基于电气化车辆电池中的锂镀覆检测的车辆控制的制作方法

文档序号:11608865阅读:145来源:国知局
基于电气化车辆电池中的锂镀覆检测的车辆控制的制造方法与工艺

本公开涉及用于电气化车辆的控制系统的车辆电池中的锂镀覆(lithiumplating)的检测。



背景技术:

电气化车辆(诸如混合动力车辆、插电式混合动力车辆和电池电动车辆)使用由牵引电池供电的电机来驱动车辆动力传动系统。电池的充电和放电导致电化学过程,该电化学过程影响可用于给车辆供电的电荷并且可随着环境状况和操作状况(诸如电池荷电状态(soc)、温度、电池单元平衡以及充电/放电速率或电流)的变化而变化。在锂离子(li-ion)电池中,在一些操作状况下,金属锂可沉积在电池单元的负电极上,这可能降低电池性能和电荷可用性并且会导致内部短路。尽管可在其它环境状况和操作状况下发生锂镀覆,但是电池在低操作温度和高充电电流下特别容易受到该过程(被称作锂镀覆)的影响。



技术实现要素:

在各个实施例中,一种包括具有至少一个电池单元的牵引电池的车辆包括控制器,所述控制器连接至牵引电池并且被配置为:响应于所述至少一个电池单元的锂镀覆来控制所述牵引电池的充电和放电,其中,所述至少一个电池单元的锂镀覆由作为时间的函数的所述至少一个电池单元的微分电压与所述至少一个电池单元的电池单元充电速率的比值来指示。所述电池单元充电速率可与电池单元电流相对应。所述控制器还可被配置为:响应于所述锂镀覆,降低所述电池单元充电速率。在各种实施例中,所述控制器还被配置为:响应于所述比值越过关联阈值,控制所述电池单元充电速率。所述关联阈值可基于牵引电池荷电状态而变化。

根据本发明的一个实施例,所述控制器还被配置为:比较所述比值,以响应于所述比值越过关联阈值来控制所述电池单元充电速率。

根据本发明的一个实施例,所述控制器还被配置为:响应于所述比值小于关联阈值,控制所述牵引电池。

根据本发明的一个实施例,所述关联阈值基于牵引电池的荷电状态而变化。

在一个实施例中,一种车辆包括具有多个电池单元的牵引电池和控制器,所述控制器与所述牵引电池通信并且被配置为:响应于所述多个电池单元中的至少一个电池单元的锂镀覆的检测来控制所述牵引电池,其中,所述锂镀覆的检测是基于相对于关联阈值的所述至少一个电池单元的差分电池单元电压的。所述控制器可被配置为:响应于基于所述至少一个电池单元的测量的开路电压与关联阈值之间的差的锂镀覆的检测,来控制所述牵引电池电流,其中,所述关联阈值是先前存储的开路电压值。所述测量的开路电压可以是基于测量的电池单元电压、测量的电池单元电流和先前存储的或在线估计的电池单元内电阻的。

在另一实施例中,所述控制器被配置为:响应于锂镀覆的检测来控制牵引电池电流,其中,所述锂镀覆是基于在所述牵引电池充电期间电池单元微分电压与电池单元电流的比值的。所述控制器还可被配置为:响应于锂镀覆的检测来控制所述牵引电池,其中,所述锂镀覆是基于作为时间的函数的所述比值与先前存储的比值模式的比较的。所述控制器可被配置为:响应于所述锂镀覆的检测,通过例如减小充电电流、利用外部加热使电池升温或者使电池循环以利用电池单元内电阻产生热或使牵引电池电流反向来控制所述牵引电池的充电和放电。

实施例还可包括一种由具有牵引电池的车辆中的车辆控制器实现的方法。所述方法可包括:由所述控制器响应于一个或更多个牵引电池单元的锂镀覆来控制牵引电池电流,所述一个或更多个牵引电池单元的锂镀覆由a)电池单元电压变化速率与电池单元充电速率的比值或b)用于检测与锂镀覆关联的特殊模式的系统识别方法来指示,其中,所述比值响应于所述比值越过关联阈值而指示所述一个或更多个牵引电池电池单元的锂镀覆,所述关联阈值可取决于一个或更多个环境状况或电池状况(诸如电池荷电状态)。控制所述牵引电池电流可包括减小所述牵引电池电流。

