一种喷墨用抗菌防静电低温陶瓷墨水及其制备方法与流程

文档序号:11934038阅读:248来源:国知局

本发明涉及了陶瓷技术领域,特别是涉及了一种喷墨用抗菌防静电低温陶瓷墨水及其制备方法。



背景技术:

细菌,霉菌作为病原菌对人类和动植物有很大危害,影响人们的健康甚至危及生命,带来了重大的经济损失。因此抗菌材料及其制品的研究日益引起人们的关注,抗菌制品的需求将构成巨大的市场。

静电是一种客观的自然现象,产生的方式多种,如接触、摩擦等。静电对一些敏感仪器和场所,可能会导致致命的危害。如静电在放电时产生的电磁效应(电磁干扰或电磁兼容性)会干扰精密仪器的正常工作,造成自动化设备的误动作;电荷的聚集可能产生尖端放电现象,可能烧毁精密仪器,产生的电火花可能引燃粉尘,造成爆炸事故。因此静电防护技术在如电子工业、石油工业、兵器工业、纺织工业、橡胶工业以及航天与军事领域都收到极大重视,力求寻求减少静电造成的损失。

墙砖,无论家居室内装饰,或是用于工业生产或公共场所,在满足外观实用之余,如何使其具备更多关乎人们健康保障方面的功能,也是业界科研工作者顺应时代潮流和生活风向标而做出的思考。

在现有墙砖等建筑装饰材料中,由于低温熔块中含有大量的 B、Li、Pb等熔剂性离子从 而获得了低温熔融的特性,这类原料已被大量应用在普通陶瓷的釉料中以降低釉的熔融温 度、提高釉面质量。但是,传统的低温熔块为了降低其温度大量使用含铅、镉的化学物质,虽然能达到降低熔融温度的作用,但铅、镉的化学物质含有剧毒。同时,目前也鲜有报道采用低温熔块制备功能型低温陶瓷墨水,如抗菌防静电等多功能型低温陶瓷墨水,若简单的添加抗菌剂,由于高温熔制工艺以及抗菌剂容易团聚的问题,使得抗菌稳定性减弱,甚至可能失去抗菌效果。



技术实现要素:

为了解决上述现有技术的不足,本发明提供了一种喷墨用抗菌防静电低温陶瓷墨水及其制备方法。

本发明所要解决的技术问题通过以下技术方案予以实现:

一种喷墨用抗菌防静电低温陶瓷墨水及其制备方法,该制备方法包括以下步骤:

步骤A、将25~38%色料、0.5~4%抗菌复合物、1~5%导电填料、15~20%低温熔块的干料混合,然后倒入快速搅拌机中混合均匀;采用研磨机研磨10h,使其粒径分布≤5μm;

步骤B、称取3~8%分散剂、2~5%表面添加剂、0.1~0.3%流平剂、0.3~0.8%消泡剂、0.5~1%结合剂、0.08~0.1%防沉剂、溶剂,然后加入步骤A的高速搅拌机内进行分散30~60min;将分散好的混合液装入研磨机中,研磨8~12h,得到粒径分布≤1μm的墨水半成品;

步骤C、将步骤B得到的墨水半成品在 80~100℃的恒温搅拌缸中,然后进行抽真空、高速振动、使用孔径≤1μm 滤网过滤,得到墨水成品。

在本发明中,所述低温熔块的制备方法如下:将10~18%石英、5~12%长石、15~25%硼砂、3~12%碳酸盐、20~35%硼酸、3~8%锂辉石、1~4%氟化盐、0~5%高岭土混合研磨均匀制得混合料;将混合料布撒装入耐火匣钵中,进行1250~1320℃高温熔制,得到熔融态的浆料;将浆料水淬冷却,并破碎成颗粒状,制得低温熔块。其中,所述长石由钾长石和钠长石按重量比3~5:1~2混合而得。所述碳酸盐由碳酸钾、碳酸钠、碳酸钡、碳酸锂及碳酸钙中的至少一种组成,优选地,所述碳酸盐由碳酸钾、碳酸钠、碳酸钡、碳酸锂及碳酸钙按重量比3:1:3:2:1混合而得。所述氟化盐由氟化钠、氟化钙和氟化锂按重量比4:2:1混合而得。

在本发明中,所述导电填料的制备方法如下:取1~8g导电粉(铝粉、炭黑、石墨烯的重量比为2:1:3)分散于100~200ml超纯水中,水浴超声1~2h获得均匀和稳定的分散液;将具有碳纳米管网状膜的基板置于约8℃时,将分散液加入内凹形状的基板中,同时,来回滚动滚轮,使该分散液均匀分散于该碳纳米管网状膜中,由于碳纳米管在8℃附近时具有亲水性,该分散液被吸附在碳纳米管网状膜的多个网洞;升温至约25℃,碳纳米管具有疏水性并将水分子赶走只留下导电粉吸附在碳纳米管网状膜的多个网洞中;干燥后,将吸附有导电粉的碳纳米管网状膜刮离该基板,获得导电碳纳米管网。

在本发明中,所述抗菌复合物可通过以下方法制得:

(1)称取0.3~1gC60粉末,量取80~100ml质量分数为98%的浓硫酸,将C60粉末和浓硫酸在烧杯中混合,烧杯放在冰水浴中,同时以500~600rpm的速度搅拌,得混合液;称取1~3g高锰酸钾粉末,缓慢的加入上述混合液中;移去冰水浴,换成水浴,保持水浴温度30~40℃,反应3~5h;快速加入100~150ml纯水,过滤,然后用截留分子量为1000的透析袋透析3~5天,得石墨烯量子点(GQDs)悬浮液;100~150rpm速度搅拌GQDs悬浮液,同时激光辐照30~60min,激光辐照功率为0.5~2W;备用;

(2)超声搅拌50~60mlGQDs悬浮液,滴加浓度为0.001~0.01mol/L硝酸银水溶液;逐滴加入浓度为0.1~0.5mol/L磷酸二氢铵溶液(磷酸二氢铵溶液与硝酸银水溶液体积比为2~3:1),超声搅拌10~20min;逐滴加入0.5~1mol/L氢氧化钠溶液,调节PH值至11,而后静置、离心,用去离子水和乙醇交替洗涤三次,真空干燥,得GQDs/Ag2O;

