混合动力车辆的制作方法

文档序号:3846833阅读:152来源:国知局
专利名称:混合动力车辆的制作方法
技术领域
本发明涉及一种在混合动力车辆中回收发动机的排气能量的技术。
背景技术
由发动机及马达构成的混合动力系统,能够分类为将发动机专用作发电而仅依靠马达的动力来行驶的串联型、组合使用发动机及马达的动力或仅靠一个动力来行驶的并联型、以及组合这些串联型与并联型的串联并联型(混联(split)型)。在安装有这种混合动力系统的车辆中,在日本JP2000-225871A中记载有如下内容在减速时或下坡时通过从车轮侧驱动电动发电机来将车辆的动能或势能转换为电能并 进行回收,同时利用回收的电能在加速时辅助发动机,在低速行驶时仅靠马达的动力来行驶。在如上所述的混合动力车辆中,所回收的电能的根源是发动机所做的功。S卩,所回收的能量是从发动机的净功(net work)中获得的电能。供给到发动机中的燃料所具有的热能中的、有效地用于动力的比例最高也只有30% 34%。另一方面,作为排气散失的能量为热能(J)和作为压力P(Pa)与流量V(m3)之积PV(Nm = J)的动能,该热能与动能合计也达到35%。另外,在冷却系统中散失的热量为20% 30%,从发动机表面辐射的比例为5%左右。在此,当将排气的流量V设为每单位时间的流量(m3/s)时,压力与流量之积PV的单位成为J/s = W。作为将该排气所具有的能量转换为功的方法,可考虑利用排气涡轮作为旋转动力进行回收,并将该旋转动力经由齿轮传递到曲轴。但是,由于排气涡轮与曲轴的转速差较大,因此对排气涡轮的转速进行减速和传递的减速机构变得复杂,由于相应部分的摩擦力的增加等,动力的一部分浪费掉。其结果,只能发挥3%左右的功率辅助效果。

发明内容
本发明的目的在于回收发动机的排气能量并提高总热效率。根据本发明的某一技术方案,提供一种混合动力车辆,其能够以发动机及马达为驱动源来行驶,其中,该混合动力车辆具有排气涡轮,其被发动机的排气驱动而旋转;发电机,其通过被排气涡轮驱动而旋转来进行发电;马达被由发电机发出的电力驱动。采用上述技术方案,利用排气涡轮回收发动机的排气所具有的能量,将回收的能量转换为电力来驱动马达,因此能够与马达驱动相应地降低发动机的输出,能够提高作为车辆整体的总热效率。


图I是表示本发明的第I实施方式的混合动力车辆的结构的概略结构图。图2是表示从马达控制器输出的三相驱动电流的图。
图3是表示控制信号的流动及能量的流动的图。图4是用于说明热效率提高效果的图。图5是用于说明热效率提高效果的图。图6是表不本发明的第2实施方式的混合动力车辆的结构的概略结构图。图7是表示本发明的第3实施方式的混合动力车辆的结构的概略结构图。
具体实施例方式以下,参照

本发明的实施方式。首先,说明第I实施方式。 图I是表示本实施方式中的混合动力车辆100的结构的概略结构图。本实施方式中的混合动力车辆100按顺序配置有发动机I、马达19及变速器21而构成驱动力传递路径,能够依靠发动机I及马达19中的至少一方的驱动力来行驶。发动机I与马达19为沿旋转方向直接连结的状态并以相同的速度旋转。在马达19的输出侧配置有离合器20。在安装有液力变矩器的车辆的情况下,取代离合器20而配置液力变矩器。马达19及离合器20容纳在钟状罩18内。在离合器20的输出侧设有变速器21,从变速器21的输出侧经由万向接头22及传动轴23向驱动轮传递动力。马达19的转子28与发动机I的曲轴30直接连结,曲轴30的后端与离合器20相连结。曲轴30与转子28及离合器20可以利用螺栓等相连结,也可以花键结合。由于曲轴30与转子28直接连结,因此以相同的转速向变速器21输入发动机I及马达19的转矩。S卩,发动机I与马达19的转矩之和输入到变速器21。