根据本发明的一个实施例,所述关联阈值相对于电池荷电状态而变化。

根据本发明的一个实施例,所述电池单元充电速率与电池单元电流相对应。

根据本公开的实施例可提供一个或更多个优点。例如,锂镀覆的在线非破坏性检测有助于电池控制和/或车辆控制以减轻不可逆的锂镀覆,从而延长电池寿命和扩展电池容量。各种实施例提供对于电池开路电压曲线的变化具有稳健性的锂镀覆检测,以在变化的操作状况下提供准确的检测。根据一个或更多个实施例的策略使用现有的车辆传感器和/或电池传感器来检测锂镀覆,使得无需添加传感器或硬件。

通过下面在结合附图时进行的详细描述,与各个实施例相关联的上述优点和其它优点及特征对于本领域普通技术人员将变得显而易见。

附图说明

图1是示出在代表性实施例中具有锂镀覆检测和控制的电气化车辆的框图;

图2是示出根据代表性实施例的用于检测锂镀覆的未镀覆的电池单元和镀覆的电池单元的电池单元电压(作为soc的函数)的曲线图;

图3是示出根据代表性实施例的用于检测锂镀覆的未镀覆的电池单元和镀覆的电池单元的电池单元电压变化速率与电池单元充电速率的比值(作为时间的函数)的曲线图;

图4是示出根据代表性实施例的用于检测车辆电池中的锂镀覆并且作为响应而控制车辆或电池的车辆或方法的操作的流程图。

具体实施方式

根据需要,在此公开了详细的实施例;然而,应该理解的是,所公开的实施例仅代表所要求保护的主题并且可以以各种替代形式来实施。附图无需按比例绘制;一些特征可被夸大或最小化以示出特定组件的细节。因此,在此公开的具体结构和功能细节不应被解释为具有限制性,而仅作为用于教导本领域技术人员以多种形式利用实施例的代表性基础。如本领域普通技术人员将理解的,参考任一附图示出和描述的各种特征可以与在一个或更多个其它附图中示出的特征组合,以产生未被明确示出或描述的实施例。示出的特征的组合提供用于典型应用的代表性实施例。然而,可期望将与本公开的教导一致的特征的各种组合和变型用于特定的应用或实施方式。

本公开的实施例可包括各种内部电路和外部电路或其它电气装置。所有针对所述电路和其它电气装置以及由它们中的每个所提供的功能的引用并不意在限于仅包含在此示出和描述的内容。尽管特定的标签可被分配给所公开的各种电路或其它电气装置,但是这种标签并不意在限制所述电路和其它电气装置的操作范围。这种电路和其它电气装置可基于期望的特定类型的电气实施方式以任何方式彼此组合和/或分离。应认识到,在此公开的任何电路或其它电气装置可包括任何数量的分立的无源组件和有源组件(诸如电阻器、电容器、晶体管、放大器、模/数转换器(adc或a/d转换器)、微处理器、集成电路、非暂时性存储器装置(例如,闪存、随机存取存储器(ram)、只读存储器(rom)、电可编程只读存储器(eprom)、电可擦除可编程只读存储器(eeprom)或上述项的其它合适的变型))和软件,它们彼此协作以执行在此公开的操作。另外,所述电气装置中的任何一个或更多个可被配置为执行包含在非暂时性计算机可读存储介质中的计算机程序,该介质包括将计算机或控制器配置为执行所公开的任何数量的功能的指令。

图1是具有至少一个控制器的代表性电气化车辆实施例的框图,所述至少一个控制器基于车辆电池中的锂镀覆的检测来控制车辆和/或电池。尽管在该代表性实施例中示出了具有内燃发动机的插电式混合动力车辆,但是本领域普通技术人员将认识到,所公开的实施例(示出了锂镀覆的检测以及响应所述检测的车辆和/或车辆电池的控制)也可用于其它类型的电气化车辆中。在代表性实施例中示出的用于锂镀覆检测和控制的系统和方法独立于特定的车辆动力传动系统。代表性车辆应用可包括混合动力车辆、电动车辆或具有受与锂镀覆相关联的性能下降影响的电池的任何其它类型的车辆。

