的压电件202,由垫板204在某一位置固紧在电路板201内。电路板以传统的方式安装在底板211上,例如利用卡圈217和固定支架218。
图9表示出本发明中不同元件的整个关系的简化的横断面图。图中所示的孔板203包含孔板凸缘212,该凸缘通过适当的粘附物质213例如环氧树脂粘结剂顺序地与压电件202粘接。图中示出的芯子207局部与孔板203接触,产生一个液体缝隙214,通过该缝隙将被分配的液体传输到孔板。所表示出的芯子还包含纤维尾部215,其延伸到未表示出的液体容器205内。
压电件202由电路板201上的控制电路控制,在整个延长的周期内提供恒定性能。参照图10,控制电路通过采用从电池102接收电力的特殊集成电路(ASIC)完成。电池302与供给泵304连接,该供给泵与起DC-DC升压器作用的外部元件305连接。供给泵的操作是通过控制机械306进行控制的,该控制机械从产生例如施加到供给泵304上的20兆赫兹钟信号的振荡器接收计时信号。控制机械还从低电池指示电路310接收指示。
控制电路、特别是控制机械306的功能度,是由向控制机械306产生输入信号A、B、C的三位转换开关组312决定。从转换开关312输入控制机械中,连有各个工作电阻313,这些工作电阻利用从控制机械306来的ENABLE信号有选择的与正供电电压Vcc连接。这就会使控制电路在不工作期间,电压不与工作电阻313连接,以节省电池能。下面将要说明的是,控制机械的操作在用于驱动压电件202的振幅和301频率的线314上产生一个输出信号。该在线314上的输出信号通过输出驱动器216,产生ASIC300输出值。输出驱动器216控制金属氧化物场效应晶体管(MOSFET)316的导电状态,该晶体管依次控制从供给泵304到压电件202的电流量。
图11是控制机械306的详图。控制机械306的优选实施例是在特定集成电路中利用硬连接电路,但是也可以通过另一种编程装置例如微型计算机和相关电路来完成。控制机械306具有判定逻辑320,该判定逻辑采用了选择器输入A、B和C。判定逻辑306还与储存装置322和324连接,该储存装置分别包含驱动压电件202的考虑到输出信号间隔和工作周期的数据。判定逻辑分别从储存装置322和324选择适当的间隔和工作周期值,并将它们分别传送到频率计数器326和幅度计算器328的预加载输入端。这些计数器326和328从振荡器308接收一钟信号,并由从判定逻辑320来的信号启动。正如下面将要说明的,当频率计数器326下降到零时,其产生一个用PERIOD表示的脉冲到触发电路组330上。同样,当振幅计数器328到达零时,其产生一个作为触发电路330的回位输入的DUTY信号。触发电路通过从判定逻辑320来的信号启动,并在线314上产生输出值。
用于压电件202的驱动电路利用振幅和频率调制为压电件202充电,因而提供一个在空气净化剂(air trephener)或杀虫剂应用中连续使用的便携式电池控制的分配器。电路利用相对低电压电池302延长操作,并提供一个成分传递率的范围。电路利用断续工作循环驱动带有振幅和频率调制的压电件202。将电路编程并设定一个准确的每小时数微克的喷雾传送率。这一操作通过允许使用者调整两个循环之间关闭时间的转换开关312完成,同时根据个人的爱好和房间的尺寸改变密度/效果而达到理想的水平。可以发现,分配器的性能与压电件102的励磁电压直接有关。然而,还可以发现,随着电压增大,分配器利用有限电池能量的效率越低。因此,通过将励磁电压的幅度从高值变到低值,传送性能能够提高,而不会出现效率降低的现象。这一结果是由于以“高性能”模式启动喷雾操作的瞬时高水平励磁作用而产生的。此后,较低水平励磁电压仅是保持该性能水平所必须的。
