带有集成的电磁扭矩转换器的传动装置的制作方法

文档序号:11886243阅读:361来源:国知局
带有集成的电磁扭矩转换器的传动装置的制作方法

本发明涉及带有集成的电磁扭矩转换器的传动装置、包括如此传动装置的传动系,以及包括如此传动系的车辆。



背景技术:

应该理解到,除了明确规定为相反的含义之外,本发明可呈各种替代的定向和步骤顺序。还应该理解到,附图中所示以及以下说明书中描述的特殊装置和过程,只是这里限定的本发明概念的示范实施例。因此,除了另有明确的陈述之外,涉及所披露实施例的具体尺寸、方向或其他物理特征都不应被认为是限制性的。

发明人的发现成果总的涉及车辆的动力传动系统,例如,非公路的材料运输和建造设备、公共汽车或乘用车。具体来说,其涉及原动机(一般地是但不局限于内燃机)和多个从动元件(诸如是但不局限于多个车轮、主减速器或差速器)之间的传动装置。

传动装置的主要功能是匹配多个从动元件和原动机的速度,并便于原动机在其最佳操作点上运行。此外,传动装置应允许车辆从静止不动开始起动。为此目的,采用了扭矩传递联接装置,其通常是离合器或液压扭矩转换器。尤其是,在自动传动装置中,液压扭矩转换器通常用来将原动机连接到齿轮箱(其通常包括多个齿轮和离合器或同步器)。液压扭矩转换器的主要优点是能阻尼来自原动机的振动以及使原动机运行所固有的扭矩放大。

然而,液压扭矩转换器的主要缺点是:在很大范围的运行点上效率低下,且为了合适地运行需要冷却系统。为了解决这些缺点,发明人的发现成果包括一种新型的电磁动力传动系统的解决方案,该方案提供优于现有动力传动系统技术的独特的优点:

目前非公路的动力传动系统技术可分为三种主要组群:

·液压动力学(HD)动力传动系统,其通常包括液压扭矩转换器和步进齿轮箱

·液压静力学(HS)动力传动系统,其通常包括液压CVT(由串联的泵和马达组成)和步进齿轮箱或低输出轴变速器(dropbox)

·柴油-电动-电动(DEE)动力传动系统,其通常包括电动的CVT(由串联的发电机和电动机组成)

由于使用了扭矩转换器,所以,液压动力学动力传动系统构造上相对简单,因此非常结实和成本低廉。由于液压扭矩转换器的功率密度高,因此安装体积相对较小。液压动力学动力传动系统的主要缺点是在很大范围的运行点上效率相对较低。其结果,液压动力学动力传动系统的燃耗相对较高,这在市场上不再被接受。此外,液压动力学动力传动系统通常需要大的冷却系统来除去扭矩转换器所产生的热量,这样,通过动力传动系统传输的很大部分的动力丢失了。

液压静力学动力传动通常具有较高的燃料效率并提供提高的操作者舒适度(通过CVT的使用),这提供了优于液压动力学动力传动的优点。然而,液压静力学动力传动和相关的动力分配派生动力的主要缺点是成本很高,由于复杂的液压传动系统包括过滤器和泵,所以初始的购置成本高以及其后有较高的维护成本。

柴油-电动-电动的动力传动系统以及其他串联的电动动力传动系统的方案同样具有重要的优点。这些动力传动系统非常有效,允许车辆低的排放,且很少需要维护保养。此外,它们提供高的舒适度和可控制性以及灵活的安装。最后,在添加电能储存的情形中,它们还提供具有一系列混合动力传动系统的可能性。然而,电动的动力传动系统的缺点是成本和安装空间。电动系列的混合型装置通常目前成本太昂贵且体积大,而不能成为有竞争力的替代品。对于不带电力储存的DEE动力传动系统来说,由于技术的基本点是所有机械功率传输为电功率,其基本上流过发电机、一对转换器和电动机,所以,上述的情况对其也是真实的。这样,动力传动系统中的所有部件(发电机、电动机以及功率电子器件)需要是全功率的额定值,导致成本和体积的增大。此外,总的能量损失仍然是相当大。