(3)取1~3gGQDs/Ag2O超声搅拌分散于80~120ml水溶液中;逐滴加入浓度为0.005~0.05mol/L硝酸铈水溶液,30~60min后逐滴加入浓度为0.005~0.05mol/L硝酸锌水溶液,GQDs/Ag2O水溶液、硝酸铈水溶液与硝酸锌水溶液体积比为1:0.1~0.2:0.2~0.4;继续超声搅拌,调节混合溶液PH值至7.0;边超声搅拌,边加入4~8mL质量分数为50%的水合肼,在30~40℃下还原反应0.5~1h;之后,再加入40~50mL质量分数为50%的水合肼,在85℃下还原反应30~48h后;过滤,用去离子水洗涤数次,真空干燥,得GQDs/Ag2O/Ag-Zn-Ce;

(4)将0.1~0.5gGQDs/Ag2O/Ag-Zn-Ce超声搅拌分散于水溶液中;之后加入体积比3~5:1的水和氨水,搅拌均匀后加入正硅酸乙酯(与GQDs/Ag2O/Ag-Zn-Ce的质量比为3:1~3),调节pH值为9~10,反应温度为20~25℃,反应30~60min;进行离心并依次用丙酮和去离子水清洗获得沉淀;将该沉淀在80~90℃下干燥2~4h,以得到GQDs/Ag2O/Ag-Zn-Ce/SiO2;将GQDs/Ag2O/Ag-Zn-Ce/SiO2置于氩气气氛下进行500~800℃热处理1~2h,冷却至室温后,浸没在氢氟酸中以超声功率100~150W进行超声10~15min,去除表面局部二氧化硅,离心并干燥,获得抗菌粉;

(5)氮气环境下,将浓度为0.05~0.5mol/L的质子酸溶液和浓度为0.05~0.5mol/L的十二烷基苯磺酸以体积比2~4:2混合,同时加入步骤(4)制得的抗菌粉,磁力搅拌60~120min后加入苯胺,抗菌粉与苯胺质量比为2:12~18;持续搅拌60~90min后,逐滴滴加过硫酸铵,苯胺与过硫酸铵摩尔比为1:1;20℃~30℃下反应15~30h;丙酮、去离子水洗涤数次后真空干燥,碾磨得纳米聚苯胺/抗菌粉复合物;

(6)用溶胶-凝胶法制备二氧化钛溶胶,向溶胶中加入占溶胶0.01~1.0wt%的纳米聚苯胺/抗菌粉复合物,混合均匀;静置陈化3~5d后置烘箱60℃~120℃烘干;碾磨后将所得复合物400~550℃下煅烧1~2h,去除聚苯胺,得多孔二氧化钛/抗菌粉复合物;

(7)取1~3g多孔二氧化钛/抗菌粉复合物分散于100~200ml超纯水中,水浴超声2h获得均匀和稳定的分散液;将具有碳纳米管网状膜的基板置于约8℃时,将分散液加入内凹形状的基板中,同时,来回滚动滚轮,使该分散液均匀分散于该碳纳米管网状膜中,由于碳纳米管在8℃附近时具有亲水性,该分散液被吸附在碳纳米管网状膜的多个网洞;升温至约25℃,碳纳米管具有疏水性并将水分子赶走只留下多孔二氧化钛/抗菌粉复合物吸附在碳纳米管网状膜的多个网洞中;干燥后,将吸附有多孔二氧化钛/抗菌粉复合物的碳纳米管网状膜刮离该基板,获得抗菌复合物。

较佳地,在步骤(4)和(5)之间增加一步骤:取三维海绵状石墨烯超声搅拌分散于水溶液中,逐滴加入GQDs/Ag2O/Ag-Zn-Ce/SiO2水溶液中,三维海绵状石墨烯与GQDs/Ag2O/Ag-Zn-Ce/SiO2的重量比为1:1~5;10~100W超声60~120min,静置,去离子水洗涤数次,干燥得GQDs/Ag2O/Ag-Zn-Ce/SiO2/石墨烯抗菌粉。

在本发明中,所述抗菌复合物还可以通过以下方法制得:

(1)称取0.3~1gC60粉末,量取80~100ml质量分数为98%的浓硫酸,将C60粉末和浓硫酸在烧杯中混合,烧杯放在冰水浴中,同时以500~600rpm的速度搅拌,得混合液;称取1~3g高锰酸钾粉末,缓慢的加入上述混合液中;移去冰水浴,换成水浴,保持水浴温度30~40℃,反应3~5h;快速加入100~150ml纯水,过滤,然后用截留分子量为1000的透析袋透析3~5天,得石墨烯量子点(GQDs)悬浮液;100~150rpm速度搅拌GQDs悬浮液,同时激光辐照30~60min,激光辐照功率为0.5~2W;备用;

(2)超声搅拌50~60mlGQDs悬浮液,滴加浓度为0.001~0.01mol/L硝酸银水溶液;逐滴加入浓度为0.1~0.5mol/L磷酸二氢铵溶液(磷酸二氢铵溶液与硝酸银水溶液体积比为2~3:1),超声搅拌10~20min;逐滴加入0.5~1mol/L氢氧化钠溶液,调节PH值至11,而后静置、离心,用去离子水和乙醇交替洗涤三次,真空干燥,得GQDs/Ag2O;

(3)取1~3gGQDs/Ag2O超声搅拌分散于水溶液中;逐滴加入浓度为0.05~0.5g/100mlZnO量子点水溶液,超声功率搅拌速度各减半;60~90min后,静置,过滤,用去离子水洗涤数次,真空干燥,得GQDs/Ag2O/ZnO抗菌粉;

(4)氮气环境下,将浓度为0.05~0.5mol/L的质子酸溶液和浓度为0.05~0.5mol/L的十二烷基苯磺酸以体积比2~4:2混合,同时加入步骤(4)制得的抗菌粉,磁力搅拌60~120min后加入苯胺,抗菌粉与苯胺质量比为2:12~18;持续搅拌60~90min后,逐滴滴加过硫酸铵,苯胺与过硫酸铵摩尔比为1:1;20℃~30℃下反应15~30h;丙酮、去离子水洗涤数次后真空干燥,碾磨得纳米聚苯胺/抗菌粉复合物;

(5)用溶胶-凝胶法制备二氧化钛溶胶,向溶胶中加入占溶胶0.01~1.0wt%的纳米聚苯胺/抗菌粉复合物,混合均匀;静置陈化3~5d后置烘箱60℃~120℃烘干;碾磨后将所得复合物400~550℃下煅烧1~2h,去除聚苯胺,得多孔二氧化钛/抗菌粉复合物;

