校正混合动力车辆的发动机离合器传递扭矩的方法和装置与流程

文档序号:14823714发布日期:2018-06-30 07:37阅读:331来源:国知局
校正混合动力车辆的发动机离合器传递扭矩的方法和装置与流程

本申请要求于2016年12月15日向韩国知识产权局提交的申请号为10-2016-0171932的韩国专利申请的优先权,其全部内容通过引用并入本文。

技术领域

本公开涉及一种混合动力车辆(或混合动力电动车辆),更特别地,涉及一种用于校正混合动力车辆的发动机离合器传递扭矩的方法和装置。



背景技术:

环保型车辆包括燃料电池车辆、电动车辆、充电式电动车辆和混合动力车辆,并且通常包括用于生成驱动力的马达。

作为环保型车辆的一个示例的混合动力车辆同时使用内燃机和电池的动力。换言之,混合动力车辆有效地结合并使用内燃机的动力和马达的动力。

混合动力车辆可以包括发动机、马达、用于调整发动机和马达之间的动力的发动机离合器、变速器、差速齿轮设备、电池、起动发动机或通过发动机的输出发电的起动发电机以及车轮。

此外,混合动力车辆可以包括用于控制混合动力车辆的整体运行的混合动力控制单元(HCU)、用于控制发动机的运行的发动机控制单元(ECU)、用于控制马达的运行的马达控制单元(MCU)、用于控制变速器的运行的变速器控制单元(TCU)以及用于控制和管理电池的电池控制单元(BCU)。

电池控制单元可被称为电池管理系统(BMS)。起动发电机可被称为集成的起动器和发电机(ISG)或混合动力起动器和发电机(HSG)。

混合动力车辆可以以诸如电动车辆(EV)模式、混合动力车辆(HEV)模式以及再生制动(RB)模式的驱动模式来驱动,其中电动车辆(EV)模式是仅使用马达的动力的电动车辆模式,混合动力车辆(HEV)模式使用发动机的旋转力作为主要动力并且使用马达的旋转力作为辅助动力,再生制动(RB)模式用于通过马达发电收集在通过车辆的制动或惯性驱动期间的制动和惯性能量以对电池充电。

当从EV模式变化到HEV模式时,可以通过在发动机的速度与马达的速度同步以在发动机和马达之间的动力传输期间保持恒定扭矩之后接合发动机离合器来确保混合动力车辆的行驶性能。

然而,当电池保持在低充电状态(SOC)时,当电池和马达的温度高于基准温度条件时,以及当车辆行驶的道路具有陡峭的斜坡时,需要控制发动机离合器在行驶状况下打滑及接合。此外,需要控制离合器的压力以控制发动机离合器在这种行驶状况下打滑。

发动机离合器的传递扭矩是通过发动机离合器中包括的两个摩擦构件的物理接触而传递的扭矩,其可以根据供给到发动机离合器的液压和摩擦构件的摩擦系数来估算。

控制发动机离合器是确定混合动力车辆的运行中的行驶性能和燃料消耗的重要因素。摩擦系数可以根据提供给操作发动机离合器的电磁阀的电流、电磁阀的老化和摩擦构件的劣化而通过液压偏差来改变。摩擦系数的变化可导致发动机离合器的传递扭矩的偏差。

如上所述,由于发动机离合器中包括的部件的劣化产生偏差,因此难以精确地控制混合动力车辆中的发动机离合器,由此降低行驶性能和燃料经济性。因此,可能需要通过获悉混合动力车辆中的发动机离合器的传递扭矩来校正偏差。

在本背景技术部分中公开的上述信息仅用于增强对本公开的背景的理解,因此其可包含不构成本领域普通技术人员已知的现有技术的信息。



技术实现要素:

本公开提供一种用于校正混合动力车辆的发动机离合器传递扭矩的方法和装置,该方法和装置能够通过基于发动机离合器的温度或发动机的速度与驱动马达的速度之间的速度差获悉和更新在发动机离合器接合的短暂期间(或短暂时间间隔)的传递扭矩来消除检测发动机离合器的状态的液压传感器。