附图说明

尤其是,待批的权利要求书的主题涉及带有集成EMTC的传动装置。

以下附图中,示出下面的非限制性实例。

图1涉及动力传动系统,其中,内燃机(ICE)显示在左侧,差速器显示在右侧。

图2A-2D示出EMTC替代物的初级转子/次级转子的不同结构布置。图2A、2C、2D示出带有同心转子的结构布置,而图2B示出带有中间转动定子的结构布置,该定子磁性地联接(耦联)到初级转子并机械地联接到次级转子。

图3涉及对磁通线有不同移动方向的结构布置。带有径向磁通和同心转子的机器的双重概念是带有多个对齐转子的轴向磁通机器。

图4涉及包括EMTC的动力传动系统(也参见图1,替代物在右侧上)。

图5[详图]和图5[示意图]涉及根据本发明发现成果的传动装置的第一实施例,其中EMTC具有两个连接,即,EC1和EC2,它们分别供应EMTC的内部转子和固定定子。

图6涉及这样的结构布置,其中,两个输出轴彼此同心地布置。

图7A和7B涉及不同的实施例,其中,EMTC具有第一EC1和第二EC2,其中,EC2是电气地直接联接到EMTC,但机械地与齿轮箱的零件联接在其间(=第一输出轴的零件)。该机械联接可以在齿轮箱的输出轴上(图7A)或在齿轮箱的输入轴上(图7B)。

图8A和图8B涉及一个实施例,其中,EMTC具有EC1,其中,EC2是电气地联接到EC1,但在不同部位处机械地与第二输出轴件联接。该机械联接可以EMTC的输入轴上(图8A)或在辅助单元的轴上(图8B)。

图9A、图9B和图9C涉及图7A的变化形式,其中,图示了不同的物理位置。

图10A和图10B涉及图8B的变化形式,其中,图示了不同的物理位置。



技术实现要素:

发明人的发现成果集中在如至少一个权利要求(最好是权利要求1-14)所述的用于车辆的传动装置、包括如此传动装置的车辆动力传动系统。此外,发明人的发现成果涉及包括如权利要求1-14中一个权利要求所述的动力传动系统的车辆。

用于车辆的传动装置包括输入侧和输出侧,输入侧构造成联接到原动机,而输出侧构造成联接到从动元件,其中,传动装置包括电磁扭矩转换器(EMTC),其特征在于,EMTC具有至少两个输出路径,即,第一输出路径和第二输出路径,第一输出路径联接到最好构造成联接到车辆驱动轴的齿轮箱,而第二输出路径构造成联接到辅助动力提供装置。

有若干个在本专利申请中披露的根据发明人发现成果用于车辆的传动装置的实施例。

大体上,图1右侧上(也参见图4)示出了动力传动系统/车辆的主要结构,其中,可使用包括EMTC的传动装置。图2A-2D示出不同的EMTC替代物;图3示出不同的转子/定子结构。EMTC本身的所有这些细节是发明人发现成果的一部分。

此外,EMTC集成到传动装置内,如下面各种实施例中所示,尤其是在图5、图7A-B和8A-B中所示。

下面,讨论若干个示范的实施例。应该指出的是,如果没有另外明确地陈述的话,则任何这些实施例可与其他实施例组合。还应该指出的是,包括EMTC的传动装置可以是任何动力传动系统的一部分,尤其是,根据如图1中所示的一般原理。

根据一个实施例,原动机是内燃机(ICE)、电动机和/或涡轮机。

根据一个实施例,从动元件是驱动轴、差速器、变速箱和/或车辆动力传动系统的脱开连接系统。

根据一个实施例,齿轮箱是步进齿轮箱、CVT和/或CVT与步进齿轮箱的组合。

根据一个实施例,辅助动力提供装置是PTO(动力权衡(power trade-off))发电机、用于齿轮箱操作的供给泵、用于工作液压的供给泵和/或任何其他的车辆子系统。