另一方面,在滑行时,从驱动轮经由离合器20驱动马达19。由此,在从驱动轮向发动机I传递动力的滑行状态下,能够使马达19作为发电机3 (电动发电机)进行工作。混合动力车辆100除了上述结构以外,还具有用于回收发动机I的排气能量的排气涡轮8、用于对排气涡轮8的转速进行减速并进行输出的减速器4、被减速器4的输出轴驱动而旋转的发电机3。来自发动机I的排气通过排气歧管2强劲地流入排气涡轮8,使排气涡轮8高速旋转。排气涡轮8的旋转经由联轴器5向减速器4传递,减速至1/2 1/6的转速并驱动发电机3。联轴器5为了防止导热而由导热率低的材质、例如不锈钢或陶瓷等构成。因高速旋转时发电效率高且有助于小型化,因此使发电机3例如以20,OOOrpm左右旋转。设置在排气涡轮8与减速器4之间的接合器7,防止从排气涡轮8向减速器4导热。接合器7在内部容纳有联轴器5,具有用于导入用于冷却联轴器5的空气的通风孔6。而且,混合动力车辆100除了上述结构以外,还具有电池11、逆变器10、总控制器
14、马达控制器12及发动机控制器15。电池11是储备由发电机3发出的电力的、并且对马达19供给电力的、高电压用的电池或电容器。逆变器10将由发电机3发出的电力转换为规定电压(例如200V)的直流电并向马达19或电池11输送。另外,逆变器10能够电调整发电机3的负荷,通过增大发电负荷,能够抑制排气涡轮8的转速上升。
总控制器14根据从加速踏下量检测传感器13发送的加速踏板的踏下量或踏下速度,计算发动机I及马达19对该要求输出的分担比例。马达控制器12根据来自总控制器14的指令,调整从电池11或马达19供给的电力的电压、频率,控制马达19的驱动力。如图2所示,从马达控制器12输出的三相驱动电流的各相电流分别供给到定子的三相线圈的各个线圈(线圈U、线圈V、线圈W),在定子上产生旋转磁场。利用该旋转磁场在转子28的永磁体上产生旋转扭矩,从转子28的输出轴输出驱动力。发动机控制器15根据来自总控制器14的指令,利用车辆用电池16所储备的电力,电子控制节气门26的开度、喷射器17的燃料喷射量(脉冲宽度)及点火时间。车辆用电池16储备由发动机I驱动而旋转的交流发电机27的发电电力。
图3表不混合动力车辆100的系统中的控制彳目号的流动及能量的流动。在图3中,细箭头表示信号的流动,粗箭头表示能量的流动。发动机I的排气能量被排气润轮8回收并驱动发电机3。由发电机3发出的电力被逆变器10转换为规定电压的直流电,利用马达控制器12控制电压、频率并驱动马达19。或者,由发电机3发出的电力被储备到电池11中。当马达控制器12的输出电压增高时,如果电阻恒定,则电流也与电压成正比地增大。因而,电力(功率)与电压的平方成正比。由发电机3发出的电力中的未储备到电池11中的部分,实质上直接被马达控制器12控制并供给到马达19。驾驶员的输出(驱动力)要求最初传递到的是加速踏板,加速踏板的踏下量或踏下速度输入到总控制器14。总控制器14确定用于供给驾驶员的要求输出所必需的、发动机I与马达19的各自的输出分担。在此,在电池11的充电状态比规定的高充电状态(例如80% )高的状态(满充电或接近满充电的状态)下,由发电机3发出的电力未充电到电池11中而是直接供给到马达控制器12。作为防止电池11过充电的简单方法,例如考虑到当电池11满充电时的电压为200V时预先将逆变器10的出口侧的电压设为与其大致相等的200V 205V。发动机控制器15为了实现由总控制器14确定的发动机输出,电子控制节气门26的开度、喷射器17的燃料喷射量(脉冲宽度)及点火时间。只要发动机I处于旋转状态,就利用始终发出的电力使马达19产生动力,因此由发动机I及马达19产生的动力之和有时大于驾驶员的要求输出。