本发明发明人还发现压电件202的最佳工作频率从一个部件到另一部件频率是变化的,这是因为电路和喷射元件例如压电件202的制造工艺不同而产生的。这种现象可以利用贯通预定范围的励磁频率的摆动而克服掉,从而补偿部件-到-部件的变化。
目前的驱动电路的另一个特点是提供一个活性成分的恒定传送量,而忽略电池带电状态。该电路包含积累了充足电量、使压电件202脉动的部分318。当电池电压下降时,电路能够保证得到进行恒定泵操作的适当的能量。当电池电压下降到电路不再提供适当的能量的点时,电路将部件关闭。因此,电路提供了恒定的传送输出量,而忽略电池302的带电状态。当电池电压下降到不能得到恒定的输出值的点时,分配器关闭。
在分配器工作过程中,控制电路大多数时间处于低动力模式下,通常指睡眠状态。在睡眠状态,从振荡器308来到信号驱动在控制机械306的判定逻辑320内的计时器。在该睡眠状态内,在控制机械的线314上的输出信号是一个低逻辑值,因而使压电件102不动作。睡眠状态的周期是通过频率转换开关的设定和向控制机械306输入的A、B和C而确定的。开关设定和合成信号A、B和C之间的关系如表A所示。

表A如果频率转换开关312被设定使分配器断开,或者当低电池电路240检测到电池302的带电量已经下降不能正常工作的一个点时,调制程序不再执行且分配器进入不动作状态。
当分配器接通且控制机械306唤醒时,产生一个驱动压电件102的短促的输出信号。控制机械306产生一个驱动压电件的信号,该压电件在整个频率范围和振幅范围上摆动。在优选实施例中,在工作循环表322内储存了19个振幅值,在周期表内储存了40个频率值。判定逻辑320带有一个内部计时器,该计时器每26.2微秒在表的下一个设定位置内将振幅和频率补偿和加载在两个计数器326和328内。因为不连续的振幅和频率数量不同,振幅变化,因此,当给定频率定时驱动压电件102时,其振幅也变化。这一概念在图12中表示出来,当频率摆动穿过周期表322的40数值(135千赫到155千赫)时,振幅在工作循环表324的19数值摆动。由于40不能被19除尽,当频率重复第一频率(135千赫)摆动时,将具有一振幅值3。
这一处理过程由图11所示的判定逻辑306启动频率和振幅计时器326和328而实现。计时器326和328控制在输出线上的交替信号的间隔和工作周期。实际上,两个八位预加载计数器326和328将从两个表322和324来的值通过振荡器308产生的20兆赫的钟信号分割,以控制输出信号的间隔和工作周期。频率计时器分割20兆赫钟信号,使改信号下降到135千赫和155千赫之间。每26.2微秒判定逻辑通过从周期表322得到的下一个频率值并将该值通过计数线预加载到频率计数器326内进行加载,重新设定计数器。该再加载计数器326具有适当的降低值。同时,从表324得到一个新的工作循环值。工作循环值在1.4微秒和5.0微秒之间改变在线314上的输出信号的脉冲宽度。该工作循环控制输出信号的振幅,并且较长的时间间隔给出一个较大的振幅。
在线314上的输出信号是施加到输出驱动器216上的一个数字信号,该输出驱动器控制动力MOSFET316的通电状态。计数器326和328控制触发电路314的操作,该触发电路产生一个方波输出信号,该方波输出信号在由两个计数器326和328确定的、图12中340和344所表示的频率和工作循环内变化。本发明上面描述的是优选实施例,可以理解本发明并不局限于所公开的实施例。相反,本发明试图覆盖在所附的权利要求书的精神和范围内的各种变型和等同方案。下面的书与最宽的说明一致,从而包括所有的变型和等同的组成和功能。