(6)取1~3g多孔二氧化钛/抗菌粉复合物分散于100~200ml超纯水中,水浴超声2h获得均匀和稳定的分散液;将具有碳纳米管网状膜的基板置于约8℃时,将分散液加入内凹形状的基板中,同时,来回滚动滚轮,使该分散液均匀分散于该碳纳米管网状膜中,由于碳纳米管在8℃附近时具有亲水性,该分散液被吸附在碳纳米管网状膜的多个网洞;升温至约25℃,碳纳米管具有疏水性并将水分子赶走只留下多孔二氧化钛/抗菌粉复合物吸附在碳纳米管网状膜的多个网洞中;干燥后,将吸附有多孔二氧化钛/抗菌粉复合物的碳纳米管网状膜刮离该基板,获得抗菌复合物。

较佳地,在步骤(3)和(4)之间增加一步骤:取三维海绵状石墨烯超声搅拌分散于水溶液中,逐滴加入GQDs/Ag2O/ZnO水溶液中,三维海绵状石墨烯与GQDs/Ag2O/ZnO的重量比为1:1~5;10~100W超声60~120min,静置,去离子水洗涤数次,干燥得GQDs/Ag2O/ZnO/石墨烯抗菌粉。

在本发明中,所述色料为镨黄、钴蓝、红棕、桔黄、铬锡红、钴黑的至少一种。

在本发明中,所述分散剂为水溶性和油溶性高分子类、聚丙烯酸及共聚物、苯甲酸及其衍生物的任一种。分散剂可以列举出的商品名包括BYK161、BYK163、BYK164、BYK168、EFKA4310、EFKA 4400、EFKA4401、Nuosperse FX9086、Solsperse 24000、Tego710、Tego671,但不限于此。

在本发明中,所述表面添加剂为氨基或胺基及其盐。表面添加剂为NP-4,Span-80,AEO-3和SRE-48000中的至少一种。

在本发明中,所述溶剂为脱芳香烃类溶剂、环保碳氢溶剂、醇类、环烷烃类溶剂中的至少一种。所述结合剂通常使用聚合性树脂,如聚乙烯、聚丙烯、聚氯乙烯及聚苯乙烯树脂中的一种,聚合性树脂起到结合和分散的双重作用。

在本发明中,流平剂为聚醚改性硅氧烷,流平剂可以列举出的商品名包括BYK306、BYK333、Levaslip 8629,但不限于此。消泡剂为不含有机硅的聚合物型消泡剂,消泡剂可以列举出的商品名包括BYK051、BYK052,但不限于此。防沉剂为聚酰胺蜡、氧化聚乙烯中的至少一种,防沉剂可以列举出的商品名包括Disparlon NS-5501、Disparlon 6650,但不限于此。

本发明具有如下有益效果:本方法在碳纳米管上负载并固定抗菌剂,不仅防止其团聚,显著提高金属纳米粒子等抗菌剂的稳定性,使其能更好分散在陶瓷墨水内,且具有更长效的抗菌活性以及银离子不会溢出氧化变色;同时复合了多种抗菌剂的抗菌性能,相比于单一的银纳米抗菌剂有着更好的抗菌效果,抗菌持久;和现有低温陶瓷墨水相比,本发明制造的低温陶瓷墨水配料科学,制备合理,性能稳定,而且采用不含有铅镉等剧毒物质的低温熔块,使得陶瓷墨水在低温烧成时还能保证其发色性能,得到鲜艳、锐利的发色效果;同时科学搭配抗菌复合物及导电填料,使陶瓷墨水还具有持久的光谱的抗菌特性、防污自清洁功能以及防静电性能,进一步拓宽了低温陶瓷墨水的应用范围。

具体实施方式

下面通过具体的优选实施方式来进一步说明本发明的技术方案。为了便于说明,以下实施例均采用钴蓝作为陶瓷色料,但本领域技术人员容易知道,可使用的色料不局限于此。

实施例1

一种喷墨用抗菌防静电低温陶瓷墨水及其制备方法,该制备方法包括以下步骤:

步骤A、将25%钴蓝、4%抗菌复合物、5%导电填料、20%低温熔块的干料混合,然后倒入快速搅拌机中混合均匀;采用研磨机研磨10h,使其粒径分布≤5μm;

步骤B、称取5% Tego710、3.5% AEO-3、0.2% Levaslip 8629、0.4% BYK052、0.8%聚苯乙烯树脂、0.1% Disparlon NS-5501、36%环保碳氢溶剂,然后加入步骤A的高速搅拌机内进行分散30~60min;将分散好的混合液装入研磨机中,研磨10h,得到粒径分布≤1μm的墨水半成品;

步骤C、将步骤B得到的墨水半成品在 90℃的恒温搅拌缸中,然后进行抽真空、高速振动、使用孔径≤1μm 滤网过滤,得到墨水成品。

所述低温熔块的制备方法如下:将12%石英、12%长石、25%硼砂、6%碳酸盐、35%硼酸、5%锂辉石、4%氟化盐、1%高岭土混合研磨均匀,制得混合料;将混合料布撒装入耐火匣钵中,进行1250~1320℃高温熔制,得到熔融态的浆料;高温熔制工艺为:室温升温至1000℃,保温10min;升温至1300℃,保温30min;降温至1250℃,保温15min;升温至1320℃,保温30min;将浆料水淬冷却,并破碎成颗粒状即可得到低温熔块;其中所述长石由钾长石和钠长石按重量比4:1混合而得;所述碳酸盐由碳酸钾、碳酸钠、碳酸钡、碳酸锂及碳酸钙按重量比3:1:3:2:1混合而得;所述氟化盐由氟化钠、氟化钙和氟化锂按重量比4:2:1混合而得。

所述导电填料的制备方法如下:取5g导电粉(铝粉、炭黑、石墨烯的重量比为2:1:3)分散于150ml超纯水中,水浴超声2h获得均匀和稳定的分散液;将具有碳纳米管网状膜的基板置于约8℃时,将分散液加入内凹形状的基板中,同时,来回滚动滚轮,使该分散液均匀分散于该碳纳米管网状膜中,由于碳纳米管在8℃附近时具有亲水性,该分散液被吸附在碳纳米管网状膜的多个网洞;升温至约25℃,碳纳米管具有疏水性并将水分子赶走只留下导电粉吸附在碳纳米管网状膜的多个网洞中;干燥后,将吸附有导电粉的碳纳米管网状膜刮离该基板,获得导电碳纳米管网。

其中,所述抗菌复合物按以下方法制得:

(1)称取0.6gC60粉末,量取100ml质量分数为98%的浓硫酸,将C60粉末和浓硫酸在烧杯中混合,烧杯放在冰水浴中,同时以600rpm的速度搅拌,得混合液;称取1g高锰酸钾粉末,缓慢的加入上述混合液中;移去冰水浴,换成水浴,保持水浴温度30~40℃,反应4h;快速加入120ml纯水,过滤,然后用截留分子量为1000的透析袋透析4天,得石墨烯量子点(GQDs)悬浮液;100rpm速度搅拌GQDs悬浮液,同时激光辐照40min,激光辐照功率为1W;备用;

(2)超声搅拌60mlGQDs悬浮液,滴加浓度为0.001mol/L硝酸银水溶液;逐滴加入浓度为0.1mol/L磷酸二氢铵溶液(磷酸二氢铵溶液与硝酸银水溶液体积比为2:1),超声搅拌20min;逐滴加入1mol/L氢氧化钠溶液,调节PH值至11,而后静置、离心,用去离子水和乙醇交替洗涤三次,真空干燥,得GQDs/Ag2O;

(3)取1gGQDs/Ag2O超声搅拌分散于100ml水溶液中;逐滴加入浓度为0.05mol/L硝酸铈水溶液,30min后逐滴加入浓度为0.005mol/L硝酸锌水溶液,GQDs/Ag2O水溶液、硝酸铈水溶液与硝酸锌水溶液体积比为1:0.1:0.4;继续超声搅拌,调节混合溶液PH值至7.0;边超声搅拌,边加入6mL质量分数为50%的水合肼,在30℃下还原反应0.5h;之后,再加入45mL质量分数为50%的水合肼,在85℃下还原反应36h后;过滤,用去离子水洗涤数次,真空干燥,得GQDs/Ag2O/Ag-Zn-Ce;

(4)将0.5gGQDs/Ag2O/Ag-Zn-Ce超声搅拌分散于水溶液中;之后加入体积比4:1的水和氨水,搅拌均匀后加入正硅酸乙酯(与GQDs/Ag2O/Ag-Zn-Ce的质量比为3:2),调节pH值为9~10,反应温度为20~25℃,反应30min;进行离心并依次用丙酮和去离子水清洗获得沉淀;将该沉淀在90℃下干燥3h,以得到GQDs/Ag2O/Ag-Zn-Ce/SiO2;将GQDs/Ag2O/Ag-Zn-Ce/SiO2置于氩气气氛下进行600℃热处理1h,冷却至室温后,浸没在氢氟酸中以超声功率100W进行超声10min,去除表面局部二氧化硅,离心并干燥,获得抗菌粉;

(5)氮气环境下,将浓度为0.2mol/L的质子酸溶液和浓度为0.1mol/L的十二烷基苯磺酸以体积比3:2混合,同时加入步骤(4)制得的抗菌粉,磁力搅拌100min后加入苯胺,抗菌粉与苯胺质量比为2:18持续搅拌90min后,逐滴滴加过硫酸铵,苯胺与过硫酸铵摩尔比为1:1;20℃~30℃下反应20h;丙酮、去离子水洗涤数次后真空干燥,碾磨得纳米聚苯胺/抗菌粉复合物;

(6)用溶胶-凝胶法制备二氧化钛溶胶,向溶胶中加入占溶胶1.0wt%的纳米聚苯胺/抗菌粉复合物,混合均匀;静置陈化4d后置烘箱90℃烘干;碾磨后将所得复合物500℃下煅烧1h,去除聚苯胺,得多孔二氧化钛/抗菌粉复合物;

(7)取1g多孔二氧化钛/抗菌粉复合物分散于150ml超纯水中,水浴超声2h获得均匀和稳定的分散液;将具有碳纳米管网状膜的基板置于约8℃时,将分散液加入内凹形状的基板中,同时,来回滚动滚轮,使该分散液均匀分散于该碳纳米管网状膜中,由于碳纳米管在8℃附近时具有亲水性,该分散液被吸附在碳纳米管网状膜的多个网洞;升温至约25℃,碳纳米管具有疏水性并将水分子赶走只留下多孔二氧化钛/抗菌粉复合物吸附在碳纳米管网状膜的多个网洞中;干燥后,将吸附有多孔二氧化钛/抗菌粉复合物的碳纳米管网状膜刮离该基板,获得抗菌复合物。

实施例2

一种喷墨用抗菌防静电低温陶瓷墨水及其制备方法,该制备方法包括以下步骤:

步骤A、将32%钴蓝、2%抗菌复合物、3%导电填料、18%低温熔块的干料混合,然后倒入快速搅拌机中混合均匀;采用研磨机研磨10h,使其粒径分布≤5μm;

步骤B、称取5% Tego710、3.5% AEO-3、0.2% Levaslip 8629、0.4% BYK052、0.8%聚苯乙烯树脂、0.1% Disparlon NS-5501、35%环保碳氢溶剂,然后加入步骤A的高速搅拌机内进行分散30~60min;将分散好的混合液装入研磨机中,研磨10h,得到粒径分布≤1μm的墨水半成品;

步骤C、将步骤B得到的墨水半成品在 90℃的恒温搅拌缸中,然后进行抽真空、高速振动、使用孔径≤1μm 滤网过滤,得到墨水成品。

所述低温熔块的制备方法如下:将15%石英、10%长石、24%硼砂、10%碳酸盐、28%硼酸、7%锂辉石、3%氟化盐、3%高岭土混合研磨均匀,制得混合料;将混合料布撒装入耐火匣钵中,进行1250~1320℃高温熔制,得到熔融态的浆料;高温熔制工艺为:室温升温至1000℃,保温10min;升温至1300℃,保温30min;降温至1250℃,保温15min;升温至1320℃,保温30min;将浆料水淬冷却,并破碎成颗粒状即可得到低温熔块;其中所述长石由钾长石和钠长石按重量比4:1混合而得;所述碳酸盐由碳酸钾、碳酸钠、碳酸钡、碳酸锂及碳酸钙按重量比3:1:3:2:1混合而得;所述氟化盐由氟化钠、氟化钙和氟化锂按重量比4:2:1混合而得。