本公开的示例性实施例可以提供一种用于校正混合动力车辆的发动机离合器传递扭矩的方法,其包括:通过控制器,基于发动机和驱动马达的速度差,确定连接发动机与驱动马达或者将发动机与驱动马达分离的发动机离合器的接合控制量;通过控制器,确定与将发动机离合器控制在锁定状态的发动机离合器的接合控制量和发动机离合器的温度相对应的当前传递扭矩;通过控制器,提取与控制发动机离合器处于锁定状态的接合控制量和温度相对应并被包括在映射表中的先前传递扭矩;以及通过控制器,将加权值应用于提取的先前传递扭矩和确定的当前传递扭矩中的每一个以校正包括在映射表中的传递扭矩。

用于校正混合动力车辆的发动机离合器传递扭矩的方法可以进一步包括:通过控制器确定是否满足用于获悉发动机离合器的传递扭矩的条件。当满足该条件时,可以进行确定接合控制量。

应用于提取的先前传递扭矩的加权值可以大于应用于确定的传递扭矩的加权值。

发动机离合器可以包括湿式发动机离合器。

本公开的示例性实施例可以提供用于校正混合动力车辆的发动机离合器传递扭矩的装置,该装置包括:发动机离合器,其被配置为连接发动机与驱动马达或将发动机与驱动马达分离;以及控制器,其被配置为根据发动机和驱动马达的速度差来确定发动机离合器的接合控制量。控制器可以确定与控制发动机离合器处于锁定状态的发动机离合器的接合控制量和发动机离合器的温度相对应的当前传递扭矩,可以提取与控制发动机离合器处于锁定状态的接合控制量和温度相对应并被包括在映射表中的先前传递扭矩,并且可以将加权值应用于提取的先前传送扭矩和确定的当前传送扭矩中的每一个以校正包括在映射表中的传递扭矩。

应用于提取的先前传递扭矩的加权值可以大于应用于确定的传递扭矩的加权值。

根据本公开的示例性实施例的用于校正混合动力车辆的发动机离合器传递扭矩的方法和装置可以在考虑到环境偏差(或温度偏差)或机械偏差(例如摩擦系数偏差)的影响的同时,通过使用发动机离合器的接合控制量获悉传递扭矩来提高发动机离合器传递扭矩获悉的鲁棒性。

本公开的示例性实施例可以通过基于发动机离合器的接合控制量获悉在过渡期间的传递扭矩来解决过渡期间的不稳定性的问题。因此,由于液压传感器可以被去除,所以包括发动机离合器的混合动力车辆的制造成本可以减少。

此外,由于本公开的示例性实施例考虑到温度偏差或摩擦系数偏差的影响来执行连续传递扭矩获悉,因此其可以减少根据混合动力车辆的特性的发动机离合器传递扭矩的偏差或者根据发动机离合器的劣化的传递扭矩的偏差,并且其可以提高发动机离合器的耐久性。

