混合动力车辆的制作方法

文档序号:15401753发布日期:2018-09-11 17:41阅读:163来源:国知局

本公开涉及混合动力车辆,且更具体地涉及在执行巡航控制的同时行驶的混合动力车辆的控制,所述巡航控制是用于将车速维持在目标值处的控制。



背景技术:

已知一种包括发动机、第一和第二旋转电机、行星齿轮机构和电池的混合动力车辆(例如,参见日本未审专利申请公开no.2007-001392(jp2007-001392a))。第二旋转电机被联接到混合动力车辆的驱动轮。行星齿轮机构机械地联接发动机、第一旋转电机和第二旋转电机。电池利用第一旋转电机和第二旋转电机执行充电和放电。



技术实现要素:

例如,在jp2007-001392a中公开的混合动力车辆制动的时候,执行第二旋转电机的再生控制,并且再生电力被充电到电池中。通常,作为可充电到电池中的上限电力的“可充电电力”是根据电池的温度和荷电状态(soc)来确定的。为了合适地保护电池,存在将再生电力限制为等于或小于可充电电力的需求。

在混合动力车辆中,已知一种被构造成执行巡航控制的混合动力车辆,所述巡航控制用于与加速器操作量无关地将车速维持在目标值处。在后文中,在执行巡航控制的同时行驶(巡航行驶)的混合动力车辆中,假定车速很可能升高的行驶状态持续的情形。作为以上所述的情形,例如,典型的是混合动力车辆在相对长的下坡路上行驶的情形。

为了在相对长的下坡路上行驶期间维持车速恒定,存在整个混合动力车辆持续地生成足够的制动扭矩的需求。作为实现以上目的的方法,能够通过第二旋转电机持续地生成再生扭矩。然而,在该情形中,由于第二旋转电机的再生电力(与再生扭矩对应的电力)持续地充电到电池中,所以电池的soc可接近完全充电状态。作为结果,存在可充电电力被限制为比阈值小的值的可能性。当发生这种情况时,在第二旋转电机中,不能保证足够的制动扭矩。

因此,在可充电电力受到限制的情形中,考虑通过第一旋转电机执行发动机的拖动以使发动机的转速上升。以此,根据发动机的转速的发动机制动扭矩作为制动扭矩被施加到驱动轮(细节将在下文中描述)。作为结果,由于能够在确保整个混合动力车辆的制动扭矩的同时以所施加的发动机制动扭矩的量来降低再生扭矩,所以能够进一步降低电池的充电电力。

存在根据电池的状况需要迅速降低可充电电力的情形。在迅速降低可充电电力的同时执行拖动的情形中,存在使发动机转速迅速上升且因此迅速增加发动机制动扭矩的需求。然而,当发生这种情况时,发动机的转速即使在相对长的下坡路上行驶期间上升,且存在赋予使用者不舒适感觉的可能性。

本公开提供了一种混合动力车辆,所述混合动力车辆能够抑制在巡航行驶期间在由于对可充电电力的限制而执行拖动控制的情形中发动机转速迅速上升。

本公开的一个方面涉及一种混合动力车辆,所述混合动力车辆包括:发动机;第一旋转电机;第二旋转电机,所述第二旋转电机被联接到混合动力车辆的驱动轮;行星齿轮机构;蓄电装置;和电子控制单元。行星齿轮机构被构造成机械地联接发动机、第一旋转电机、第二旋转电机。蓄电装置被构造成利用第一旋转电机和第二旋转电机执行充电和放电。电子控制单元被构造成:在要求巡航控制的情形中或在所述巡航控制要求减速扭矩的情形中,执行拖动控制和模拟有级变速控制。巡航控制是用于将车速维持在目标值处的控制。电子控制单元被构造成:作为拖动控制,在蓄电装置的可充电电力被限制到小于阈值的情形中,利用第一旋转电机使发动机的转速上升,使得发动机制动扭矩被施加到驱动轮。电子控制单元被构造成:作为模拟有级变速控制,调整第一旋转电机的输出,使得传动比变成多个规定值中的一个规定值,以在执行拖动控制前使发动机的转速上升,其中所述传动比是利用行星齿轮机构的发动机的转速的减速比。

根据本公开的方面,在巡航控制要求减速扭矩的情形中,首先,执行模拟有级变速控制,且然后当蓄电装置的可充电电力被限制到小于阈值时,执行拖动控制。即,在拖动控制的执行之前执行模拟有级变速控制。虽然详细的机制将在下文中描述,但是传动比是通过模拟有级变速控制改变的,由此能够在拖动控制的执行之前事先使发动机的转速上升。以此,与不执行模拟有级变速控制的情形相比,伴随着拖动控制的执行的发动机的转速的上升量降低。即,能够抑制发动机的转速的迅速上升。

在根据本公开的方面的混合动力车辆中,电子控制单元可被构造成:作为模拟有级变速控制,调整第一旋转电机的输出,使得发动机制动扭矩是小于减速扭矩的值并且传动比变成所述多个规定值中的最大值。