所述导电填料的制备方法如下:取5g导电粉(铝粉、炭黑、石墨烯的重量比为2:1:3)分散于150ml超纯水中,水浴超声2h获得均匀和稳定的分散液;将具有碳纳米管网状膜的基板置于约8℃时,将分散液加入内凹形状的基板中,同时,来回滚动滚轮,使该分散液均匀分散于该碳纳米管网状膜中,由于碳纳米管在8℃附近时具有亲水性,该分散液被吸附在碳纳米管网状膜的多个网洞;升温至约25℃,碳纳米管具有疏水性并将水分子赶走只留下导电粉吸附在碳纳米管网状膜的多个网洞中;干燥后,将吸附有导电粉的碳纳米管网状膜刮离该基板,获得导电碳纳米管网。

其中,所述抗菌复合物按以下方法制得:

(1)称取0.6gC60粉末,量取100ml质量分数为98%的浓硫酸,将C60粉末和浓硫酸在烧杯中混合,烧杯放在冰水浴中,同时以600rpm的速度搅拌,得混合液;称取1g高锰酸钾粉末,缓慢的加入上述混合液中;移去冰水浴,换成水浴,保持水浴温度30~40℃,反应4h;快速加入120ml纯水,过滤,然后用截留分子量为1000的透析袋透析4天,得石墨烯量子点(GQDs)悬浮液;100rpm速度搅拌GQDs悬浮液,同时激光辐照40min,激光辐照功率为1W;备用;

(2)超声搅拌60mlGQDs悬浮液,滴加浓度为0.005mol/L硝酸银水溶液;逐滴加入浓度为0.2mol/L磷酸二氢铵溶液(磷酸二氢铵溶液与硝酸银水溶液体积比为2:1),超声搅拌20min;逐滴加入1mol/L氢氧化钠溶液,调节PH值至11,而后静置、离心,用去离子水和乙醇交替洗涤三次,真空干燥,得GQDs/Ag2O;

(3)取2gGQDs/Ag2O超声搅拌分散于100ml水溶液中;逐滴加入浓度为0.03mol/L硝酸铈水溶液,30min后逐滴加入浓度为0.03mol/L硝酸锌水溶液,GQDs/Ag2O水溶液、硝酸铈水溶液与硝酸锌水溶液体积比为1:0.2:0.3;继续超声搅拌,调节混合溶液PH值至7.0;边超声搅拌,边加入6mL质量分数为50%的水合肼,在30℃下还原反应0.5h;之后,再加入45mL质量分数为50%的水合肼,在85℃下还原反应36h后;过滤,用去离子水洗涤数次,真空干燥,得GQDs/Ag2O/Ag-Zn-Ce;

(4)将0.3gGQDs/Ag2O/Ag-Zn-Ce超声搅拌分散于水溶液中;之后加入体积比4:1的水和氨水,搅拌均匀后加入正硅酸乙酯(与GQDs/Ag2O/Ag-Zn-Ce的质量比为3:2),调节pH值为9~10,反应温度为20~25℃,反应45min;进行离心并依次用丙酮和去离子水清洗获得沉淀;将该沉淀在90℃下干燥3h,以得到GQDs/Ag2O/Ag-Zn-Ce/SiO2;将GQDs/Ag2O/Ag-Zn-Ce/SiO2置于氩气气氛下进行600℃热处理1h,冷却至室温后,浸没在氢氟酸中以超声功率100W进行超声12min,去除表面局部二氧化硅,离心并干燥,获得抗菌粉;

(5)氮气环境下,将浓度为0.2mol/L的质子酸溶液和浓度为0.1mol/L的十二烷基苯磺酸以体积比3:2混合,同时加入步骤(4)制得的抗菌粉,磁力搅拌100min后加入苯胺,抗菌粉与苯胺质量比为2:15持续搅拌90min后,逐滴滴加过硫酸铵,苯胺与过硫酸铵摩尔比为1:1;20℃~30℃下反应20h;丙酮、去离子水洗涤数次后真空干燥,碾磨得纳米聚苯胺/抗菌粉复合物;

(6)用溶胶-凝胶法制备二氧化钛溶胶,向溶胶中加入占溶胶0.5wt%的纳米聚苯胺/抗菌粉复合物,混合均匀;静置陈化4d后置烘箱90℃烘干;碾磨后将所得复合物500℃下煅烧1h,去除聚苯胺,得多孔二氧化钛/抗菌粉复合物;

(7)取2g多孔二氧化钛/抗菌粉复合物分散于150ml超纯水中,水浴超声2h获得均匀和稳定的分散液;将具有碳纳米管网状膜的基板置于约8℃时,将分散液加入内凹形状的基板中,同时,来回滚动滚轮,使该分散液均匀分散于该碳纳米管网状膜中,由于碳纳米管在8℃附近时具有亲水性,该分散液被吸附在碳纳米管网状膜的多个网洞;升温至约25℃,碳纳米管具有疏水性并将水分子赶走只留下多孔二氧化钛/抗菌粉复合物吸附在碳纳米管网状膜的多个网洞中;干燥后,将吸附有多孔二氧化钛/抗菌粉复合物的碳纳米管网状膜刮离该基板,获得抗菌复合物。

实施例3

一种喷墨用抗菌防静电低温陶瓷墨水及其制备方法,该制备方法包括以下步骤:

步骤A、将38%钴蓝、0.5%抗菌复合物、1%导电填料、15%低温熔块的干料混合,然后倒入快速搅拌机中混合均匀;采用研磨机研磨10h,使其粒径分布≤5μm;

步骤B、称取5% Tego710、3.5% AEO-3、0.2% Levaslip 8629、0.4% BYK052、0.8%聚苯乙烯树脂、0.1% Disparlon NS-5501、36%环保碳氢溶剂,然后加入步骤A的高速搅拌机内进行分散30~60min;将分散好的混合液装入研磨机中,研磨10h,得到粒径分布≤1μm的墨水半成品;

步骤C、将步骤B得到的墨水半成品在 90℃的恒温搅拌缸中,然后进行抽真空、高速振动、使用孔径≤1μm 滤网过滤,得到墨水成品。所述低温熔块的制备方法如下:将18%石英、7%长石、20%硼砂、12%碳酸盐、28%硼酸、8%锂辉石、2%氟化盐、5%高岭土混合研磨均匀,制得混合料;将混合料布撒装入耐火匣钵中,进行1250~1320℃高温熔制,得到熔融态的浆料;高温熔制工艺为:室温升温至1000℃,保温10min;升温至1300℃,保温30min;降温至1250℃,保温15min;升温至1320℃,保温30min;将浆料水淬冷却,并破碎成颗粒状即可得到低温熔块;其中所述长石由钾长石和钠长石按重量比4:1混合而得;所述碳酸盐由碳酸钾、碳酸钠、碳酸钡、碳酸锂及碳酸钙按重量比3:1:3:2:1混合而得;所述氟化盐由氟化钠、氟化钙和氟化锂按重量比4:2:1混合而得。