附图说明

将提供附图的简要说明以更充分地理解在本公开的具体实施方式中使用的附图。

图1是用于说明根据图8所示的发动机离合器的接合控制量的传递扭矩的变化的曲线图。

图2是说明根据图8所示的发动机和马达的速度差的发动机离合器的接合控制量的曲线图。

图3是对应于图2所示的根据发动机和马达的速度差的接合控制量的映射表。

图4是说明根据图8所示的发动机离合器的接合控制量和发动机离合器的温度的发动机离合器的传递扭矩的曲线图。

图5是对应于根据图4所示的发动机离合器接合控制量和发动机离合器温度的发动机离合器的传递扭矩的映射表。

图6是说明根据本公开的示例性实施例的基于发动机离合器的温度和发动机离合器接合时发生的发动机离合器的接合控制量校正传递扭矩的方法的一系列图。

图7是说明根据本公开的示例性实施例的用于校正混合动力车辆的发动机离合器传递扭矩的方法的流程图。

图8是示出根据本公开的示例性实施例的应用用于校正发动机离合器传递扭矩的方法的混合动力车辆的框图。

具体实施方式

应理解,本文所用的术语“车辆”或“车辆的”或其他类似术语通常包括机动车辆,例如包括运动型多用途车辆(SUV)、公共汽车、卡车、各种商用车辆的客运汽车,包括各种船和船舶的船只,飞机等,并且包括混合动力车辆、电动车辆、充电式混合动力电动车辆、氢动力车辆和其他替代燃料车辆(例如衍生自石油以外的资源的燃料)。如本文所述,混合动力车辆是具有两种或更多种动力源的车辆,例如汽油和电双动力车辆。

本文使用的术语仅用于描述特定实施例的目的,并不旨在限制本公开。如本文所使用的,单数形式“一”、“一个”和“该”也旨在包括复数形式,除非上下文另有明确指示。将进一步理解,当在本说明书中使用术语“包括”和/或“包括有”时,其指定存在所述特征、整体、步骤、操作、元件和/或组件,但不排除存在或添加一个或多个其它特征、整数、步骤、操作、元件、组件和/或其组合。如本文所使用的,术语“和/或”包括一个或多个相关列出的项目的任何和所有组合。在整个说明书中,除非明确地描述为相反,否则词语“包含”以及诸如“包括”或“包括有”的变型将被理解为意图包含所述元件,而不排除任何其它元件。此外,在本说明书中描述的术语“单元”、“部”、“器”和“模块”是指用于处理至少一个功能和操作的单元,并且可以由硬件组件或软件组件及其组合来实现。

此外,本公开的控制逻辑可以被实施为包含由处理器、控制器等执行的可执行程序指令的计算机可读介质上的非暂时性计算机可读介质。计算机可读介质的示例包括但不限于ROM、RAM、光盘(CD)-ROM、磁带、软盘、闪存驱动器、智能卡和光学数据存储装置。计算机可读介质还可以分布在网络联接的计算机系统中,使得计算机可读介质例如通过远程信息处理服务器或控制器区域网络(CAN)以分布式方式存储和执行。

为了充分理解本公开和通过实施本公开而实现的目标,将参照说明本公开的示例性实施例的附图以及附图中描述的内容。

在下文中,将通过参照附图描述本公开的示例性实施例来详细描述本公开。在描述本公开时,将不会详细描述公知的配置或功能,因为它们可能不必要地模糊本公开的要点。在附图中,相同的附图标记将用于表示相同的组件。

本说明书中使用的术语仅用于描述具体示例性实施例而不限制本公开。单数形式将包括复数形式,除非上下文另有明确指示。将进一步理解,在本说明书中使用的术语“包括”或“具有”指定存在本说明书中提及的特征、数字、步骤、操作、组件或部件或其组合,但不排除存在或添加一个或多个其它特征、数字、步骤、操作、组件、部件或其组合。

在本说明书和所附权利要求书中,当描述元件“联接”到另一元件时,该元件可以“直接联接”到另一元件,或者通过第三元件“电力地或机械地联接”到另一元件。

混合动力车辆的发动机离合器是用于将发动机的动力提供给驱动马达的重要的中间组件。因为发动机离合器通过摩擦传递动力,所以发动机离合器包含许多非线性元件。发动机离合器的摩擦系数非常受发动机离合器的温度和发动机离合器的打滑速度差影响。打滑速度差可以对应于发动机的速度和驱动马达的速度之间的速度差。接合发动机离合器的致动器(例如,静液压离合器致动器)受温度影响。根据温度以及发动机速度与马达速度之间的速度差的摩擦系数的非线性特性以及致动器根据温度的非线性特性是在发动机离合器接合开始时产生的瞬时现象。由于非线性特性,存在许多质量问题,例如发动机离合器的接合冲击和发动机离合器中的过温。为了解决这些问题,湿式发动机离合器使用液压传感器检查在发动机离合器的接合开始时发动机离合器的瞬时传递扭矩。然而,可能发生由于传感器的不稳定性导致的传感器的不精确性以及由于传感器的添加而导致的成本增加。