工业实用性本发明涉及雾化系统,在本申请中所描述的雾化系统可用于对任何给定环境、在延长的时间间隔内自动地分配例如空气清新剂、香水或者杀虫剂的液体,同时在驱动分配器的电池的整个使用寿命中,能够均匀地向大气分配等量的液体。而且,通过再充电或者更换电池,分配器可以再使用,因此,消费者可以根据需要改变喷射到大气中的液体,另一个优点是可以根据人们的爱好、效能或者房间大小,改变被分配液体量,以将密度和效果调整到所希望的水平。
权利要求
1.一种操作振动液体喷雾器的方法,该喷雾器通过其内的孔板供应被雾化的液体,振动孔板以驱动液体穿过其表面呈小液滴状,所说方法包含的步骤有以相对高的振幅开始振动所说孔板,使液体开始雾化作用;以及然后,以足以维持雾化作用的相对低的振幅振动所说孔板。
2.根据权利要求1所述的方法,其特征是在以相对低的振幅振动孔板之后,将所说孔板的振动停止一预定时间,而后重复孔板先以较高振幅振动然后以较低振幅振动的步骤。
3.根据权利要求1所述的方法,其特征是振动所说孔板的所说步骤,是通过在随时间指数降低的振幅下振动所说孔板实现的。
4.根据权利要求1所述的方法,其特征是在振动所说孔板的步骤中,振动频率在一频率范围上变化,该频率范围包括带有所述孔板的振动系统的自然共振频率的谐波。
5.根据权利要求1所述的方法,其特征是在执行所说步骤中,振动频率在所说频率范围上摆动几次。
6.一种操作压电振动液体喷雾器的方法,其特征是压电致动件利用交变电压通电而膨胀和收缩从而振动孔板,由孔板供应被喷雾的液体,因此,所说孔板的振动雾化所说液体并使液体从孔板以细小的烟雾状液滴散开,所说方法包含的步骤有首先向所说压电致动件施加一个高交变电压,使压电致动件以高振幅振动所说孔板,从而使液体开始雾化作用;以及而后向压电致动件施加一个低交变电压,保持所说雾化作用。
7.根据权利要求6所述的方法,其特征是施加一高交变电压而后施加一低交变电压的所说步骤是在驱动周期内完成一次,驱动周期之后是睡眠周期,所说步骤在随后跟在所说睡眠周期之后的驱动周期中重复进行。
8.根据权利要求6所述的方法,其特征是开始施加一高交变电压而后施加一低交变电压的所说步骤,是通过向所说压电致动件施加一开始高而后以指数比率降低的交变电压来完成的。
9.根据权利要求7所述的方法,其特征是还包含在驱动周期内、一频率范围上改变所说交变电压频率的步骤,其中频率范围包括带有所述孔板的振动系统的自然共振频率的谐波。
10.根据权利要求9所述的方法,其特征是改变所说交变电压频率的步骤,是通过在所述驱动周期内、所说频率范围上使所说交变电压的频率前后摆动几次而完成的。
11.根据权利要求7所述的方法,其特征是首先施加一高交变电压而后施加一低交变电压的步骤,是通过在连续驱动周期之间的间隔内对一电容充电,在所说驱动周期内使所说电容放电,而在所说驱动周期内产生与横跨所说电容的电压对应的交变电压,同时将所说交变电压施加到所说压电件上。
12.根据权利要求7所述的方法,其特征是向所说压电致动件首先施加一高交变电压而后施加一低交变电压的步骤,是通过向其另一端与所说压电致动件连接的线圈的一端施加一渐减的直流电压,同时,迅速地连接和断开所说线圈的小部分,该小部分最接近所说一端,在每个驱动周期以高速连接和离开地面。
13.根据权利要求12所述的方法,其特征是所说迅速连接和断开是在包含带有所说孔板和所说压电致动器的系统的自然共振频率的谐波的可变速率下完成的。
14.根据权利要求12所述的方法,其特征是将所说线圈的所说部分接地的持续时间彼此相等,同时所说线圈的所说部分不接地的持续时间是变化的。
15.根据权利要求7所述的方法,其特征是首先施加一高交变电压的步骤包含通过一线圈和一二极管使电池与电容连接,并且依次使所说线圈和所说二极管之间的点接地和不接地,而使所说电容充电到比所说电池的电压高的稳压。