所述导电填料的制备方法如下:取5g导电粉(铝粉、炭黑、石墨烯的重量比为2:1:3)分散于150ml超纯水中,水浴超声2h获得均匀和稳定的分散液;将具有碳纳米管网状膜的基板置于约8℃时,将分散液加入内凹形状的基板中,同时,来回滚动滚轮,使该分散液均匀分散于该碳纳米管网状膜中,由于碳纳米管在8℃附近时具有亲水性,该分散液被吸附在碳纳米管网状膜的多个网洞;升温至约25℃,碳纳米管具有疏水性并将水分子赶走只留下导电粉吸附在碳纳米管网状膜的多个网洞中;干燥后,将吸附有导电粉的碳纳米管网状膜刮离该基板,获得导电碳纳米管网。

其中,抗菌复合物按以下方法制得:

(1)称取0.6gC60粉末,量取100ml质量分数为98%的浓硫酸,将C60粉末和浓硫酸在烧杯中混合,烧杯放在冰水浴中,同时以600rpm的速度搅拌,得混合液;称取1g高锰酸钾粉末,缓慢的加入上述混合液中;移去冰水浴,换成水浴,保持水浴温度30~40℃,反应4h;快速加入120ml纯水,过滤,然后用截留分子量为1000的透析袋透析4天,得石墨烯量子点(GQDs)悬浮液;100rpm速度搅拌GQDs悬浮液,同时激光辐照40min,激光辐照功率为1W;备用;

(2)超声搅拌60mlGQDs悬浮液,滴加浓度为0.01mol/L硝酸银水溶液;逐滴加入浓度为0.5mol/L磷酸二氢铵溶液(磷酸二氢铵溶液与硝酸银水溶液体积比为2:1),超声搅拌20min;逐滴加入1mol/L氢氧化钠溶液,调节PH值至11,而后静置、离心,用去离子水和乙醇交替洗涤三次,真空干燥,得GQDs/Ag2O;

(3)取3gGQDs/Ag2O超声搅拌分散于100ml水溶液中;逐滴加入浓度为0.005mol/L硝酸铈水溶液,30min后逐滴加入浓度为0.05mol/L硝酸锌水溶液,GQDs/Ag2O水溶液、硝酸铈水溶液与硝酸锌水溶液体积比为1:0.2:0.4;继续超声搅拌,调节混合溶液PH值至7.0;边超声搅拌,边加入6mL质量分数为50%的水合肼,在30℃下还原反应0.5h;之后,再加入45mL质量分数为50%的水合肼,在85℃下还原反应36h后;过滤,用去离子水洗涤数次,真空干燥,得GQDs/Ag2O/Ag-Zn-Ce;

(4)将0.1gGQDs/Ag2O/Ag-Zn-Ce超声搅拌分散于水溶液中;之后加入体积比4:1的水和氨水,搅拌均匀后加入正硅酸乙酯(与GQDs/Ag2O/Ag-Zn-Ce的质量比为3:2),调节pH值为9~10,反应温度为20~25℃,反应60min;进行离心并依次用丙酮和去离子水清洗获得沉淀;将该沉淀在90℃下干燥3h,以得到GQDs/Ag2O/Ag-Zn-Ce/SiO2;将GQDs/Ag2O/Ag-Zn-Ce/SiO2置于氩气气氛下进行600℃热处理1h,冷却至室温后,浸没在氢氟酸中以超声功率100W进行超声15min,去除表面局部二氧化硅,离心并干燥,获得抗菌粉;

(5)氮气环境下,将浓度为0.2mol/L的质子酸溶液和浓度为0.1mol/L的十二烷基苯磺酸以体积比3:2混合,同时加入步骤(4)制得的抗菌粉,磁力搅拌100min后加入苯胺,抗菌粉与苯胺质量比为2:12持续搅拌90min后,逐滴滴加过硫酸铵,苯胺与过硫酸铵摩尔比为1:1;20℃~30℃下反应20h;丙酮、去离子水洗涤数次后真空干燥,碾磨得纳米聚苯胺/抗菌粉复合物;

(6)用溶胶-凝胶法制备二氧化钛溶胶,向溶胶中加入占溶胶0.01wt%的纳米聚苯胺/抗菌粉复合物,混合均匀;静置陈化4d后置烘箱90℃烘干;碾磨后将所得复合物500℃下煅烧1h,去除聚苯胺,得多孔二氧化钛/抗菌粉复合物;

(7)取3g多孔二氧化钛/抗菌粉复合物分散于150ml超纯水中,水浴超声2h获得均匀和稳定的分散液;将具有碳纳米管网状膜的基板置于约8℃时,将分散液加入内凹形状的基板中,同时,来回滚动滚轮,使该分散液均匀分散于该碳纳米管网状膜中,由于碳纳米管在8℃附近时具有亲水性,该分散液被吸附在碳纳米管网状膜的多个网洞;升温至约25℃,碳纳米管具有疏水性并将水分子赶走只留下多孔二氧化钛/抗菌粉复合物吸附在碳纳米管网状膜的多个网洞中;干燥后,将吸附有多孔二氧化钛/抗菌粉复合物的碳纳米管网状膜刮离该基板,获得抗菌复合物。

实施例4

基于实施例2的制备方法,不同之处在于:步骤(4)和(5)之间增加如下步骤:取三维海绵状石墨烯超声搅拌分散于水溶液中,逐滴加入GQDs/Ag2O/Ag-Zn-Ce/SiO2水溶液中,三维海绵状石墨烯与GQDs/Ag2O/Ag-Zn-Ce/SiO2的重量比为1:3;50W超声90min,静置,去离子水洗涤数次,干燥得GQDs/Ag2O/Ag-Zn-Ce/SiO2/石墨烯抗菌粉。

三维海绵状石墨烯制备方法如下:将3g 石墨粉,1g NaNO3在冰水浴中与250ml 98%浓硫酸混合均匀,缓慢加入6g KMnO4。然后升温至在35℃,搅拌40min 后,加入95ml 去离子水,升温至98℃反应20min;再加入270ml 水稀释,并用5ml 30% H2O2中和多余KMnO4,混合溶液的颜色为棕黄色,趁热过滤,用去离子水反复洗涤至中性,超声分散得到GO;取200ml 质量分数为5mg/ml的氧化石墨烯溶液倒入直径25cm,高2cm的圆盘状反应皿中,加入抗坏血酸(VC)0.5g搅拌使其充分混合;然后密闭反应皿并置于80℃水热反应15h,反应皿中的氧化石墨烯自发收缩交联成三维海绵结构,冷冻干燥,得到柔性的三维海绵状石墨烯。

