电动车辆用的电力变换装置的制作方法

文档序号:13378242阅读:176来源:国知局
电动车辆用的电力变换装置的制作方法

本说明书公开了涉及将电池的电力变换为行驶用马达的驱动电力的电力变换装置的技术。



背景技术:

电动车辆的电力变换装置具备:将主电池的直流电力变换为交流电力而向行驶用马达供给的变换器(inverter)电路。另外,电力变换装置具备:在向变换器电路供给之前将主电池的电压升压的升压转换器电路。电力变换装置利用变换器电路和升压转换器电路,将主电池的直流电力变换为马达的驱动电力。

在电力变换装置中,为了抑制因升压转换器电路的开关元件的on/off而引起的输出电压的脉动,在升压转换器电路与变换器电路之间配置平滑化电容器。由于平滑化电容器的容量大,因此,谋求在车辆碰撞时使平滑化电容器快速地放电。

在日本特开2015-73353中,公开了在车辆碰撞时使平滑化电容器放电的技术。日本特开2015-73353的电力变换装置,使平滑化电容器的电力通过变换器电路流向马达而使其放电。通常时,从向空调机等辅机供给电力的辅机电池向控制变换器电路的控制器供给电力。但是,在碰撞时,由于辅机电池的破损、辅机电池与变换器电路的控制器之间的断线等,可能发生不从辅机电池向变换器电路的控制器供给电力的状况。日本特开2015-73353的电力变换装置,为了在碰撞时向变换器电路的控制器可靠地供给电力,具备在碰撞时利用的备用电源。



技术实现要素:

备用电源是不在通常行驶时使用的电源,优选不搭载即可。本发明提供能够不使用备用电源地从辅机电池以外向变换器电路的控制器供给电力的电力变换装置。

本发明的一个技术方案的电力变换装置包括:主电池、辅机电池、升压转换器电路、变换器电路、高压配线、平滑化电容器、主配线、副配线、dcdc转换器以及控制器。所述辅机电池的电压比所述主电池的电压低。所述升压转换器电路与所述主电池连接。所述升压转换器电路构成为将所述主电池的电压升压。所述变换器电路与所述升压转换器电路连接。所述变换器电路构成为将所述升压转换器电路的输出变换为交流并输出到车辆的行驶用马达。所述高压配线将所述升压转换器电路与所述变换器电路连接。所述平滑化电容器连接于所述高压配线的高电位线与所述高压配线的低电位线之间。所述主配线将所述主电池与所述升压转换器电路连接。所述副配线与所述辅机电池连接。所述dcdc转换器与所述主配线的高电位线、所述主配线的低电位线、所述副配线的高电位线、所述副配线的低电位线、所述高压配线的高电位线、所述高压配线的低电位线连接。所述控制器与所述辅机电池以及所述dcdc转换器连接。所述控制器构成为驱动所述变换器电路。所述dcdc转换器构成为:在检测到所述车辆的碰撞时,经由所述dcdc转换器将积蓄在所述平滑化电容器中的电力供给到所述控制器,以使得所述控制器驱动所述变换器电路,并经由所述变换器电路将积蓄在所述平滑化电容器中的电力供给到所述马达。

在行驶时,在大容量的平滑化电容器中,积蓄有大的电力。根据上述方式的电力变换装置,在车辆碰撞时,使用平滑化电容器的电力来驱动变换器电路。由此,能够将平滑化电容器的电力经由变换器电路供给到马达。并且,为了驱动变换器电路,即使不使用专用的备用电源,也能够从平滑化电容器向变换器电路供给用于驱动变换器电路的电力。

根据本发明的一个技术方案的电力变换装置,涉及具有升压转换器电路和变换器电路,并且在紧急时使与变换器电路连接的平滑化电容器放电的电力变换装置,在车辆碰撞时,能够利用平滑化电容器的电力来驱动变换器电路。由此,在车辆上不搭载用于在车辆碰撞时驱动变换器电路的备用电源即可应对。由此,能够使车辆轻量化。本说明书所公开的技术的详细情况和进一步的改良,通过以下的“具体实施方式”来说明。