在图1示出的代表性应用中,插电式混合动力电动车辆112可包括机械地连接到混合动力传动装置116的一个或更多个电机114。电机114能够作为马达或发电机运转。对于混合动力车辆,传动装置116机械地连接到内燃发动机118。传动装置116还机械地连接到驱动轴120,驱动轴120机械地连接到车轮122。在此的描述同样适用于电池电动车辆(bev),其中,混合动力传动装置116可以是连接到电机114的齿轮箱,并且如前所述可省略发动机118。无论发动机118是否正在运行,电机114都可提供推进能力和减速能力。电机114还用作发电机并且可通过回收在摩擦制动系统中通常作为热损失掉的能量来提供燃料经济性效益。

对于混合动力车辆应用或电动车辆应用,牵引电池或牵引电池组124将能量储存在连接在一起的多个单独的电池单元中,以为电机114提供期望的电压和充电容量。在一个实施例中,电池组124包括锂离子电池单元的阵列。锂镀覆是指金属锂沉积在电池单元的负电极上的过程,并且可例如取决于沉积的锂的特定结构特性而导致诸如容量损失、增大阻抗、效率降低以及在一些情况下的内部短路的长期效应。在被称为剥离(stripping)的过程期间,一定程度的镀覆可反向进行。因此,根据本公开的各个实施例利用车辆控制器或电池控制器来检测锂镀覆并且响应于锂镀覆的检测来控制车辆和/或牵引电池,以减少或消除锂镀覆。电池充电和放电的控制可用于剥离可逆镀覆的阳极以及减少或消除镀覆。在低温、高荷电状态(soc)和高充电速率(高电流)下充电期间,电池单元特别容易受到镀覆。因此,电池和/或车辆的控制可包括响应于锂镀覆的检测来控制牵引电池电流。可使用各种策略来检测锂镀覆,参照图2至图4示出和描述了代表性策略。

虽然车辆电池组124通常向高电压总线150提供高电压dc输出,但是电压和电流可根据特定的操作状况和负载而变化。牵引电池组124电连接到一个或更多个外部电路152,一个或更多个外部电路152可包括例如电力电子器件或逆变器电路126、dc/dc转换器电路128和/或电力转换模块或电路132。一个或更多个接触器可在断开时将牵引电池组124与其它组件隔离,并且可在闭合时将牵引电池组124连接到其它组件。牵引电池组124可包括用于测量和监测各种操作参数(包括电池单元电流和单独的电池单元电压)的各种内部电路。诸如电池单元或电池单元的组(有时被称作区或块)的电压、电流和电阻的参数可由becm146来监测和/或控制。

牵引电池组124除了提供用于推进的能量之外,还可为连接到高电压总线150的其它外部电路152提供能量。车辆112的配电系统还可包括dc/dc转换器模块或电路128,dc/dc转换器模块或电路128将牵引电池124的高电压dc输出转换为与可直接连接的其它车辆负载兼容的低电压dc供电。其它外部高电压电路或负载(诸如用于车厢加热器或组件加热器的外部高电压电路或负载)可直接连接到高电压总线150而不使用dc/dc转换器模块128。

车辆112还可包括辅助电池130,辅助电池130具有相对较低的标称电压(例如,诸如24v或48v)的辅助电池130并且可使用与牵引电池组124不同的电池化学反应来实现。辅助电池130也可被称作低电压电池、起动机电池或者还可被简单地称作用于各种应用的车辆电池。辅助电池130可被用于向通常由电力负载160表示的各种低电压组件、控制器、模块、马达、致动器、传感器等提供电力。一个或更多个继电器/电压转换器168可被用于为车辆的电力负载160提供电力。在该实施例中,继电器/电压转换器168包括由车辆控制模块(vcm)172提供的继电器输入信号170控制的继电器,车辆控制模块172还可被用于使用电池能量控制模块(becm)146来直接或间接地控制车辆和/或牵引电池124。