根据一个实施例,EMTC具有第一输出轴和第二输出轴,其中,这些输出轴连接到转子,而这些转子同心地对齐(参见下面的图2A)或成一直线(参见下面的图2B)。

根据一个实施例,传动装置包括用来设置输入侧上和输出侧上的轴速度的电动控制器,以便达到传动装置的最佳特性,例如,通过在内燃机最佳运行点处提供操作,和/或在输出侧处提供最大扭矩,来达到最佳特性。

根据一个实施例,通过在从电气连接1至电气连接2的连接上提供一连接点,使EMTC直接用作为发电机,以用于任何车辆的子系统或载荷(详情请参见图5、7A-B、8A-B)。

根据一个实施例,EMTC联接到能量储存。例如,将DC/DC转换器放置在EC1和EC2的链接上,这样,可添加诸如超级电容器之类的电能储存单元或电池。

根据一个实施例,EMTC具有径向-径向磁通结构、轴向-轴向磁通结构,和/或轴向/径向-径向磁通结构,就如下面图3中所示。

根据一个实施例,EMTC不设计为总的传动装置更换,但EMTC设计为对液压扭矩转换器、液压静态转换器和/或串联电气转换器进行更换。EMTC可集成到与传动装置/齿轮箱其余部分同一的外壳内。

根据一个实施例,EMTC与传动装置的齿轮箱集成在一起,并包括带有至少两个机械地或电磁地连接的转子的DMPM,DMPM具有两个电气端口,电气端口通过滑环和/或通过转动的无接触传送器来供应其中一个转子和固定的定子;例如,参见下面的图5。

一个实施例提供了EMTC与传动装置的齿轮箱集成在一起,并包括带有至少两个机械地或电磁地连接的转子的DMPM,一个电气端口供应固定的定子,以及带有连接到DMPM电气连接的第二电气连接的分开的电机(electricalmachine),其中,该电机机械地连接到EMTC的输出轴或齿轮箱的输出轴;例如,参见图7A-B。

另一实施例提供了EMTC与传动装置的齿轮箱集成在一起,并包括带有至少两个机械地或电磁地连接的转子的DMPM,一个电气端口供应固定的定子,以及带有连接到DMPM电气连接的第二电气连接的分开的电机,其中,该电机机械地连接到EMTC的输入轴或DMPM的辅助输出轴,且优选机械地连接到输入轴;例如,参见图8A-B。

术语“EMTC与齿轮箱集成”意味着两者较佳地具有共同的外壳,其中,齿轮箱优选具有至少三个齿轮。

此外,如权利要求1中所述,在图5、7A、7B、8A、8B中,具有在输出侧上的两个输出路径(例如,MO1和MO2)以及在输入侧上的至少一个机械输入(M1)。

具体实施方式

用电磁的动力分配装置(split device)替代液压动力学传动装置的效率最低的部分,即,液压扭矩转换器,该电磁的动力分配装置提供高得多的效率,同时能够与传动装置的其余部分集成在一起。该电磁的动力分配装置提供与扭矩转换器类似的优点,诸如放大扭矩和阻尼振动。图1示意地示出包括液压动力学传动装置的动力传动系统、包括电磁的动力分配装置的动力传动系统、包括根据本发明实施例的电磁的动力分配装置的动力传动系统。

与传动装置(在传动装置外壳内或邻近于传动装置外壳)集成的电磁扭矩转换器是基于双机械端口电机(也被称作可变的电气传动装置、4象限转换器,或机械的和电气的两端口)的概念。该双机械端口电机具有两个转子(一个在输入轴上,另一个在输出轴上),它们机械地和/或磁性地联接以一定速度比传送动力,所述速度比由从输入转子上的绕组流到定子的电功率来设定,定子通过背靠背放置的两个逆变器联接到输出转子上。该电磁的动力分配装置因此通过极其高效的磁路径(高于约98%效率)传送一部分动力,而通过高效的电气路径(高于约85%效率)传送一部分动力.