16.根据权利要求15所述的方法,其特征是对所说电容充电所需的持续时间远大于驱动周期。
17.根据权利要求12所述的方法,其特征是连接和断开步骤跟在每个睡眠周期后开始,并延长一预定的驱动周期。
18.根据权利要求15所述的方法,其特征是还包含计算所说二极管与地之间连接和断开的持续时间的步骤,对所说持续时间超过一预定值的反应是将所说电池接地,使电池放电到完全相同的情况。
19.根据权利要求18所述的方法,其特征是还包含防止将与所说连接和断开超过一预定持续时间对应的交变电压进一步施加到所说压电致动件上的步骤。
20.一种振动液体雾化器,包含一孔板;一液体管道,向所说孔板提供将被雾化的液体;以及一振动致动器,所连接的致动器首先在驱动周期内、以高振幅振动所说孔板,使液体开始雾化,而后在同一驱动周期内,以足以维持雾化作用的较低振幅振动所说孔板。
21.根据权利要求20所述的振动液体雾化器,其特征是所说振动致动器包含一控制器,在所说驱动周期之后,该控制器使所说孔板的振动停止一预定时间,而后重复以高振幅、然后以较低振幅振动孔板的步骤。
22.根据权利要求21所述的振动液体雾化器,其特征是所说控制器被构造成在所说驱动周期内、以随时间的指数降低的振幅下振动所说孔板。
23.根据权利要求21所述的振动液体雾化器,其特征是所说控制器包含一摆频元件,该元件使所说孔板以下列方式振动,即振动频率在包含带有所说孔板的振动系统的自然共振频率的谐波的频率范围上变化。
24.根据权利要求23所述的振动液体雾化器,其特征是所说摆频元件的结构使得在所说驱动周期内使振动频率在所说频率范围内摆动几次。
25.一种振动液体雾化器,包含一将被振动的孔板;一液体供应管道,设计成在振动时向所说孔板供应液体;一压电致动件,与所说孔板连接,在所说元件膨胀和收缩时使孔板振动;以及一供电系统,在驱动周期内向所说致动件供应交变电压,使致动件膨胀和收缩,因而振动所说孔板,使液体雾化并使液体呈细小的液滴状喷出,所说供电系统包含有电路,首先向所说压电致动件施加一高交变电压,使压电致动件以高振幅振动所说孔板,而使液体开始雾化,而后向所说压电致动件施加一较低交变电压,以维持所说雾化作用。
26.根据权利要求25所述的振动液体雾化器,其特征是所说供电系统包含计时器和开关,用于在随所说驱动周期后的睡眠周期内停止向所说致动器施加交变电压,然后在后面的驱动周期内重新向所说致动器施加交变电压。
27.根据权利要求26所述的振动液体雾化器,其特征是所说供电系统包含一个能供应电压的电压供应电路,该电压在驱动周期开始时高,在所说驱动周期内按指数比率降低。
28.根据权利要求25所述的振动液体雾化器,其特征是所说供电系统包含一个具有一频率摆动范围的可变频振荡器电路,其中的频率摆动范围包含带有孔板的振动系统的自然共振频率的谐波,同时所说振荡器电路向所说致动件施加可变频率信号。
29.根据权利要求28所述的振动液体雾化器,其特征是所说可变频率振荡器的频率摆动率是在所说驱动周期内、所说交变电压的频率在所说频率范围内前后摆动几次。
30.根据权利要求25所述的振动液体雾化器,其特征是所说供电系统包含一充电电容和计时电路,该计时电路在连续的驱动周期之间的时间段内对所说充电电容再充电;在所说驱动周期内,当向所说压电致动器施加驱动电压的同时,所说充电电容连到放电端;还包含一交变电压产生电路,在所说驱动周期内,该电路产生与横跨所说电容的放电电压对应的交变电压,并向所说压电件施加所说交变电压。