牵引电池组124可通过外部电源136再充电。外部电源136可以是到连接到电网的电插座的连接。外部电源136可电连接到电动车辆供电设备(evse)138。evse138可提供电路和控制件以调节和管理电源136和车辆112之间的能量传输。外部电源136可向evse138提供dc或ac电力。evse138可具有用于插入到车辆112的充电端口134中的充电连接器140。充电端口134可电连接到充电器或车载电力转换模块132。可选地,被描述为电连接的各种组件可使用无线感应耦合来传输电力。

图1中示出的各种组件可具有一个或更多个关联的控制器、控制模块和/或处理器(诸如vcm172)以检测牵引电池锂镀覆并控制和监测各种车辆组件和牵引电池组件的操作。控制器可经由串行外设接口(spi)总线(例如,控制器局域网(can))或离散导体进行通信。例如,各种操作参数或变量可使用can或其它导体来广播或发布,以供车辆控制模块或子模块用于控制车辆或车辆组件(诸如牵引电池组124或电力负载160)。一个或更多个控制器可以以独立方式操作,而不与一个或更多个其它控制器通信。控制器可包括电池能量控制模块(becm)146以控制各种充电和放电功能、电池单元电荷平衡、电池组电压测量、单独的电池单元电压测量、电池过充电保护、电池过放电保护、电池寿命终止确定、锂镀覆检测、电池电流极性或电池电流方向(充电和放电)等。控制器可包括各种类型的非暂时性计算机可读存储介质和/或与各种类型的非暂时性计算机可读存储介质通信,所述非暂时性计算机可读存储介质包括用于存储控制逻辑、算法、程序、操作变量等的持久性存储装置和临时性存储装置。在一个实施例中,becm146可与用于存储与电池单元的期望的开路电压值、阈值或模式(pattern)相关联的值的存储器通信。类似地,becm146可与具有存储在与电池单元内电阻相关联的查找表或数组中的值的存储器通信,其中,所述电池单元内电阻是基于电池参数(诸如温度、soc、寿命等)的。

图2是示出根据代表性实施例的用于检测锂镀覆的未镀覆的电池单元和镀覆的电池单元的电池单元电压(作为soc的函数)的曲线图。图2的曲线图使用可用在电气化车辆(诸如在图1中示出的插电式混合动力电动车辆)中的电池组中的代表性锂离子电池单元的经验数据来产生。由线210表示的数据与随着具有很少镀覆或没有镀覆的正常锂离子电池单元的soc而变化的放电期间的电池单元电压相对应。由线212、214表示的数据与锂镀覆的电池单元的作为soc的函数的放电期间的电池单元电压相对应。如前所述,由于锂的化学特性,所以当电池单元被镀覆时,电池单元的开路电压(ocv)在相同soc值处将高于无镀覆的电池单元的电池单元ocv值。

在放电期间,可逆镀覆的锂可被剥离,使得ocv相对于soc的放电曲线对于镀覆的电池单元和未镀覆的电池单元将是相同的。在剥离过程结束之后,通常由标号216指示的曲线的低soc部分可被用于识别镀覆的电池单元的soc值。

在各个实施例中,预期的或正常的电池ocv和/或针对特定电池操作参数(诸如温度、电流、soc、寿命等)的预期的电池单元内电阻可被估计或被存储在与becm146通信的存储器中。根据一个代表性实施例,随后可基于至少一个电池单元的测量的ocv与先前存储的类似操作状况下的预期的ocv的之间的差来检测电池镀覆。可根据以下公式基于测量的电池单元电压、通过电池单元的电流以及计算的或者先前存储在与电池控制系统相关联的存储器中的电池单元内电阻来计算测量的ocv:

ocv=v_battery-i*r_cell

其中,ocv表示电池单元开路电压(v),v_battery表示测量的电池单元电压(v),i表示通过电池单元的电流(a),r_cell表示电池单元内电阻(欧姆)。可基于相对于关联阈值的多个电池单元中的至少一个电池单元的差分电池单元电压来指示所述至少一个电池单元内的锂镀覆的检测,表示如下:

如果ocv测量-ocv预期>校准阈值,则电池单元被镀覆。

可选地,可将测量的ocv与关联阈值(表示先前存储的预期的开路电压值)进行比较,而不是计算如上所述的差分电压。随后当测量的ocv越过(cross)阈值时检测到镀覆。例如,与牵引电池通信的一个或更多个控制器可被配置为响应于锂镀覆的检测来(诸如,通过控制一个或更多个电池单元的充电或放电、减少流向一个或更多个电池单元的充电电流以及使流向一个或更多个单元的电流反向)控制牵引电池。

图3是示出根据代表性实施例的用于检测锂镀覆的未镀覆的电池单元和镀覆的电池单元的电池单元电压变化速率与电池单元充电速率的比值(作为时间的函数)的曲线图。由线310表示的数据与没有锂镀覆的电池单元的比值相对应,而由线312、314表示的数据与呈现锂镀覆的电池单元的比值相对应。线320与代表性阈值相对应,该代表性阈值可被用于与用于锂镀覆的检测的比值进行比较,使得响应于计算的比值越过阈值(例如,针对线312在330处指示的以及针对线314在340处指示的)而检测到锂镀覆。本领域普通技术人员将认识到,特定的阈值可基于电池和/或环境操作参数或状况而变化,并且可被存储在被配置为查找表的存储器中或者可基于使用经验数据的公式或等式来计算以生成该阈值的数学表达式。类似地,可利用用于检测镀覆的数学参数或统计参数(诸如,相关性)来对由一个或更多个电池单元的数据随时间形成的模式与未镀覆的电池单元的相应的预期的或期望的模式进行比较。类似地,其它比值可被计算并且被用于基于与镀覆的电池单元相关联的经验数据来检测镀覆。

如在图3中大致示出的,对于锂镀覆的电池单元,在该过程期间,当镀覆的锂已停止参与反应时,电池单元电压变化速率或微分电压与电池单元充电速率(例如,其可由电池单元电流来指示)的比值将具有明显的转变。由于由线310、312和314表示的电池单元电压变化速率与电池单元充电速率的比值与基于时间的比值相比是稳健的(robust),所以其对于各种电池操作状况下的锂镀覆检测来说是非常稳健的。因此,当电池单元电压变化速率与电池单元充电速率的比值越过对应的阈值时,可检测到锂镀覆。

如先前针对图2所描述的,由于锂和碳阳极的化学特性,当电池被镀覆时,电池单元ocv将高于没有镀覆情况下的正常的电池开路电压。如在350总体指示的,当锂停止参与反应时,电池单元ocv将返回到正常ocv,使得各个实施例使用比值转变来检测电池单元镀覆。在各种应用中,在电池组内部针对单独的电池单元或电池单元的组或块来测量电池单元电压,使得特定的电池单元或电池单元的组的微分电压dv/dt可被计算。电池单元充电速率或电池单元的变化速率可由实际电池单元电流(i)来表示,如下表示:

电池单元电压变化速率与电池单元充电速率的比值可由车辆控制器或电池控制器根据以下公式来计算:

其中,q表示电池单元累积电荷(库仑),v_battery表示测量的电池单元电压(v),i表示通过电池单元的电流(a)。如前所述,为了检测针对当前电池操作状况(诸如温度、soc等)的电池镀覆,将所计算的比值与对应的阈值进行比较,当比值越过对应的阈值时指示电池单元镀覆。还可使用各种模式检测策略(包括但不限于模糊逻辑、神经网络和/或各种统计分析或曲线拟合分析等)来检测模式。可在微分运算之前和/或之后应用滤波器来减少或消除信号噪声。

图4是示出根据代表性实施例的用于检测车辆电池中的锂镀覆并且响应于所述检测控制车辆或电池的车辆或方法的操作的流程图。针对在此描述的处理、系统、方法、启示等,应当理解,尽管这样的处理等的步骤可被描述为以有序顺序发生,但是这样的处理可使用以与在此描述的顺序不同的顺序完成的所描述的步骤来被执行。还应理解,在与本公开的教导保持一致并且被所要求保护的主题所涵盖的同时,可同时执行特定步骤,可添加其它步骤或者可省略在此描述的特定步骤。换言之,方法或处理的描述针对示出特定实施例的目的而被提供,并且应被理解为代表许多变型中的一个,而不仅仅限于示出或描述的实施例。