在该情况下,根据来自总控制器14的信号,发动机控制器15利用节气门致动器25缩减发动机I的吸入空气量。当吸入空气量减少时,施加到由发动机控制器15控制的喷射器17上的脉冲宽度自动缩小,喷射到进气歧管内的燃料的量减少。另外,当发动机I为柴油发动机时,没有节气门26及节气门致动器25,因此发动机控制器15直接对从配置在各个气缸上的喷射阀喷射的燃料喷射量进行控制。接着,参照图4说明热效率改善效果。例如如下所述假定将燃料所具有的热能设为100%时的热平衡。发动机I的有效功(α P) 30%排气损失(ae)35%冷却损伤(ac) 22%
其他(αο) 13%α ο是由来自发动机I表面的辐射导致的损失与机械损失的总和。下面,使用这些值来计算本实施方式的热效率提高效果。对于从排气损失(ae)中能够再生的电能 α P’,当将排气涡轮8的效率设为iU、将减速器4的减速齿轮的机械效率设为nm、将发电机3及逆变器10的各个效率之积设为rIg时,能够再生的电能Ct P’为ap’ =CteX n tX nmX n g ... (I)。在此,当设为Π t = O. 4、nm = O. 98、Π g = O. 9时,从a e = O. 35中再生的电能α p’为O. 35X0. 4X0. 98X0.9 = O. 12。由于其被加到发动机I的效率中,因此从发动机I作为动力输出的能量为αρ+αρ,= O. 3+0. 12 = 0.42。以往向发动机I供给的燃料所具有的热能转换为动力的比例为O.3,但是采用本实施方式,利用马达19增大至O. 42。当其以α P = O. 3为基准时,(αρ+αρ’)/αρ =
O.42/0. 3= I. 4、即提高了 40%的热效率。另外,随着发动机I的输出的增大能够再生的电力也增大是本实施方式的特征。当α P与Cte为如上所述的值时,成为a e = (O. 35/0. 3) X α p,即使该比例常数(O. 35/0. 3)由于驾驶条件的不同而发生变化,函数关系在ae与αρ (输出)之间也一定成立。在此,如果向发动机I供给的燃料的能量相同,则发动机输出与α P成正比。gp,Lp = KX α ρ,在此,Lp为发动机输出,K为比例常数。另外,如上所述函数关系在a e与α ρ之间成立,因此根据(I)式,αρ’也成为发动机输出的函数。在该情况下,马达19产生的输出为O. 4Lp,因此L = Lp+0. 4Lp …(2)。驾驶员所要求的使车辆运动的输出L如⑵式所示,为Lp+0.4Lp,即以αρ+αρ’产生。由此,发动机I的输出为Lp/(Lp+0.4Lp) = 1/1. 14 = 0.71,是足够的。如图5所示,当以往的发动机输出为虚线时,加上了由在此再生的电力带来的马达19的输出后的功率单元的输出如实线所示。以往的发动机输出A在本实施方式中成为B,因此在获得相同的输出方面,利用比A低的转速C即可。接着,说明燃料消耗率(BSFC)的改善效果。当将汽油的低发热量设为42600k j/kg时,热效率为30%的发动机I自身的燃料消耗率约为280g/kWh。发动机I与马达19的输出之和相对于发动机I单体为I. 4倍,但所消耗的燃料的质量为280g,没有改变。由于发动机I与马达19的输出之和为发动机I单体的输出的I. 4倍,因此去除消耗燃料的质量后的总BS FC为280/1. 4 = 200g/kWh。燃料消耗率为(280-200)/280 = O. 286,即改善了约 29%。在通常驾驶状态下,驾驶员的要求输出L能够通过发动机I与马达19的输出之和来供给,但是在急加速或爬陡坡时,驾驶员的要求输出L激增,因此驱动输出有时不足。在该情况下,根据来自总控制器14的指令通过加上储备在电池11中的电能来增大马达19的输出。