在相关技术中,通过引用并入本文的公开号为10-2010-0048584的韩国专利使用预先通过试验确定的传递扭矩图来检测多个离合器传递扭矩特性,估计在现在时间点的离合器的传递扭矩并且选择最接近估计扭矩的图的传递扭矩来校正离合器的传递扭矩。相关技术涉及一种通过液压接合的发动机离合器,但是由于相关技术是基于预定的映射的控制,因此易受根据车辆的偏差和环境偏差(或温度偏差)的影响。

在相关技术中,通过引用并入本文的公开号为10-2013-0136779的韩国专利在满足发动机离合器的传递扭矩获悉条件时驱动马达以保持无负载状态中的发动机和马达之间的预定相对速度,使用超过半接合点(kiss point)的控制压力接合发动机离合器,测量发动机离合器的传递扭矩中包括的马达扭矩,并比较测量的扭矩和基本模型值,以使相关技术获悉传递扭矩。相关技术需要变速器处于停放阶段或空挡阶段(neural stage)并且车辆处于停止状态的状况以便获悉传递扭矩。因此,获悉仅在有限的情况下进行,并且有限情况下的获悉值可以被用作代表值。

诸如湿式发动机离合器的发动机离合器的摩擦系数受发动机离合器的温度和发动机的速度与驱动马达的速度之间的速度差影响。发动机的速度与驱动马达的速度之间的速度差可相当于包括在发动机离合器中的两个摩擦构件的速度差。诸如液压致动器的发动机离合器致动器受致动器的特性、发动机离合器的温度或发动机和驱动马达的速度差影响。

发动机离合器的传递扭矩根据摩擦系数和离合器接合力之间的关联性(即,传递扭矩=摩擦系数x离合器接合力)来确定。因此,了解摩擦系数和离合器接合力的影响是重要的。因为传递扭矩在接合开始时具有最大的非线性特性,所以了解在发动机离合器接合开始时发动机离合器的传递扭矩特性是重要的。因此,需要基于影响传递扭矩的温度和速度差来获悉传递扭矩。

图1是用于说明根据图8所示的发动机离合器的接合控制量(或接合力)的传递扭矩的变化的曲线图。

参照图1和图8,随着发动机离合器的接合控制量的增加,发动机离合器325的接合开始,使得发动机离合器通过打滑状态而处于锁定状态。在锁定状态下,发动机310和马达(或驱动马达)330的轴可以作为单个刚体被驱动。

图1所示的参考符号“TP”可以表示接触点并且可以指示发动机离合器325的半接合点。离合器325的打滑状态可表示离合器开始摩擦并且发动机离合器的两端之间的速度差高于预定值的状态。离合器的锁定状态可以表示发动机离合器的两端之间没有速度差并且应用于离合器的输入的扭矩100%被传递到离合器的输出的状态。离合器的打开状态可以表示两端不彼此干涉并且离合器物理上分离的状态。

半接合点可以是扭矩传递的起始点,并且可以是将离合器的状态转换成离合器开始摩擦地接合的打滑状态的流体的压力。半接合点可以表示初始液压,当包括在离合器325中的两个摩擦构件相互接触时通过该初始液压开始传递扭矩。半接合点可以用于将混合动力车辆的驱动模式从电动车辆(EV)模式切换到混合动力电动车辆(HEV)模式的控制。离合器325的打滑状态可以在半接合点开始。

图2是说明根据图8所示的发动机和马达的速度差的发动机离合器的接合控制量的曲线图。图3是对应于图2所示的根据发动机和马达的速度差的接合控制量的映射表。

参照图2和图3,接合控制量的初始值可以通过测试来确定,并且接合控制量可以包括半接合点。根据发动机和马达的速度差的接合控制量可用于确定包括发动机离合器的传递扭矩的映射表。