如本领域普通技术人员通常理解的,系统或方法可通过计算机算法、机器可执行代码或被编程到与车辆相关联的一个或更多个合适的可编程装置(诸如vcm172、becm146、与车辆计算系统通信的其它控制器或它们的组合)中的软件指令来实现。

系统或方法400的操作包括:如在410表示的将针对各种电池操作参数的预期值或期望值存储在非暂时性计算机可读介质或存储器中以便随后用于检测锂镀覆。如前所述,电池参数值可包括与当前的电池操作状况和/或环境操作状况对应的代表性电池单元或电池单元的组的开路电压的预期值或期望值。还可存储电池单元内电阻,以便随后用于基于测量的电池单元电压来计算电池单元的ocv。操作410还可包括:存储用于检测或识别指示锂镀覆的参数改变的模式的各种可编程规则或逻辑。如由框412所表示的,针对当前操作状况测量或以其它方式确定各种电池参数。如在414所表示的,代表性参数可包括电池单元电压、电池单元电流、soc和温度。

如由框416所表示的,确定一个或更多个锂镀覆参数或指示。如前所述,锂镀覆参数或指示可以是基于电池单元差分电压418的,例如,电池单元差分电压418可包括ocv的差。可选地,如先前描述的以及在420表示的,可使用测量的电池单元电流、电池单元电压和电池单元内电阻来计算测量的ocv。如在422所表示的微分电压的比值可被计算,并且可包括如在426所表示的微分电压或变化电压与电池单元充电速率的比值。

如在428所表示的,可将一个或更多个锂镀覆参数与关联的阈值或模式进行比较,当参数越过关联的阈值时指示锂镀覆。如在428所指示的,如果检测到镀覆模式或者镀覆参数越过关联的阈值,则如在430所表示的,利用对车辆和/或电池的控制来减轻镀覆。这可包括控制电池充电或放电、电池电流方向或极性、电池充电速率等。车辆和/或电池的控制还可包括可影响电池充电、放电或温度的各种其它车辆组件的控制。例如,可操作内部或外部加热源以提高电池温度,可通过控制关联的附件来增大或减小电力负载,可启动或停止内燃发动机,可增大或减小再生制动电流等。

如本领域普通技术人员可认识到的,所描述的代表性实施例可提供一个或更多个优点,诸如,锂镀覆的在线非破坏性检测以及相关联的控制用于减轻不可逆的锂镀覆和关联的性能退化以延长电池寿命和扩展电池容量。各种实施例提供对于电池开路电压曲线的变化具有稳健性的锂镀覆检测,以在变化的操作状况下提供准确的检测。根据一个或更多个实施例的策略使用现有的车辆传感器和/或电池传感器来测量电池单元电压和电流并且检测锂镀覆,使得不需要添加传感器或硬件。

虽然以上描述了代表性实施例,但是并不意在这些实施例描述了所要求保护的主题的所有可能形式。更确切地,在说明书中所使用的词语是描述性词语而非限制性词语,并且应理解的是,可在不脱离本公开的精神和范围的情况下做出各种改变。此外,可将各种实现的实施例的特征进行组合以形成未被明确描述或示出的进一步的实施例。尽管针对一个或更多个期望的特性,各种实施例可能已经被描述为提供优点或优于其它实施例或现有技术的实施方式,但是如本领域的普通技术人员所知,根据特定的应用和实施方式,一个或更多个特征或特性可被折衷以实现期望的整体系统属性。这些属性包括但不限于成本、强度、耐用性、生命周期成本、市场性、外观、包装、尺寸、可维护性、重量、可制造性、装配的容易性等。被描述为在一个或更多个特性方面不如其它实施例或现有技术的实施方式合意的实施例不一定在本公开的范围之外,并可被期望用于特定应用。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1