实施例5

基于实施例1的制备方法,不同之处在于:所述抗菌复合物通过以下方法制得:

(1)称取0.6gC60粉末,量取100ml质量分数为98%的浓硫酸,将C60粉末和浓硫酸在烧杯中混合,烧杯放在冰水浴中,同时以600rpm的速度搅拌,得混合液;称取1g高锰酸钾粉末,缓慢的加入上述混合液中;移去冰水浴,换成水浴,保持水浴温度30~40℃,反应4h;快速加入120ml纯水,过滤,然后用截留分子量为1000的透析袋透析4天,得石墨烯量子点(GQDs)悬浮液;100rpm速度搅拌GQDs悬浮液,同时激光辐照40min,激光辐照功率为1W;备用;

(2)超声搅拌60mlGQDs悬浮液,滴加浓度为0.001mol/L硝酸银水溶液;逐滴加入浓度为0.1mol/L磷酸二氢铵溶液(磷酸二氢铵溶液与硝酸银水溶液体积比为2:1),超声搅拌20min;逐滴加入1mol/L氢氧化钠溶液,调节PH值至11,而后静置、离心,用去离子水和乙醇交替洗涤三次,真空干燥,得GQDs/Ag2O;

(3)取1gGQDs/Ag2O超声搅拌分散于水溶液中;逐滴加入浓度为0.5g/100mlZnO量子点水溶液,超声功率搅拌速度各减半;60min后,静置,过滤,用去离子水洗涤数次,真空干燥,得GQDs/Ag2O/ZnO抗菌粉;

(4)氮气环境下,将浓度为0.2mol/L的质子酸溶液和浓度为0.1mol/L的十二烷基苯磺酸以体积比3:2混合,同时加入步骤(4)制得的抗菌粉,磁力搅拌100min后加入苯胺,抗菌粉与苯胺质量比为2:18持续搅拌90min后,逐滴滴加过硫酸铵,苯胺与过硫酸铵摩尔比为1:1;20℃~30℃下反应20h;丙酮、去离子水洗涤数次后真空干燥,碾磨得纳米聚苯胺/抗菌粉复合物;

(5)用溶胶-凝胶法制备二氧化钛溶胶,向溶胶中加入占溶胶1.0wt%的纳米聚苯胺/抗菌粉复合物,混合均匀;静置陈化4d后置烘箱90℃烘干;碾磨后将所得复合物500℃下煅烧1h,去除聚苯胺,得多孔二氧化钛/抗菌粉复合物;

(6)取1g多孔二氧化钛/抗菌粉复合物分散于150ml超纯水中,水浴超声2h获得均匀和稳定的分散液;将具有碳纳米管网状膜的基板置于约8℃时,将分散液加入内凹形状的基板中,同时,来回滚动滚轮,使该分散液均匀分散于该碳纳米管网状膜中,由于碳纳米管在8℃附近时具有亲水性,该分散液被吸附在碳纳米管网状膜的多个网洞;升温至约25℃,碳纳米管具有疏水性并将水分子赶走只留下多孔二氧化钛/抗菌粉复合物吸附在碳纳米管网状膜的多个网洞中;干燥后,将吸附有多孔二氧化钛/抗菌粉复合物的碳纳米管网状膜刮离该基板,获得抗菌复合物。

实施例6

基于实施例2的制备方法,不同之处在于:所述抗菌复合物通过以下方法制得:

(1)称取0.6gC60粉末,量取100ml质量分数为98%的浓硫酸,将C60粉末和浓硫酸在烧杯中混合,烧杯放在冰水浴中,同时以600rpm的速度搅拌,得混合液;称取1g高锰酸钾粉末,缓慢的加入上述混合液中;移去冰水浴,换成水浴,保持水浴温度30~40℃,反应4h;快速加入120ml纯水,过滤,然后用截留分子量为1000的透析袋透析4天,得石墨烯量子点(GQDs)悬浮液;100rpm速度搅拌GQDs悬浮液,同时激光辐照40min,激光辐照功率为1W;备用;

(2)超声搅拌60mlGQDs悬浮液,滴加浓度为0.005mol/L硝酸银水溶液;逐滴加入浓度为0.2mol/L磷酸二氢铵溶液(磷酸二氢铵溶液与硝酸银水溶液体积比为2:1),超声搅拌20min;逐滴加入1mol/L氢氧化钠溶液,调节PH值至11,而后静置、离心,用去离子水和乙醇交替洗涤三次,真空干燥,得GQDs/Ag2O;

(3)取2gGQDs/Ag2O超声搅拌分散于水溶液中;逐滴加入浓度为0.2g/100mlZnO量子点水溶液,超声功率搅拌速度各减半;80min后,静置,过滤,用去离子水洗涤数次,真空干燥,得GQDs/Ag2O/ZnO抗菌粉;

(4)氮气环境下,将浓度为0.2mol/L的质子酸溶液和浓度为0.1mol/L的十二烷基苯磺酸以体积比3:2混合,同时加入步骤(4)制得的抗菌粉,磁力搅拌100min后加入苯胺,抗菌粉与苯胺质量比为2:15持续搅拌90min后,逐滴滴加过硫酸铵,苯胺与过硫酸铵摩尔比为1:1;20℃~30℃下反应20h;丙酮、去离子水洗涤数次后真空干燥,碾磨得纳米聚苯胺/抗菌粉复合物;

(5)用溶胶-凝胶法制备二氧化钛溶胶,向溶胶中加入占溶胶0.5wt%的纳米聚苯胺/抗菌粉复合物,混合均匀;静置陈化4d后置烘箱90℃烘干;碾磨后将所得复合物500℃下煅烧1h,去除聚苯胺,得多孔二氧化钛/抗菌粉复合物;

(6)取2g多孔二氧化钛/抗菌粉复合物分散于150ml超纯水中,水浴超声2h获得均匀和稳定的分散液;将具有碳纳米管网状膜的基板置于约8℃时,将分散液加入内凹形状的基板中,同时,来回滚动滚轮,使该分散液均匀分散于该碳纳米管网状膜中,由于碳纳米管在8℃附近时具有亲水性,该分散液被吸附在碳纳米管网状膜的多个网洞;升温至约25℃,碳纳米管具有疏水性并将水分子赶走只留下多孔二氧化钛/抗菌粉复合物吸附在碳纳米管网状膜的多个网洞中;干燥后,将吸附有多孔二氧化钛/抗菌粉复合物的碳纳米管网状膜刮离该基板,获得抗菌复合物。