发动机310和驱动马达330可以使用发动机离合器325接合(或连接),以便获悉半接合点。在通过引用并入本文的注册号为10-1371461的韩国专利中公开了发动机离合器的半接合点获悉的示例。

混合动力车辆可以操作发动机离合器,以便在驱动马达和发动机之间传递动力或分离动力以切换车辆的模式。确定发动机离合器的运行的发动机离合器的操作液压可能会显著地影响混合动力车辆的行驶性能、动力性能和燃料效率,使得需要准确地控制发动机离合器的操作液压。

发动机离合器的操作液压可以通过初始液压和反馈液压来确定,当发动机离合器的摩擦构件(或摩擦材料)的两端彼此接触时,通过该初始液压开始传递扭矩,并且反馈液压用于通过接收发动机和驱动马达的速度的反馈来调整发动机离合器的液压。初始液压点可被称为半接合点。

半接合点可以在使用发动机离合器期间被改变。因此,需要控制发动机离合器的液压,使得发动机离合器可以通过获悉半接合点在适当的点传递扭矩。

图4是说明根据图8所示的发动机离合器的接合控制量和发动机离合器的温度的发动机离合器的传递扭矩的曲线图。图5是对应于根据图4所示的发动机离合器接合控制量和发动机离合器温度的发动机离合器的传递扭矩的映射表。

参照图4、图5和图8,包括发动机离合器的传递扭矩的映射表的初始值可以被设定为通过试验确定根据发动机离合器接合控制量和温度的传递扭矩而获得的值。

包括在映射表中的传递扭矩可以用作根据车辆的驾驶员所需的扭矩控制混合动力车辆300的发动机和驱动马达的扭矩的值。映射表(例如,存储器)可以包含在控制器305内,或者可以设置在控制器外部。

图6是说明根据本发明的一个示例性实施例的基于发动机离合器的温度和发动机离合器接合时发生的发动机离合器的接合控制量校正(或获悉)传递扭矩的方法的一系列图。

参照图6,与图8所示的发动机离合器325的接合期间被使用的温度和发动机离合器接合控制量相对应的新获悉的传递扭矩可以通过加权更新方法部分地反映在校正(或更新)的传递扭矩中。可调整新的传递扭矩在校正的传递扭矩中反映的比率。调整的反映比率可由于传递扭矩的校正而减少不一致(或差异感)。当反复地检测到(或更新)类似于新的传递扭矩的值时,传递扭矩可以被改变为新的传递扭矩。

参照图6,下面将描述图5所示的与发动机离合器的温度t2和发动机离合器的接合控制量k2相对应的传递扭矩a22的更新过程。

在传递扭矩a22中反映的新的传递扭矩值的反映比率(或校正变量)可以是例如20%。

当第一检测到的新的传递扭矩值为b时,传递扭矩的第一更新值c1可以按照如下来计算。

0.8×a22+0.2×b=c1

当第二检测到的新的传递扭矩值为b时,传递扭矩的第二更新值c2可以按照如下来计算。

0.8×c1+0.2×b=0.8×(0.8×a22+0.2×b)+0.2×b=0.64×a22+0.36×b=c2

当第三检测到的新的传递扭矩值为b时,传递扭矩的第三更新值c3可以按照如下来计算。

0.8×c2+0.2×b=0.8×(0.64×a22+0.36×b)+0.2×b=0.512×a22+0.488×b=c3

因此,当发动机离合器325的接合数增加时,新的传递扭矩值的反映比率可变大,使得更新继续。

图7是说明根据本公开的示例性实施例的用于校正混合动力车辆的发动机离合器传递扭矩的方法的流程图。图8是说明根据本公开的示例性实施例的应用用于校正发动机离合器传递扭矩的方法的混合动力车辆的框图。

