一种供热热泵三元混合工质的制作方法

文档序号:18521789发布日期:2019-08-24 09:52阅读:155来源:国知局

本发明涉及一种供热热泵三元混合工质,具体涉及一种25-50℃的低温热源、可以提供70-80℃供热温度的热泵系统的三元环保节能型混合工质,属于分布式供能系统中蒸汽压缩式热泵系统领域。



背景技术:

分布式供能系统主要采用清洁能源,如天然气、太阳能、风能、地热能等,通过将各种能源耦合在一起,并利用能的梯级利用原理,提高供能的效率并降低污染和排放。分布式能源系统主要应用于偏远的小城镇、大型的商业综合体和大型的工业园区。近些年来,随着我国制造产业升级,供应链的构建往往集中在大型的工业产业园区和孵化基地。由于相关产业往往具有相类似的用能需求,尤其是高品位的能源需求,因此也推动了分布式供能系统的发展。分布式供能系统可以为相关产业提供电能、热能、冷能、蒸汽等不同种类和品质的能源形式,可以大大降低工业园区各个企业的初投资和运行成本。

作为分布式供能系统中的需求最大的热能的供应效率,往往也对整个分布式供能系统的能源利用率有着重要的影响。工业上一般采用吸收型热泵供热,尤其是大型的供热系统,由于该种供能方式具有较大的供热能力且利用热能驱动,因此被认为是节能和环保的。但吸收式热泵往往需要利用较高品质的蒸汽去驱动,一方面加重了热电耦合问题,另一方面往往也导致能源利用效率降低。蒸汽压缩式热泵供能系统是利用电能驱动,应用更为灵活,同时采用高效环保型工质可以大大提高余热利用水平,降低供能系统的复杂性和提高供能效率。

对于蒸汽压缩式热泵供能系统,工质的热力学性能对于热泵系统的能量转化效率起着关键作用。考虑到一般商业或居民用热源温度在70-80℃左右,因此热泵工质的临界温度不能低于90℃,以防止较大的节流和换热损失。现有的热泵工质如r134a、r161等及其混合物,往往存在温室效应潜能gwp偏大、相变滑移温度较大、效率偏低,尤其是可燃性问题限制了工质在系统中的充灌量,阻碍了其应用于大型压缩式热泵系统。因此,需要开发具有较高制热系数以及具有更加环保和安全性能的热泵工质显得尤为紧迫。



技术实现要素:

本发明旨在提供一种供热热泵三元混合工质,用于热泵系统中提供70-80℃热源,该种工质具有较低的gwp,较高的供热系数,较大的单位容积制热量,适用于大容量离心式压缩机的压比,以及较小的相比滑移温度,同时由于采用了常用工质作为主元,因此是一种低替代成本的热泵混合工质。

本发明提供了一种供热热泵三元混合工质,包括下列质量百分比的原料:

三氟碘甲烷(cf3i):90%~96%;

二甲醚(dme)+丙烯(r1270):4%~10%;其中二甲醚(dme)的含量为1%~9%,丙烯(r1270)的含量为1%~9%;

以上各组元的质量百分比和为100%。

上述的混合工质,各项性能最优的质量百分比的原料:

三氟碘甲烷(cf3i):90%;

二甲醚(dme):5%;

丙烯(r1270):5%;

以上各组元的质量百分比和为100%。

所得混合工质的臭氧破坏潜能为0,温室效应潜能值小于20。

上述的供热热泵三元混合工质,其制备方法是将cf3i,dme和r1270按照其相应的质量配比在液相状态下进行物理混合。

本发明提供了上述供热热泵三元混合工质在大容量供热热泵系统中的应用。尤其适合应用在70~80℃商用与居民用热水的热泵系统中。

所用的混合工质,具有较低的gwp(低于20),较高的供热系数(coph在4.623~4.787之间),较大的单位容积制热量(4328kj.m-3~4933kj.m-3),适用于大容量离心式压缩机的压比(3.26~3.32),以及较小的相比滑移温度(1.08℃~3.23℃)。

本发明的有益效果:

(1)环境性能优良,臭氧破坏潜能odp值为0,温室效应潜能gwp低于20;

(2)温度滑移较小,供热系数cop值和单位容积制热量较高,可以缩小系统体积;