用基于双机械端口电机的电磁的动力分配装置替换液压扭矩转换器,会导致具有无级变速传动比(CVT)的高效传动,其提供优于扭矩转换器功能的功能(通过放大扭矩,同时阻尼振动),所述扭矩转换器具有与步进齿轮箱相同水平的集成度以形成传动装置。与串联的电气方案(诸如DEE)相比,可以提高效率,而成本和安装空间减小,因为只有一部分动力会通过电气方式传输。电磁扭矩转换器(EMTC)可以好几种方式与齿轮箱集成,提及的好几种方式将在下文中讨论。

液压动力学传动装置是非常成熟的技术,对其效率的改进通常立足于对扭矩转换器的修改(诸如在高速度比的情况下,锁住叶轮和涡轮机)。

串联的电气传动装置通常都享有相同的基础结构。在串联的电气传动装置中,所有的机械能通过发电机转换为电能,然后,通过电动机回过来又转换为机械能。

在技术文献中以及被用作无级变速传动装置(CVT)的现有技术中,发现双机械端口电机(DMPM)有各种应用。然而,DMPM的使用已经被局限于用DMPM(用作为可变的电气传动装置)完全替换传动装置(机械的),并局限在由配装如此车辆电气传动装置与电气储能装置所引起的混合动力。使用集成在传动装置内的电磁扭矩转换器(EMTC)并使EMTC与步进齿轮箱配对的概念在现有技术中尚未有人知悉。

示范的DMPM的设计布置显示在图2A中。应该理解到,DMPM可具有替代的布置。输出轴或初级轴与转子驱动地接合,转子通常使用多个滑环通过初级逆变器进行整流。转子在DMPM中形成旋转磁场。替代地,应该理解到,DMPM可采用多个永久磁铁来形成旋转磁场。旋转磁场转动第二转子而使其以固定速度与次级轴驱动地接合。然而,通过将电力施加到固定的定子,次级轴的速度可以控制。从初级轴中获取或添加的电力可以由次级轴上的定子添加或提取(除了该装置操作中固有的损失)。

集成到发明人发现成果中的还有这样的变化形式(参见图2B),其中,初级和次级转子通过初级转子上的旋转定子机械地进行联接,且其中,旋转定子机械地联接到次级转子。尽管两个转子现在尚欠机械地集成且因为初级转子可以不是磁性地联接到固定定子,这可导致低的功率密度,但这可使装置和构造的冷却变得简化。保持了DMPM构造的使用以及扭矩转换器功能性与集成在传动装置内的电机一体化。所有如此的变化旨在纳入在发明人发现成果的范围和精神之内,只要有双机械端口的机器使用在可能的设计之一中即可。

集成到发明人的发现成果内的还有如下的变化形式,其中,与输入侧或初级轴的连接设置在机器的次级侧上。在图2C中,显示如此变化形式的一个示范实施例,其中,次级转子的轴是中空的,初级轴延伸在该次级轴之内。

集成到发明人的发现成果内的还有如下的变化形式,其中,DMPM只具有作用在固定定子上的一个直接电气端口,且其中,初级和次级轴上的转子包括永久磁铁。在这些变化形式中,DMPM将电气地连接到提供电力给定子的另一机器。然而,主要概念保持了通过多个(磁性地)联接的转子来传输动力。

DMPM在电磁拓扑上可具有许多变化形式,它们显示在图3中,也可使用该技术上的变化形式。作为非限制性的实例,该技术上的变化形式可包括机器、同步机器(同步电机)和可切换的磁阻机器(磁阻电机)。

在现有技术中,DMPM装置已经概念化为对传动装置的替换,因此需要能够提供传统传动装置的整个扩散。有可能的是,对滑环的需要以及对大型安装电力额定功率的必要性都会阻碍该概念的可接受性。

其他已知的同心转子装置体积大且缺乏功率的电子控制。然而,如此的装置不采用DMPM概念,且若没有功率电子控制的话,就不能合适地进行功率分配。所提出的这种控制方法采用了变阻器,导致效率低下。