由于由马达19来增大输出,因此不会像以往的涡轮汽车那样产生涡轮迟滞、或者产生冲击性的转矩改变,驾驶性得到改善。另外,在该情况下,由于施加了来自电池11的电力,因此也能够使αρ’比αρ大。当在电池11中充分地储备有电力而不能够继续充电时(充电状态比规定的高充电状态高时),减少发动机I的输出分担,增大马达19的输出而消耗电力。另外,根据由发电机3发出的交流电的频率,能够检测排气涡轮8的转速。当排气涡轮8过度旋转时,将动力设备的输出维持为恒定,同时减少发动机I的输出,使马达19的输出分担相应地增加并增大发电机3的发电负荷。由此,能够产生与发动机I的废气旁通减压阀相同的作用。在怠速时,活塞所做的功等于摩擦损失,上述α ρ为O。但是,只要发动机I旋转,排气涡轮8也旋转而进行发电,因此在怠速时也能够获得电力。
由此,利用马达19来辅助发动机I的旋转,能够一边确保规定的怠速转速一边节省燃料。另外,由于利用马达19来辅助怠速旋转,因此旋转变动减少并获得了顺畅的怠速,能够降低怠速转速。如上所述,在本实施方式中,利用排气涡轮8回收发动机I的排气所具有的能量,将回收的能量转换为电力来驱动马达19,因此能够与马达19驱动相应地降低发动机I的输出,能够减少供给到发动机I中的燃料的量并提高车辆整体的总热效率。因而,能够使发动机I的排气量相应地减少,或者能够改善功率减小的搭载有稀薄燃烧发动机的车的驾驶性。另外,根据驾驶员的要求输出来控制发动机I与马达19的输出比例,当发动机I与马达19的输出之和超过驾驶员的要求输出时,降低发动机I的输出,当输出之和相对于要求输出不足时,增大发动机I的输出,因此能够一边满足驾驶员的要求输出一边利用马达输出来辅助发动机输出,能够降低发动机I的输出并提高车辆的总热效率。而且,在通常驾驶时,利用始终发出的电力来辅助发动机I的输出,当在加速时等要求较大的输出时,利用来自电池11的电力而由马达19进行功率辅助,因此能够高效地回收从发动机I排出的能量,能够提高总热效率,并且能够更可靠地产生驾驶员的要求输出。而且,当电池11的充电状态比规定的高充电状态高时,由发电机3发出的电力不经由电池11而直接供给到马达19,因此能够防止由电池11的过充电导致的劣化。而且,由于利用减速器4来对排气涡轮8的转速进行减速并向发电机3传递,因此能够使发电机3以发电效率高的转速旋转。而且,由于在排气涡轮8与减速器4之间设有联轴器5,因此能够防止排气涡轮8的热量向减速器4传递,并且能够吸收旋转轴的微小的错动。接着,说明第2实施方式。图6是表示本实施方式中的混合动力车辆200的结构的概略结构图。在本实施方式中,不具有电池11、马达控制器12及总控制器14这一点与第I实施方式不同。本实施方式中的混合动力车辆200是将发动机I与依靠从排气能量中再生的电能进行动作的马达19设为I个动力设备的简单的系统。由发电机3发出的电力经由逆变器10直接供给到马达19。逆变器10在将交流电转换为直流电的同时,将由发电机3发出的全部电能作为图2所示的三相的矩形波电流(三相驱动电流)来驱动马达19。因而,由于仅靠总是从排气能量中再生的电力来驱动马达19,因此如用图4所述那样,马达19的输出总是比发动机I的输出小。驾驶员的要求输出作为加速踏板的踏下量或踏下速度输入到发动机控制器15,发动机控制器15根据要求输出,电子控制节气门26的开度、喷射器17的燃料喷射量(脉冲宽度)及点火时间。当发动机I的输出增大时,排气能量也增大,因此发电量随之增加且马达19的输出也增大。与第I实施方式一样,发动机I与马达19的输出之和等于驾驶员的要求输出,但是由于驾驶员不知道各自的输出分担,因此能够实现与仅靠发动机I行驶的车辆相同的行 驶感觉。另外,由于不需要电池11、马达控制器12及总控制器14,因此能够使系统简单化、轻量化。