下面将参考附图说明本发明的示例性实施例的特征、优点以及技术和产业上的意义,其中,相同的附图标记表示相同的元素。

附图说明

图1是实施例的混合动力车的示意性框图。

图2是实施例的混合动力车的电系统以及驱动系统的框图。

图3是第1实施例的dcdc转换器的电路图。

图4是第1实施例的碰撞检测时的放电处理的流程图。

图5是第2实施例的dcdc转换器的电路图。

图6是第3实施例的dcdc转换器的电路图。

图7是第3实施例的碰撞检测时的放电处理的流程图。

具体实施方式

如图1、图2所示,本实施例的功率控制单元10(以下称为“pcu10”)搭载于混合动力车1。混合动力车1具备发动机41和马达44作为行驶用驱动源。发动机41的输出转矩和马达44的输出转矩,通过动力分配机构42(参照图2)被适当地分配/合成,向车轴43(即车轮)传递。此外,图1、图2仅示出本说明书所关注的技术的说明中所需要的部件,省略对于与说明无关的一部分部件的图示。

从主电池3供给用于驱动马达44的电力。马达44具备被组装于定子的三相线圈44a。主电池3的输出电压例如是300伏特。混合动力车1除了主电池3之外,还具备用于向空调机24、安全气囊系统25等以比主电池3的输出电压低的电压驱动的设备群供给电力的辅机电池21。以下,将这些设备总称为“辅机”。pcu10的除大电流系电路之外的信号处理电路(生成pwm信号的pcu控制器16等)也是辅机的一种,后述的控制电路80和pcu控制器16也是辅机的一种。如后述那样,控制电路80、pcu控制器16以及dcdc转换器14经由辅机侧开关76与辅机电池21连接。另外,“主电池”/“辅机电池”的名称,是为了方便区别2个电池。

主电池3经由系统主继电器4和主配线8的高电位线8a以及低电位线8b与pcu10连接。系统主继电器4是将主电池3与车辆的驱动系统进行连接或切断的开关。pcu10将主电池3的直流电力升压,变换为交流并供给到马达44。pcu10具备升压转换器电路12和变换器电路13。升压转换器电路12经由高电位线8a以及低电位线8b和系统主继电器4与主电池3连接。

升压转换器电路12由2个开关元件sw、电抗器re以及与各个开关元件sw反并联连接的二极管构成。升压转换器电路12经由高压配线11的高电位线11a和低电位线11b与变换器电路13连接。变换器电路13由6个开关元件sw和与各开关元件sw反并联连接的二极管构成。开关元件sw典型地是晶体管(igbt)。

pcu10还具备:将输入至升压转换器电路12的电压平滑化的电容器5和将输入至变换器电路13的电压(利用升压转换器电路12升压后的电压)平滑化的电容器7。电容器5连接于高电位线8a与低电位线8b之间。电容器7配置于高电位线11a与低电位线11b之间。这些电容器5、7是为了除了由于开关元件sw的on/off而重叠于电压的高频的脉动(噪声)而设置的。

对于pcu10而言,由于要处理的电流大,因此,电容器5、7也是大容量。在车辆停止后和/或碰撞时等,在电容器5、7中永远积蓄有很多电力并不优选。于是,pcu10在车辆发生了碰撞的情况下,经由马达44将积蓄在电容器5、7中的电力迅速地放电。更具体而言,当检测到车辆发生了碰撞时,pcu10将积蓄在电容器5、7中的电力经由变换器电路13流向马达44的三相线圈44a,使电容器5、7放电。换言之,将马达的三相线圈44a活用为放电阻抗。此外,在放电时,在不使马达44产生旋转转矩的路径上进行放电。