实施例7

基于实施例3的制备方法,不同之处在于:所述抗菌复合物通过以下方法制得:

(1)称取0.6gC60粉末,量取100ml质量分数为98%的浓硫酸,将C60粉末和浓硫酸在烧杯中混合,烧杯放在冰水浴中,同时以600rpm的速度搅拌,得混合液;称取1g高锰酸钾粉末,缓慢的加入上述混合液中;移去冰水浴,换成水浴,保持水浴温度30~40℃,反应4h;快速加入120ml纯水,过滤,然后用截留分子量为1000的透析袋透析4天,得石墨烯量子点(GQDs)悬浮液;100rpm速度搅拌GQDs悬浮液,同时激光辐照40min,激光辐照功率为1W;备用;

(2)超声搅拌60mlGQDs悬浮液,滴加浓度为0.01mol/L硝酸银水溶液;逐滴加入浓度为0.5mol/L磷酸二氢铵溶液(磷酸二氢铵溶液与硝酸银水溶液体积比为2:1),超声搅拌20min;逐滴加入1mol/L氢氧化钠溶液,调节PH值至11,而后静置、离心,用去离子水和乙醇交替洗涤三次,真空干燥,得GQDs/Ag2O;

(3)取3gGQDs/Ag2O超声搅拌分散于水溶液中;逐滴加入浓度为0.05g/100mlZnO量子点水溶液,超声功率搅拌速度各减半;90min后,静置,过滤,用去离子水洗涤数次,真空干燥,得GQDs/Ag2O/ZnO抗菌粉;

(4)氮气环境下,将浓度为0.2mol/L的质子酸溶液和浓度为0.1mol/L的十二烷基苯磺酸以体积比3:2混合,同时加入步骤(4)制得的抗菌粉,磁力搅拌100min后加入苯胺,抗菌粉与苯胺质量比为2:12持续搅拌90min后,逐滴滴加过硫酸铵,苯胺与过硫酸铵摩尔比为1:1;20℃~30℃下反应20h;丙酮、去离子水洗涤数次后真空干燥,碾磨得纳米聚苯胺/抗菌粉复合物;

(5)用溶胶-凝胶法制备二氧化钛溶胶,向溶胶中加入占溶胶0.01wt%的纳米聚苯胺/抗菌粉复合物,混合均匀;静置陈化4d后置烘箱90℃烘干;碾磨后将所得复合物500℃下煅烧1h,去除聚苯胺,得多孔二氧化钛/抗菌粉复合物;

(6)取3g多孔二氧化钛/抗菌粉复合物分散于150ml超纯水中,水浴超声2h获得均匀和稳定的分散液;将具有碳纳米管网状膜的基板置于约8℃时,将分散液加入内凹形状的基板中,同时,来回滚动滚轮,使该分散液均匀分散于该碳纳米管网状膜中,由于碳纳米管在8℃附近时具有亲水性,该分散液被吸附在碳纳米管网状膜的多个网洞;升温至约25℃,碳纳米管具有疏水性并将水分子赶走只留下多孔二氧化钛/抗菌粉复合物吸附在碳纳米管网状膜的多个网洞中;干燥后,将吸附有多孔二氧化钛/抗菌粉复合物的碳纳米管网状膜刮离该基板,获得抗菌复合物。

实施例8

基于实施例6的制备方法,不同之处在于:步骤(3)和(4)之间增加如下一步骤:取三维海绵状石墨烯超声搅拌分散于水溶液中,逐滴加入GQDs/Ag2O/ZnO水溶液中,三维海绵状石墨烯与GQDs/Ag2O/ZnO的重量比为1:3;50W超声90min,静置,去离子水洗涤数次,干燥得GQDs/Ag2O/ZnO/石墨烯抗菌粉。

三维海绵状石墨烯制备方法如下:将3g 石墨粉,1g NaNO3在冰水浴中与250ml 98%浓硫酸混合均匀,缓慢加入6g KMnO4。然后升温至在35℃,搅拌40min 后,加入95ml 去离子水,升温至98℃反应20min;再加入270ml 水稀释,并用5ml 30% H2O2中和多余KMnO4,混合溶液的颜色为棕黄色,趁热过滤,用去离子水反复洗涤至中性,超声分散得到GO;取200ml 质量分数为5mg/ml的氧化石墨烯溶液倒入直径25cm,高2cm的圆盘状反应皿中,加入抗坏血酸(VC)0.5g搅拌使其充分混合;然后密闭反应皿并置于80℃水热反应15h,反应皿中的氧化石墨烯自发收缩交联成三维海绵结构,冷冻干燥,得到柔性的三维海绵状石墨烯。

对比例1

基于实施例1的制备方法,不同之处在于:所述抗菌复合物为载金属抗菌剂的二氧化钛;未添加导电填料。

对比例2

基于实施例5的制备方法,不同之处在于:所述抗菌复合物为氧化锌和二氧化钛的混合物;所述导电填料为导电粉(铝粉、炭黑、石墨烯的重量比为2:1:3)。

各实施例和对比例所采用的低温熔块,其中不含铅、镉有毒元素,经实验证明在低于 800℃下即可熔融,可用于制备各种低温环保陶瓷的助熔材料。

将实施例1~8及对比例1、2进行性能测试,测试结果如下表:

灭菌率:采用抑菌圈法定性地检验墨水的抗菌效果,采用的菌种为金黄色葡萄球菌或大肠杆菌。

磨损测试:选用莫氏硬度为3~4的磨料,在由本墨水形成的印花层上摩擦1000次来模仿铺贴使用2年后的效果。

热稳定性测试:将陶瓷墨水置于60℃条件下放置10h。

防污测试:选用铬绿为污染剂。

灭菌均匀性评价:将同一墨水喷涂在一整片陶瓷试片上并低温烧成后,选取100个区域进行灭菌测试,对测得的数据进行均匀度分析,通过均匀度=100*(1-标准偏差/平均值)。当均匀度大于97%,则标记为▲;当均匀度大于90%且小于97%,则标记为☆;当均匀度低于90%,则标记为╳。

以上所述实施例仅表达了本发明的实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制,但凡采用等同替换或等效变换的形式所获得的技术方案,均应落在本发明的保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1