在现有技术中,已知装置没有一个考虑到驱动地接合DMPM与自动步进齿轮箱,它们也没有考虑辅助驱动器、PTO驱动器和泵驱动器的连接和集成。

发明人发现成果的目的是提供这样的功能性,其在消除扭转振动和扭矩放大方面至少等于带有液压扭矩转换器的液压动力学传动装置的功能性,且允许发动和操作以使传动装置过度工作。尤其是,发明人的发现成果(图4中圈出的部分)包括电机,其包括两个转子(用于径向-径向拓扑型的同心转子)。转子之一驱动地与ICE的输出轴啮合,并使另一个转子驱动地与齿轮箱的输入轴啮合。该电机还包括与转子和定子之一电气地连通的功率电子转换器(power electronic converter)、多个齿轮以及用于齿轮组的对应联接装置。

发明人发现成果的优点在于,由于动力分配和电磁型的动力传输,用低的安装电功率额定值就可实现装置的高效率。发明人发现成果的另一优点在于,电机的部件可集成在传动装置之内。发明人发现成果的还有另一优点在于,能够以某种方式使电磁扭矩转换器与传动装置集成在一起,这样,不再需要滑环,并容易地达成与液压泵所需要的连接。

包括电磁扭矩转换器(EMTC)的传动装置的第一实施例显示在图5中。包括EMTC的传动装置包括DMPM,其与ICE(未示出)的输出轴(未示出)以及齿轮箱的输入轴驱动地接合。一对功率电子转换器(未示出)与EMTC的一对转子电气地连接。EC1和EC2分别是从初级转子和定子引出的电气连接。EMTC类似于传统液压扭矩转换器相对于传动装置定位。包括EMTC的传动装置可使用多个拓扑和电动机技术中的一种来实现,取决于给定应用所需的特性。在一优选实施例中,采用不带滑环的拓扑(诸如图4中所示的拓扑)。

集成到发明人发现成果中的是这样的变化形式:其还提供与如图6所示的齿轮箱侧上的输入轴的连接。具体来说,该类型的连接可用于用来驱动PTO、液压泵或其他辅助装置的齿轮箱。如此辅助装置的驱动可由输出轴来执行,或如此辅助装置的驱动连接可直接位于输入侧上。

通过仍将DMPM集成到传动装置内,但使机器的一部分从多个转子结构移到输出轴或输入轴,,使得多个替代的设计成为可能。尽管这可能导致扭矩转换器部分的集成度降低,且某些实施例仅用某种拓扑或技术才可行,但仍保持了扭矩转换器的功能与集成在传动装置内的电机的集成。所有如此的变化形式都要被纳入到发明人发现成果的范围和精神内,只要采用了双机械端口电机即可。

尽管某些实施例显示为包括某些特征,但应该理解到,这里披露的任何特征都可一起使用,或与发明人发现成果的任何实施例中的任何其他特征组合起来使用。

两种特殊系列的实施例显示在图7A至8B中,它们通常利用诸如图2D中的DMPM的变化形式。在图7A、7B、8A和8B中,DMPM输入(初级轴)注解为MI,而次级轴标注为MO1和MO2,其中,MO1是第一次级轴,其机械地连接到输入轴MI,而MO2是第二次级轴,其只与输入轴磁性地连接,齿轮箱的输出轴标注为MD,与EMTC和附加机器的两个电气连接分别被标注为EC1和EC2。

以下情形的实施例分别显示在图7A和7B中,实施例中,激励器机器(定子1和内部转子1)或附加的第二(次级)机器(M)直接地或通过齿轮连接到齿轮箱的输出轴或DMPM的次级轴。

以下情形的实施例详细地显示在图9A、9B和9C中,在该实施例中,附加的第二机器(M)连接到齿轮箱的输出轴。图9A示出一种变化形式,其中,机器放置在齿轮之间的输出轴上。图9B示出一种变化形式,其中,机器放置在最后齿轮之后的输出轴上。图9C示出一种变化形式,其中,机器放置在借助于附加齿轮连接到最后齿轮的输出轴上。