升压转换器电路12、变换器电路13所具备的开关元件sw,被内置于pcu10的pcu控制器16控制。具体而言,pcu控制器16从总管车辆的总管控制器(图示省略)接受马达44的输出目标,生成并供给用于驱动各开关元件sw的pwm信号以实现该输出目标。此外,总管控制器根据节气门开度和/或车速以及主电池3的余量等决定马达44的输出目标。另外,如上所述,pcu控制器16在从安全气囊系统25接收到表示安全气囊进行了工作的信号时,经由马达44使电容器5、7放电。安全气囊系统具备加速度传感器,当车辆的加速度超过预定阈值时,判断为车辆发生了碰撞而使安全气囊工作,并且输出通知安全气囊工作的信号。

pcu10还具备dcdc转换器14。dcdc转换器14是既能够将主电池3的电力降压并向辅机电池21侧供给、又能够将辅机电池21的电力升压并向主电池3侧供给的所谓的双向的dcdc转换器。dcdc转换器14通过控制电路80控制其动作。

如图3所示,dcdc转换器14是具备变压器60的所谓的绝缘型转换器。dcdc转换器14除了变压器60之外,还具备主电池侧电路51、辅机电池侧电路61、控制电路80、辅机侧开关76。主电池侧电路51经由配线30与主配线8的高电位线8a和低电位线8b连接。主电池侧电路51具备:滤波器52、电容器54、开关元件56a、58a以及二极管56b、58b。滤波器52是抑制主配线8侧产生噪声的电容器。

在滤波器52与变压器60之间,配置有电容器54、开关元件56a、58a以及二极管56b、58b。开关元件56a与二极管56b并联连接,开关元件58a与二极管58b并联连接。

主电池侧电路51经由变压器60与辅机电池侧电路61结合。辅机电池侧电路61具备:开关元件62a、64a、二极管62b、64b、整流电路65以及平滑电路70。开关元件62a和二极管62b并联连接,开关元件64a和二极管64b并联连接。在开关元件62a与开关元件64a之间,连接有整流电路65。整流电路65具备线圈66和电容器68。线圈66作为整流电路65的扼流线圈(即电感器)发挥功能。在整流电路65的副配线9侧,配置有平滑电路70。平滑电路70具备线圈72和电容器74。整流电路65以及平滑电路70通过dcdc转换器14对从主配线8朝向副配线9的电力进行整流,使其平滑。在平滑电路70的副配线9侧,配置有辅机侧开关76。辅机侧开关76具备开关元件76a和二极管76b。辅机侧开关76通过切换开关元件76a的接通断开,而切换为能够从辅机电池侧电路61向副配线9供给电力的状态和不能从辅机电池侧电路61向副配线9供给电力的状态。辅机电池侧电路61经由副配线9的高电位线9a和低电位线9b与辅机电池21连接。

开关元件56a、58a、62a、64a、76a受控制电路80控制。具体而言,控制电路80通过向开关元件56a、58a、62a、64a、76a发送信号来对接通断开进行切换。控制电路80对开关元件56a、58a的接通断开进行切换,由此dcdc转换器14将主配线8的电压降压并向副配线9供给。另外,控制电路80对开关元件62a、64a的接通断开进行切换,由此dcdc转换器14将副配线9的电压升压并向主配线8供给。

另外,控制电路80经由辅机侧开关76、副配线9的高电位线9a和低电位线9b与辅机电池21连接。在辅机侧开关76为接通的期间,辅机电池21成为工作电源。控制电路80具有电容器80a,该电容器80a在辅机侧开关76被断开、向控制电路80的电力供给被切断的情况下,在短时间的期间积蓄用于使控制电路80驱动的电力。

dcdc转换器14还具备高压电力侧电路77。高压电力侧电路77经由配线50同升压转换器电路12与电容器7之间的高压配线11的高电位线11a和低电位线11b连接。高压电力侧电路77具备:开关元件76a、二极管76b和线圈75。开关元件76a与二极管76b并联连接。开关元件76a与线圈75串联连接。线圈75通过铁芯与整流电路65的线圈66磁耦合。通过线圈75、铁芯和线圈66,构成变压器,高压电力侧电路77的电压被降压并被供给到辅机电池侧电路61。降压后的电压也被供给到pcu控制器16和控制电路80。