参照图7和图8,在确定步骤100中,控制器305可以确定是否满足用于获悉发动机离合器325的传递扭矩的条件。下面描述传递扭矩获悉条件。变速器350的变速级可以是驱动级(D级)。电池340的充电状态(SOC)在特定的范围内,电池的充电极限值和放电极限值可以大于或等于特定值。发动机离合器325可包括湿式发动机离合器。发动机离合器325的传递扭矩可以用作用于当混合动力车辆300以HEV模式行驶时所需的发动机离合器的接合的信息(例如,提供给发动机离合器的液压)。液压可以防止发动机离合器的离合器接合冲击。

例如,控制器305可以是由程序或包括微处理器的硬件操作的一个或多个微处理器。该程序可以包括用于执行根据本公开的示例性实施例的校正混合动力车辆的发动机离合器传递扭矩的方法的一系列命令,下面将对其进行描述。

混合动力车辆300包括控制器305、发动机310、混合动力起动发电机(HSG)320、发动机离合器325、可以是电动机的马达330、电池340、变速器350和车轮(或驱动轮)390。用于校正混合动力车辆的发动机离合器传递扭矩的装置可以包括控制器305和发动机离合器325。

作为混合动力电动车辆的混合动力车辆300可以使用发动机310和马达330作为动力源,并且包括存在于发动机310和马达330之间的发动机离合器325,使得混合动力车辆300可以在电动车辆(EV)模式和混合动力电动车辆(HEV)模式中进行操作,其中在电动车辆(EV)模式中,混合动力车辆300在发动机离合器325打开的状态下通过马达330来行驶,而在混合动力电动车辆(HEV)模式中,混合动力车辆300能够通过在发动机离合器325关闭的状态下通过马达330和发动机310来行驶。

混合动力车辆300可以包括其中马达330连接到变速器350的安装变速器的电动装置(TMED)型的动力传动系。混合动力车辆300可以提供诸如EV模式和HEV模式的驱动模式,其中,EV模式是仅使用马达的动力的电动车辆模式,HEV模式根据设置在发动机310和马达330之间的发动机离合器325是否被接合(或连接)使用发动机的旋转力作为主要动力,并且使用马达的旋转力作为辅助动力。特别地,在包括马达330可以直接连接到变速器350的结构的混合动力车辆300中,发动机的每分钟转数(RPM)可以通过HSG 320的驱动来增加,发动机和马达之间的动力输送和动力切断可以通过离合器325的接合和释放来执行,驱动力可以通过可包括变速器350的动力传动系统传递(或转移)到车轮390,并且发动机的扭矩可以当需要发动机扭矩的传动时通过离合器325的接合传递到马达。

控制器305可以包括混合动力控制单元(HCU)、马达控制单元(MCU)、发动机控制单元(ECU)和变速器控制单元(TCU)。

当发动机停止时,HCU可以通过控制HSG 320来控制发动机310的起动。HCU可以是最高控制器,并且可以综合地控制连接到诸如作为车辆网络的控制器区域网络(CAN)的网络的控制器(例如,MCU),并且可以控制混合动力车辆300的整体运行。

MCU可以控制HSG 320和马达330。MCU可以根据从HCU输出的控制信号通过网络来控制驱动马达330的输出扭矩,并且因此可以控制马达以最大效率运行。MCU可以包括被配置为多个功率切换元件的逆变器。包括在逆变器中的功率切换元件可以包括绝缘栅双极晶体管(IGBT)、场效应晶体管(FET)、金属氧化物半导体FET(MOSFET)、晶体管或继电器。逆变器将从电池340供给的直流(DC)电压转换为三相交流(AC)电压以驱动驱动马达330。MCU可以设置在电池340和马达330之间。

ECU可以控制发动机310的扭矩。ECU可以根据从HCU输出的控制信号通过网络来控制发动机310的工作点(或驱动点),并且可以控制发动机以输出最佳扭矩。TCU可以控制变速器350的运行。

发动机310可以是柴油发动机、汽油发动机、液化天然气(LNG)发动机或液化石油气(LPG)发动机,并且可以根据从ECU输出的控制信号在工作点输出扭矩。在HEV模式下,扭矩可以与驱动马达330的驱动力相结合。