接着,说明第3实施方式。图7是表示本实施方式中的混合动力车辆300的结构的概略结构图。在本实施方式中,离合器20及马达19的配置与第I实施方式不同,在离合器20的输出侧配置马达19。马达19的转子28利用花键等与向变速器21传递动力的驱动轴29相结合。由此,如果在切断离合器20的状态下对马达19通电,则能够仅靠电气动力来行驶(EV行驶)。另外,在取代离合器20而安装有液力变矩器的车辆中,在滑行时,不会从驱动轮受到液力变矩器的滑动影响地能够直接使动能再生。与第I实施方式一样,总控制器14根据加速踏板的踏下量计算驾驶员(driver)的输出要求值,确定发动机I与马达19的输出分担,向马达控制器12及发动机控制器15发送输出控制信号。马达控制器12控制向马达19供给的电力,发动机控制器15控制发动机I的输出性能。以上,说明了本发明的实施方式,但是上述实施方式只不过是示出了本发明的应用例,并不是将本发明的保护范围限定于上述实施方式的具体结构的主旨。在不脱离本发明的主旨的范围内能够进行各种变形。例如,在上述第I 第3实施方式中,利用减速器4来对排气涡轮8的转速进行减速并向发电机3传递,但是只要增大排气涡轮8的直径、设定为转速20,OOOrpm左右,就能够省略减速器4。在该情况下,利用联轴器5直接连结排气涡轮8与发电机3,能够以相同的转速进行驱动。本申请基于2011年3月9日向日本特许厅提交的特愿2011-51543号主张优先权,该申请的全部内容均通过参照编入到本说明书中。
权利要求
1.一种混合动力车辆,其能够以发动机及马达为驱动源来行驶,其中,该混合动力车辆具有: 排气涡轮,其被上述发动机的排气驱动而旋转; 发电机,其通过被上述排气涡轮驱动而旋转来进行发电; 上述马达被由发电机发出的电力驱动。
2.根据权利要求I所述的混合动力车辆,其中, 该混合动力车辆具有根据上述车辆的要求输出来控制上述发动机与上述马达的输出比例的输出控制部。
3.根据权利要求2所述的混合动力车辆,其中, 上述输出控制部在上述发动机与上述马达的输出之和超过上述要求输出时降低上述发动机的输出,在上述输出之和相对于上述要求输出不足时增大上述发动机的输出。
4.根据权利要求I所述的混合动力车辆,其中, 该混合动力车辆还具有用于储备由上述发电机发出的电力的电池, 上述马达被储备在上述电池中的电力驱动。
5.根据权利要求4所述的混合动力车辆,其中, 在即使增大上述发动机的输出、上述输出之和也相对于上述要求输出不足时,上述输出控制部向上述马达供给被储备在上述电池中的电力。
6.根据权利要求4所述的混合动力车辆,其中, 当上述电池的充电状态比规定的高充电状态高时,由上述发电机发出的电力不经由上述电池而直接供给到上述马达。
7.根据权利要求I所述的混合动力车辆,其中, 该混合动力车辆还具有用于对上述排气涡轮的转速进行减速并向上述发电机传递的减速器。
8.根据权利要求7所述的混合动力车辆,其中, 该混合动力车辆还具有设在上述排气涡轮与上述减速器之间的联轴器。
9.根据权利要求I所述的混合动力车辆,其中, 上述马达为能够消耗电力而产生驱动力及被外力驱动而旋转来发电的电动发电机。
全文摘要
本发明提供一种混合动力车辆。该混合动力车辆能够以发动机及马达为驱动源来行驶,具有被发动机的排气驱动而旋转的排气涡轮和通过被排气涡轮驱动而旋转来进行发电的发电机。马达被由发电机发出的电力驱动。
文档编号B60K6/44GK102958728SQ20118000125
公开日2013年3月6日 申请日期2011年6月27日 优先权日2011年3月9日
发明者山崎正弘, 林义正 申请人:Ygk株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1