如图2所示,辅机电池21经由副配线9与空调机24、安全气囊系统25、汽车导航装置、车内灯、安全气囊系统、总管控制器等辅机连接。另外,上述的pcu控制器16、dcdc转换器14和控制电路80也经由副配线9和辅机侧开关76从辅机电池21接受电力的供给。

然后,对车辆碰撞时的混合动力车1的处理进行说明。pcu控制器16在车辆发生了碰撞时驱动变换器电路13,通过马达44(三相线圈44a)消耗(即放电)积蓄在电容器5、7中的电力。在放电时,控制变换器电路13,以使得在不使马达44产生旋转转矩的路径上进行放电。因此,pcu控制器16在检测到碰撞后,到电容器5、7的放电结束为止的期间,必须继续生成用于驱动变换器电路13的pwm信号。在通常时,pcu控制器16被从辅机电池21供给电力。但是,副配线9遍布于车辆的车身,有时在碰撞时会中途切断。存在副配线9被切断或者辅机电池21本身破损而来自辅机电池21的电力供给中断的可能性。

对于混合动力车1,当检测到碰撞时,积蓄在电容器5、7中的电力经由dcdc转换器14供给到pcu控制器16,变换器电路13继续工作。

然后,对检测到碰撞时控制电路80所执行的放电处理进行说明。当混合动力车1的系统起动时,辅机侧开关76被接通,从辅机电池21向pcu控制器16、控制电路80等辅机供给电力。另外,控制电路80根据状况,使dcdc转换器14驱动主电池侧电路51和辅机电池侧电路61,在主配线8与副配线9之间将电力相互融通。当混合动力车1的系统起动时,控制电路80监视碰撞。具体而言,控制电路80根据安全气囊系统25所具备的加速度传感器的计测值超过预定阈值这一情况判断为“碰撞”。当安全气囊工作的信号(报告碰撞的信号)被从安全气囊系统25通知给pcu控制器16时,图4的放电处理起动。

对于放电处理,在s12中,控制电路80将辅机侧开关76从接通切换为断开。由此,辅机电池21从dcdc转换器14、pcu控制器16以及控制电路80断开。控制电路80通过搭载于控制电路80的电容器80a进行短期间驱动。然后,在s14中,控制电路80驱动高压电力侧电路77。具体而言,控制电路80控制开关元件76a的接通断开的切换。此时,在主电池侧电路51被驱动的情况下,在停止主电池侧电路51后,驱动高压电力侧电路77。其结果是,积蓄在电容器5、7中的电力通过线圈75和线圈66的变压器被降压,并供给到辅机电池侧电路61。由此,电容器5、7的电力被供给到控制电路80以及pcu控制器16。

pcu控制器16在被供给电力时,驱动变换器电路13,通过马达44(三相线圈44a)消耗(即放电)积蓄在电容器5、7中的电力。此外,该处理通过pcu控制器16来执行,因此,未表现在表示控制电路80的工作的图4的流程图中。然后,在s16中,控制电路80对积蓄在电容器7中的电力成为阈值以下这一情况进行监视。具体而言,在检测电容器7的电压值的电压传感器(图示省略)的检测值为预定值(例如60v)以下的情况下,控制电路80判断为积蓄在电容器7中的电力成为阈值以下(s16中的“是”)。在s16为“是”的情况下,控制电路80停止高压电力侧电路77,结束放电处理。

在上述的放电处理中,积蓄在电容器5、7中的电力被供给到控制电路80以及pcu控制器16,dcdc转换器14以及pcu控制器16被驱动。根据该构成,能够不使用用于驱动pcu控制器16的专用的备用电源而从辅机电池21以外向变换器电路13供给电力。