发动机310可以经由发动机离合器325连接到马达330以产生传递到变速器350的动力。

HSG 320可以根据从MCU输出的控制信号作为马达运行来起动发动机310,并且可以在发动机310的起动被保持的状态下作为发电机运行以通过逆变器向电池340提供产生的电力。HSG 320可以通过皮带连接到发动机310。作为用曲柄起动发动机的马达的HSG 320可以直接连接到发动机。

发动机离合器325可以设置(或安装)在发动机310和驱动马达330之间,并且可以被操作以切换发动机310和马达330之间的动力传递。发动机离合器325根据HEV模式和EV模式的切换可连接或截断发动机和马达之间的动力。发动机离合器325的运行可以由控制器305控制。

发动机离合器325可以包括干式发动机离合器。

马达330可以由从MCU输出的三相AC电压来操作以产生扭矩。马达330可以在惯性驱动或再生制动期间作为发电机操作以向电池340提供电压(或再生能量)。

电池340可以包括多个单元电池。用于向其向车轮390或HSG 320提供驱动动力的马达330提供驱动电压(例如350-450V DC)的高电压可以存储在电池340中。

变速器350可以包括诸如自动变速器或双离合器变速器(DCT)的多级变速器或无级变速器(CVT),并且可以基于TCU的控制通过使用液压来转换到期望的挡位来操作接合元件和脱离元件。变速器350可以将发动机310和/或马达330的驱动力传递到车轮390,并且可以截断马达330(或发动机310)和车轮390之间的动力传递。

根据确定步骤105,当满足传递扭矩获悉条件时,控制器305可以基于发动机310和驱动马达330的速度差来确定发动机离合器325的接合控制量。发动机离合器325的接合控制量可以包括半接合点。控制器305可以通过使用发动机离合器结合发动机与驱动马达来获悉(或检测)半接合点。

根据操作步骤110,控制器305操作通过使用接合控制量驱动发动机离合器325的致动器(例如,静液压离合器致动器)以控制发动机离合器325接合。

根据确定步骤120,控制器305可以确定与控制发动机离合器325处于锁定状态的发动机离合器的接合控制量和发动机离合器的当前温度相对应的当前传递扭矩。当在发动机离合器325接合之后发动机的速度和马达的速度同步时,控制器305可以确定发动机速度和马达速度同步的时间为发动机离合器的传递扭矩发生的时间。当发动机310的速度和马达330的速度同步时,发动机离合器325的状态可以处于锁定状态。

根据提取步骤125,控制器305可以提取与控制发动机离合器处于锁定状态的接合控制量和当前温度相对应并且被包括在映射表中的先前传递扭矩。控制器305获悉先前传递扭矩的方法可类似于确定当前传递扭矩的方法。

根据更新步骤130,控制器305可以对所提取的先前传递扭矩和所确定的当前传递扭矩中的每一个应用加权值,以更新(或校正)包括在映射表中的传递扭矩(或先前传递扭矩)。应用于所提取的先前传递扭矩的加权值可以大于应用于所确定的传递扭矩的加权值。

在本示例性实施例中使用的组件、“~单元”、块或模块可以在诸如任务、类、子程序、过程、对象、执行线程或在存储器中的预定区域中执行的程序的软件,或诸如现场可编程门阵列(FPGA)或专用集成电路(ASIC)的硬件中实施,并且可以利用软件和硬件的组合来执行。组件“~部分”等可以嵌入到计算机可读存储介质中,并且其某部分可以分散地分布在多个计算机中。

如上所述,在附图和说明书中已经公开了示例性实施例。在本文中,已经使用了特定的术语,但是仅用于描述本公开的目的,不用于限定在所附权利要求中公开的本公开的含义或限制本公开的范围。因此,本领域技术人员将理解,根据本公开,可以做出各种修改和等效示例性实施例。因此,本公开的实际技术保护范围必须由所附权利要求的精神来确定。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1