(3)组元均为常用工质,价格低廉,容易获取。

具体实施方式

下面通过实施例来进一步说明本发明,但不局限于以下实施例。

本发明提供的工质,其制备方法是将cf3i,dme和r1270按照其相应的质量配比在液相状态下进行物理混合。

下面列出几种实施例来说明本发明的具体实施过程,但本发明并非仅限于以下几种实施例,凡包含本发明组元、配比,以及与本发明中的混合工质筛选思路均属本发明保护范围。

进行以下24个配比的实施例,计算寻求最佳性能点:

实施例1:cf3i/r1270/dme配比:90%/1%/9%;

实施例2:cf3i/r1270/dme配比:90%/2%/8%;

实施例3:cf3i/r1270/dme配比:90%/3%/7%;

实施例4:cf3i/r1270/dme配比:90%/4%6%;

实施例5:cf3i/r1270/dme配比:90%/5%/5%;

实施例6:cf3i/r1270/dme配比:90%/6%/4%;

实施例7:cf3i/r1270/dme配比:90%/7%/3%;

实施例8:cf3i/r1270/dme配比:90%/8%/1%;

实施例9:cf3i/r1270/dme配比:90%/9%/1%;

实施例10:cf3i/r1270/dme配比:92%/1%/7%;

实施例11:cf3i/r1270/dme配比:92%/2%/6%;

实施例12:cf3i/r1270/dme配比:92%/3%/5%;

实施例13:cf3i/r1270/dme配比:92%/4%/4%;

实施例14:cf3i/r1270/dme配比:92%/5%/3%;

实施例15:cf3i/r1270/dme配比:92%/6%/2%;

实施例16:cf3i/r1270/dme配比:92%/7%/1%;

实施例17:cf3i/r1270/dme配比:94%/1%/5%;

实施例18:cf3i/r1270/dme配比:94%/2%/4%;

实施例19:cf3i/r1270/dme配比:94%/3%/3%;

实施例20:cf3i/r1270/dme配比:94%/4%/2%;

实施例21:cf3i/r1270/dme配比:94%/5%/1%;

实施例22:cf3i/r1270/dme配比:96%/1%/3%;

实施例23:cf3i/r1270/dme配比:96%/2%/2%;

实施例24:cf3i/r1270/dme配比:96%/3%/1%;

计算工况:冷凝温度85℃,蒸发温度25℃,多变指数为1.09。汽缸余隙容积与工作容积比值为0.08,机械效率为0.95、电动机效率为0.78、温度系数为0.9、泄露系数为0.8。将蒸发器侧的过热度取为3℃,冷凝器侧的过冷度取为5℃。热力学循环采用有损失、有过热和过冷的理论循环。表1中列出了各个组元的环境、安全和循环性能。

表1组元性质及循环性能

从表1可以看出,蒸发压力pev均高于大气压力,防止空气内泄进入工质循环系统;冷凝压力pco较低;相应的压比(π=pco/pev)在3左右,可以采用大流量离心式压缩机;单位质量制冷量qh和容积制冷量qhv差异明显,r1270具有比较明显的优势,因此含有此组元将会显著提高混合工质的制热量,尤其是容积制热量,减少换热器的面积和投资;供热系数coph,三种工质的均比较高;全球变暖指数gwp均较小,具有显著的环境性能;三种工质均具有较低的毒性,安全性为最高等级a;可燃性方面,cf3i的等级最高为1级,不可燃;r1270和dme均为可燃工质。

表2三元混合工质cf3i/propane/propylen计算结果

表1中给出了三种循环在给定的计算工况下的循环性能参数,在选定的三元混合工质配比下(如表2所示),混合工质的蒸发压力pev均高于大气压力,防止空气内泄进入工质循环系统;冷凝压力pco较低;相应的压比(π=pco/pev)在3.26~3.32,适用于大容量离心式压缩机的压比范围,蒸发器和冷凝器中的温度滑移在1~3之间,可以视为近共沸工质,实际换热过程中的成分变化不大,因此循环性能可以保持稳定。单位质量制冷量qh和容积制冷量qhv均较高,将会显著提高混合工质的制热量,尤其是容积制热量,减少换热器的面积和投资;单位容积制热量在4600~4900kj/m-3,供热系数在4.6~4.7之间,经济性较好。供热系数coph,三种工质的均比较高;全球变暖指数gwp均较小,具有显著的环境性能;三种工质均具有较低的毒性,安全性为最高等级a;可燃性方面,cf3i的等级最高为1级,不可燃;r1270和dme均为可燃工质,因此与cf3i混合可以显著提高工质的安全性能。最佳的配比为:三氟碘甲烷(cf3i):90%,二甲醚(dme):5%,丙烯(r1270):5%。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1