另外,能够通过向双向的dcdc转换器追加高压电力侧电路77来构成dcdc转换器14。

此外,pcu10例如在通常的行驶中dcdc转换器14的主电池侧电路51发生了故障等、发生了无法使用dcdc转换器14在主配线8与副配线9之间进行电力授受的状况的情况下,也可以驱动高压电力侧电路77。由此,也可以将电容器5、7的电力供给到副配线9,使混合动力车1执行退避行驶。

(第2实施例)参照图5,对与第1实施例不同之处进行说明。关于第2实施例的pcu10,dcdc转换器214的构成与第1实施例的dcdc转换器14的构成不同。关于其他的构成,与第1实施例同样,因此省略说明。

dcdc转换器214是3电源间的双向的dcdc转换器,是具备变压器260的绝缘型转换器。dcdc转换器214具备:主电池侧电路251、辅机电池侧电路261、高压电力侧电路277、变压器260、辅机侧开关276以及控制电路280。辅机侧开关276具有与辅机侧开关76同样的构成。

主电池侧电路251经由配线30与主配线8的高电位线8a和低电位线8b连接。主电池侧电路251配置在主配线8与变压器260之间。变压器260也与辅机电池侧电路261连接。dcdc转换器214通过主电池侧电路251、变压器260以及辅机电池侧电路261的组合,既能够进行从主配线8向副配线9降压而供给电力的降压动作,也能够进行从副配线9向主配线8升压而供给电力的升压动作。即,dcdc转换器214是所谓的双向dc-dc转换器,可以称为升降压dc-dc转换器。

主电池侧电路251具备:滤波器244、开关电路246以及防回流开关245。滤波器244具备与滤波器52同样的电容器。防回流开关245通过切换开关元件的接通和断开来切换能够从主电池侧电路251向主配线8供给电力的状态(即开关元件接通的状态)和不能从主电池侧电路251向主配线8供给电力的状态(即开关元件断开的状态)。

开关电路246具备:开关元件246a、246b、246c、246d和与各个开关元件246a、246b、246c、246d并联连接的续流二极管246e、246f、246g、246h。开关元件246a和开关元件246b串联连接,开关元件246c和开关元件246d串联连接。

开关电路246与变压器260连接。变压器260具备3个线圈260a、260b、260c。线圈260a与开关电路246连接。线圈260b与辅机电池侧电路261的开关电路234连接。线圈260c与高压电力侧电路277的开关电路238连接。在变压器260中,既能够从线圈260a向线圈260b降压而供给电力,又能够从线圈260b向线圈260a升压而供给电力。进而,在变压器260中,也能够从线圈260c向线圈260b降压而供给电力。

线圈260a的一端连接于开关元件246a与开关元件246b之间,线圈260a的另一端连接于开关元件246c与开关元件246d之间。

与线圈260b连接的辅机电池侧电路261,与副配线9的高电位线9a和低电位线9b连接。辅机电池侧电路261具备:开关电路238、整流电路265以及平滑电路270。整流电路265具备与整流电路65同样的线圈和电容器。平滑电路270具备与平滑电路70同样的线圈和电容器。

开关电路238具备:开关元件238a、238b、238c、238d和与各个开关元件238a、238b、238c、238d并联连接的续流二极管238e、238f、238g、238h。开关元件238a与开关元件238b串联连接,开关元件238c与开关元件238d串联连接。线圈260b的一端连接于开关元件238a与开关元件238b之间,线圈260b的另一端连接于开关元件238c与开关元件238d之间。

与线圈260c连接的高压电力侧电路277,经由配线50与高压配线11的高电位线11a和低电位线11b连接。高压电力侧电路277具备:滤波器233、开关电路234以及防回流开关231。滤波器233具备用于抑制高压配线11侧产生噪声的电容器。防回流开关231通过切换开关元件的接通与断开来切换能够从高压配线11向高压电力侧电路277供给电力的状态(即开关元件接通的状态)和不能从高压配线11向高压电力侧电路277供给电力的状态(即开关元件断开的状态)。