31.根据权利要求25所述的振动液体雾化器,其特征是所说供电系统包含一线圈,其一端与下降电压源连接,另一端与所说压电致动器连接;以及一转换电路,该电路在每个驱动周期内迅速地连接和断开所说线圈的小部分(与所说一端最接近的部分),使该小部分以高速接地和不接地。
32.根据权利要求31所述的振动液体雾化器,其特征是所说连接的转换电路利用振荡器进行控制,所说振荡器的频率使得在包含带有所说孔板和所说压电致动器的系统的自然共振频率的可变速率下实现快速地连接和断开。
33.根据权利要求31所述的振动液体雾化器,其特征是所说转换电路设计成使所说连接和断开按下面的模式进行将所说线圈的所说部分接地的持续时间彼此相等,所说线圈的所说部分与地断开的持续时间是变化的。
34.根据权利要求25所述的振动液体雾化器,其特征是所说供电系统包含彼此顺序连接的一电池、一线圈、一二极管和一电容,并且将供电电流连到充电电容;一开关,其从所说线圈和所说二极管之间的点接地;以及一转换操作电路,当在所说充电电容上的电压下降到第一较低电压时,该转换操作电路依次打开和关闭所说开关,当在所说充电电容上的电压超过第二较高电压时,保持所说开关处于打开状态。
35.根据权利要求34所述的振动液体雾化器,其特征是所说线圈和所说充电电容的大小是所说充电过程,延长一个大大超过所说雾化器的驱动周期的时间段。
36.根据权利要求31所述的振动液体雾化器,其特征是用于迅速地连接和断开所说线圈的小部分的所说转换电路,设计为跟在每个睡眠周期后开始并延长一预定驱动周期。
37.根据权利要求34所述的振动液体雾化器,其特征是所说供电系统还包含一计时器,该计时器测量所说开关依次打开和关闭的持续时间,并且与超过一预定量的所说持续时间对应,将所说电池接地,使放电到完全相同的情况。
38.根据权利要求37所述的振动液体雾化器,其特征是还包含另一个开关,其与超过预定量的所说开关打开和关闭的持续时间相对应,所说另一个开关接通处于工作状态,停止向所说致动件供应交变电压。
39.一种适于分配液体的分配器,该分配器包含一用于盛装被分配液体的容器;一压电件,将振动传递给所说液体;以及电路,用于提供驱动所说压电件的调制过的信号。
40.根据权利要求39所述的分配器,其特征是所说信号可以是调制过的振幅。
41.根据权利要求40所述的分配器,其特征是所说信号振幅可以从高值向低值变化。
42.根据权利要求40所述的分配器,其特征是所说信号振幅可以根据预定值进行调制。
43.根据权利要求39所述的分配器,其特征是所说信号可以是调制过的频率。
44.根据权利要求43所述的分配器,其中,所说信号频率可以根据预定值进行调制。
45.在使液体雾化的方法中,所说方法包含提供被雾化的液体,一盛装所说液体的容器,一振动所说液体的压电件,改进部分是所说压电件由调制过的信号驱动。
46.根据权利要求45所述的方法,其特征是所说信号是调制过的振幅。
47.根据权利要求45所述的方法,其特征是所说信号是调制过的频率。
全文摘要
本发明涉及一种电池驱动雾化器,其中,将交变电压施加到压电致动件(10)上,使该压电致动件膨胀和收缩并振动一使液体雾化的孔板。被控制的交变电压在驱动周期的第一部分内产生一高振幅振动,开始进行雾化作用,而后,在驱动周期的剩余部分内产生一较低电压,以维持雾化作用。在每个驱动周期内交变电压的频率都重复地摆动。
文档编号B05B17/00GK1349438SQ00806969
公开日2002年5月15日 申请日期2000年3月6日 优先权日1999年3月5日
发明者丹尼斯·J·登纳, 加里·E·迈尔斯, 乔治·A·克拉克, 莱昂·M·黑丁斯, 埃里克·R·纳文, 托德·L·詹姆斯 申请人:约翰逊父子公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1