以下情形的实施例分别显示在图8A和8B中,实施例中,激励器机器(定子1和内部转子1)或附加的初级机器(M)直接地或通过齿轮连接到传动装置的输入轴,传动装置的输入轴直接地或通过该连接连接到DMPM的输出侧上的初级轴。这包括传动装置的辅助动力连接上的附加机器(M)的连接。

以下情形的实施例显示在图10A和10B中,在该实施例中,附加的第二机器(M)连接到DMPM的输出侧。图10A示出一种变化形式,其中,机器紧挨着连接到辅助单元。图10B示出一种变化形式,其中,机器放置在EMTC下面,并借助于附加的齿轮连接到EMTC的输出侧。

在一种直接驱动模式中,几乎所有动力(功率)磁性地进行传输,而近乎零功率是电气地传输的。在该情形中,初级侧和次级侧的(电气)速度相等。当偏离该模式时,通过控制电场的滑移速度使一部分功率电气地传输。使用电子控制器(例如,基于微控制器)来设置电场的速度,并控制两个功率电子转换器,让传动装置和原动机(例如,ICE)在它们的最佳点上运行。

初级机器和次级机器上的功率电子转换器也可连接到电储能装置(例如但不限于多个电池,多个超级电容器或电磁飞轮),以实现混合型动力传动系统的方案。

至少初级机器或次级机器的功率电子转换器可连接到电储能装置(例如但不限于多个电池,多个超级电容器或电磁飞轮),和/或车辆中的电网以便馈送给电气辅助装置。

至少初级机器或次级机器的功率电子转换器可连接到电储能装置(例如但不限于多个电池,多个超级电容器或电磁飞轮),和/或车辆中的电网以便获得传动装置的起动/停止功能。

DMPM可设计为扭矩转换器,其与齿轮箱和辅助装置的驱动器集成在一起以形成传动装置,传统液压动力学传动装置、液压扭矩转换器的效率最低部分可用电磁的动力分配装置替换,所述电磁的动力分配装置提供与扭矩转换器类似的优点(诸如放大扭矩和阻尼振动),具有相同水平的集成度但效率远高得多。

作为扭矩转换器的DMPM的附加优点是:

·在很大操作范围上的效率高

·电磁的动力分配装置,其对功率电子器件和机器的绕组提供降低的功率额定值,且无需使用行星齿轮组

·集成的设计,其比分开机器的使用更加紧凑和低成本

·消除扭转振动

这里显示的和以上描述的所有实施例可借助于滑环或不借助于滑环来实现。

这里显示的和以上描述的所有实施例可实现PTO和/或辅助液压泵像在传统传动装置中那样与输入轴的连接,尤其是在动力切换型湿板动力传动装置中。

以下显示根据发明人发现成果的EMTC结构的若干个实施例。鉴于以上所述,可特别地参照图5、7A、7B、8A、8B。

在所有实施例中,机械输入(M1)连接到EMTC(EMTC的左边)。在所有实施例中,提供了电气连接1(EC1)和电气连接2(EC2)。在所有实施例中,EC1直接连接到EMTC(见EMTC的上侧)。EC2的位置根据不同的实施例而不同(详见图5-8B)。所有实施例示出EMTC、传动装置的齿轮箱以及辅助单元。在所有情形中,齿轮箱的输出都标注为MD(机械的动力传动系统)。此外,在所有实施例中,EMTC的机械输出1(MO1)连接到辅助单元,其中,机械输出2(MO2)连接EMTC和齿轮箱,例如,就如专利权利要求1和所有从属权利要求中所限定的。图7A-8B示出连接到电气连接2的附加的初级机器(表示为M)。

图中示出了若干个替代的实施例,其中,EMTC具有可连接到原动机(诸如ICE)的机械输入,以及至少两个输出路径,其中,至少第二输出路径(MO2)连接到/耦联到齿轮箱,且其中,齿轮箱最后连接到从动元件(参见MD,可连接到差速器、驱动轴等)。

根据提供的专利状态,发明人的发现成果已经描述了被认为是示范实施例的实施例。然而,应该指出的是,本发明可以不同于具体图示和描述的方式来实践,这不会脱离本发明的精神或范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1