开关电路234具备:开关元件234a、234b、234c、234d和与各个开关元件234a、234b、234c、234d并联连接的续流二极管234e、234f、234g、234h。开关元件234a和开关元件234b串联连接,开关元件234c和开关元件234d串联连接。线圈260c的一端连接于开关元件234a与开关元件234b之间,线圈260c的另一端连接于开关元件234c与开关元件234d之间。

主电池侧电路251、辅机电池侧电路261以及高压电力侧电路277受控制电路280控制。具体而言,控制电路280控制开关电路246的开关元件246a、246b、246c、246d、开关电路234的开关元件234a、234b、234c、234d及开关电路238的开关元件238a、238b、238c、238d、防回流开关245、231以及辅机侧开关276的动作。

通常时,控制电路280驱动主电池侧电路251和辅机电池侧电路261,执行降压动作或升压动作中的某一个。在执行降压动作时,在主电池侧电路251的开关电路246中,开关元件246a、246b、246c、246d动作,将从主配线8供给的直流电力向交流电力变换。并且,变换后的交流电压在变压器260中被降压,通过辅机电池侧电路261从交流电力向直流电力变换。

一方面,在执行升压动作时,在辅机电池侧电路261的开关电路238中,开关元件238a、238b、238c、238d动作,从由副配线9供给的直流电力向交流电力变换。并且,变换后的交流电压在变压器260中被升压,通过主电池侧电路251从交流电力向直流电力变换。

通常时,控制电路280将高压电力侧电路277的防回流开关231断开,由此,能够防止无意识地向高压配线11供给电力。

另一方面,碰撞时,控制电路280驱动高压电力侧电路277和辅机电池侧电路261,执行降压动作。由此,将电容器5、7的电力经由dcdc转换器214向副配线9侧供给。具体而言,在高压电力侧电路277的开关电路234中,开关元件234a、234b、234c、234d动作,将从高压配线11供给的直流电力向交流电力变换。并且,变换后的交流电压在变压器260中被降压,通过辅机电池侧电路261从交流电力向直流电力变换。

碰撞时,控制电路280将主电池侧电路251的防回流开关245断开,由此,能够防止无意识地向主配线8供给电力。

对检测到碰撞时的dcdc转换器214的控制电路280所执行的放电处理进行说明。当从安全气囊系统向pcu控制器16通知了报告碰撞的信号时,放电处理起动。控制电路280通过与图3的放电处理同样的处理步骤执行放电处理。其结果是,当检测到碰撞时,在dcdc转换器214中,对于蓄积在电容器5、7中的电力,通过高压电力侧电路277、变压器260以及辅机电池侧电路261的降压动作,向控制电路280以及pcu控制器16供给电力。

在该构成中,通过在双向的dcdc转换器中追加高压电力侧电路277,能够构成dcdc转换器214。由此,能够将电容器5、7的电力降压并供给到副配线9。

(第3实施例)参照图6,对与第1实施例不同之处进行说明。关于第3实施例的混合动力车1,dcdc转换器314的构成与第1实施例的dcdc转换器14的构成不同。关于其他的构成,与第1实施例同样,因而省略说明。

dcdc转换器314具备与dcdc转换器14同样的主电池侧电路51、变压器60以及辅机电池侧电路61。一方面,dcdc转换器314不具备与dcdc转换器14的高压电力侧电路77对应的电路。另一方面,在dcdc转换器314中,高压配线11和主电池侧电路51经由配线50连接。dcdc转换器314还具备:配置在高压配线11与主电池侧电路51之间的高压侧开关347、和配置在主配线8与主电池侧电路51之间的主侧开关345。

对于主侧开关345,开关元件和二极管并联连接。主侧开关345受控制电路80控制来切换接通和断开。在主侧开关345为接通的情况下,能够从主配线8向主电池侧电路51供给电力,在主侧开关345为断开的情况下,不能从主配线8向主电池侧电路51供给电力。通常时,主侧开关345维持接通。

对于高压侧开关347,开关元件和二极管并联连接。高压侧开关347受控制电路80控制来切换接通和断开。在高压侧开关347为接通的情况下,能够从高压配线11向主电池侧电路51供给电力,在高压侧开关347为断开的情况下,不能从高压配线11向主电池侧电路51供给电力。在通常时,高压侧开关347维持断开。

参照图7,对检测到碰撞时的dcdc转换器314的控制电路80所执行的放电处理进行说明。与第1实施例同样地,当检测到碰撞时,开始放电处理,首先,在s312中,控制电路80与s12同样地,将辅机侧开关76从接通切换为断开。然后,在s314中,控制电路80将主侧开关345从接通切换为断开。在之后的s316中,控制电路80将高压侧开关347从断开切换为接通。

然后,在s318中,控制电路80判断主电池侧电路51是否正在驱动。具体而言,控制电路80判断是否正在控制主电池侧电路51的开关元件56a、58a的接通断开。并且,在不控制开关元件56a、58a的接通断开的情况下,控制电路80判断为主电池侧电路51没有驱动(s318中的“否”),在s320中,驱动主电池侧电路51,进入s322。

另一方面,在正在控制开关元件56a、58a的接通断开的情况下,控制电路80判断为主电池侧电路51正在驱动(s318中的“是”),跳过s320而进入s322。在s322中,控制电路80执行与第1实施例的s16同样的处理。

根据该构成,通过在双向的dcdc转换器中附加主侧开关345和高压侧开关347,能够构成dcdc转换器314。

以上,对本发明的具体例子进行了详细说明,但这些只不过是例示,并非限定权利要求书。权利要求书所记载的技术中包含对以上所例示的具体例子进行各种变形、变更而得到的实施例。本说明书或附图中说明的技术要素通过单个要素或者各种要素的组合来发挥技术有用性,并非限定于申请时权利要求所记载的组合。另外,本说明书或附图所例示的技术可以同时达成多个目的,达成其中的一个目的这本身就具有技术的有用性。

列举以下说明的实施例的主要特征。此外,以下所记载的技术要素是分别独立的技术要素,能够单个要素或者通过各种要素的组合来发挥技术有用性,不限定于申请时权利要求所记载的组合。

(特征1)在本说明书所公开的电力变换装置中,dcdc转换器也可以具备:整流电路,其与副配线的高电位线和低电位线连接,具有第1线圈和电容器;和第2线圈,其与平滑化电容器连接,与第1线圈磁耦合。dcdc转换器也可以在检测到车辆的碰撞时,使用第1线圈和第2线圈将积蓄在平滑化电容器中的电力降压并供给到控制器。根据该构成,能够使用第1线圈和第2线圈构成变压器。由此,能够将从平滑化电容器供给的电力降压。

(特征2)在本说明书所公开的电力变换装置中,dcdc转换器也可以具备变压器,该变压器包括:与主配线的高电位线和低电位线连接的第3线圈、与副配线的高电位线和低电位线连接的第4线圈、以及与平滑化电容器连接的第5线圈,dcdc转换器在检测到车辆的碰撞时,通过变压器将积蓄在平滑化电容器中的电力降压并供给到控制器。根据该构成,能够将主配线侧的电力与副配线侧的电力的升降压用的变压器和将从平滑化电容器供给的电力降压的变压器进行共用。

(特征3)在本说明书所公开的电力变换装置中,dcdc转换器也可以具备:第1开关,其切换为使主电池与dcdc转换器通电的通电状态和不使主电池与dcdc转换器通电的非通电状态;和第2开关,其切换为使平滑化电容器与dcdc转换器通电的通电状态和不使平滑化电容器与dcdc转换器通电的非通电状态。dcdc转换器也可以在检测到车辆的碰撞时,使第1开关为非通电状态,使第2开关为通电状态,通过第2开关将积蓄在平滑化电容器中的电力供给到控制器。根据该构成,能够通过切换第1开关和第2开关,经由dcdc转换器将从平滑化电容器供给的电力供给到控制器。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1