第二旋转电机的再生电力是根据发动机制动扭矩和减速扭矩之间的差值来确定的。传动比越大,发动机制动扭矩就越大。根据本公开的方面,由于第一旋转电机的输出被调整以使得发动机制动扭矩是小于减速扭矩的值并且传动比变成所述多个规定值中的最大值,所以能够生成具有最接近减速扭矩的量值的发动机制动扭矩并且使再生电力的量值最小化。因此,能够更可靠地将蓄电装置的充电电力限制到小于可充电电力。

在根据本公开的方面的混合动力车辆中,电子控制单元可被构造成:作为模拟有级变速控制,在发动机制动扭矩小于减速扭矩的状态持续了预定时段的情形中,调整第一旋转电机的输出,使得传动比增大到所述多个规定值中的更大一级的值。

在巡航控制执行期间即使减速扭矩临时不稳定(例如,迅速地增加和减少)也执行模拟有级变速控制的情形中,传动比不必要地改变,由此存在混合动力车辆中发生振动、噪声等并且使用者的舒适性恶化的可能性。根据本公开的方面,在发动机制动扭矩小于减速扭矩的状态持续了预定时段之前,抑制通过模拟有级变速控制改变传动比。因此,能够进一步减少混合动力车辆的振动、噪声等。

在根据本公开的方面的混合动力车辆中,电子控制单元可被构造成:调整第二旋转电机的再生扭矩,以补偿相对于减速扭矩而言发动机制动扭矩中不足的扭矩。

在发动机制动扭矩大于减速扭矩的情形中,混合动力车辆过度减速,且巡航控制不能继续。根据本公开的方面,发动机制动扭矩小于减速扭矩,且上述不足的扭矩通过第二旋转电机的再生扭矩来补偿。以此,能够在通过抑制混合动力车辆的过度减速来使巡航行驶继续的同时通过利用与再生扭矩对应的再生电力对蓄电装置充电来改进燃料效率。

根据本公开的方面,在巡航行驶的混合动力车辆中,能够在由于可充电电力的限制而执行拖动控制的情形中抑制发动机转速的迅速上升。

附图说明

将在下文中参考附图描述本发明的示例性实施例的特征、优点以及技术和工业意义,其中相同的附图标记表示相同的元件,并且其中:

图1是示意性地示出了根据实施例的混合动力车辆的总体构造的示意图;

图2是图示了实施例中的巡航行驶期间的控制的流程图;

图3a是图示了在巡航行驶期间执行发动机的拖动的情形中的混合动力车辆的行驶状态的共线图;

图3b是图示了在巡航行驶期间执行发动机的拖动的情形中的混合动力车辆的行驶状态的共线图;

图4是图示了比较示例中的巡航行驶期间的控制的时序图;

图5是图示了在巡航行驶期间执行降档的情形中的车辆的行驶状态的共线图;

图6是图示了实施例中的目标换档级的确定方法的示意图;

图7是图示了实施例中的巡航行驶期间的控制的示例的时序图;并且

图8是图示了实施例中的降档控制的流程图。

具体实施方式

在下文中,将参考附图详细描述本公开的实施例。相同的或类似的部分由相同的附图标记表示,且将不重复其描述。

实施例

混合动力车辆的总体构造

图1是示意性地示出了根据实施例的混合动力车辆的总体构造的示意图。参考图1,车辆1包括:电池10、系统主继电器(smr)20、电力控制单元(pcu)30、发动机40、电动发电机(mg)mg1、行星齿轮机构50、电动发电机mg2和电子控制单元(ecu)100。

电池10是可充电的蓄电装置。电池10包括通过镍氢电池或锂离子电池所代表的二次电池。作为电池10的替代,可使用电容器,诸如双电层电容器。在后文中,电池10的充电方向将被描述为电流(电力)的正方向

电池10设置有电池传感器11。电池传感器11包括电压传感器、电流传感器和温度传感器(这些都未示出)。电压传感器检测电池10的电压vb。电流传感器检测输入到电池10和从电池10输出的电流ib。温度传感器检测电池10的温度tb。传感器将检测结果输出到ecu100。ecu100基于来自传感器的信号计算电池10的荷电状态(soc)。

smr20被电连接在电池10和pcu30之间。smr20基于来自ecu100的控制信号在电池10和pcu30之间切换导通和关断。

pcu30包括转换器和逆变器(两者都未示出)。pcu30将存储在电池10中的直流电力升压、将升压的电压转换为交流电压、并将交流电压供给到电动发电机mg1和电动发电机mg2。pcu30将由电动发电机mg1和电动发电机mg2生成的交流电力转换为直流电力并将直流电力供给到电池10。

发动机40是内燃机,诸如汽油发动机或柴油发动机。发动机40基于来自ecu100的控制信号生成用于车辆1的行驶的动力。发动机40生成的动力被输出到行星齿轮机构50。

发动机40设置有发动机转速传感器41。发动机转速传感器41检测发动机40的转速(发动机转速)ne并将检测结果输出到ecu100。

行星齿轮机构50机械地联接发动机40的曲轴71、电动发电机mg1的旋转轴和电动发电机mg2的旋转轴。具体地,行星齿轮机构50包括太阳齿轮s、齿圈r、载架ca和小齿轮p。小齿轮p与太阳齿轮s和齿圈r啮合。载架ca可旋转地支撑小齿轮p并且被联接到发动机40的曲轴71。太阳齿轮s被联接到电动发电机mg1的旋转轴。齿圈r被联接到电动发电机mg2的旋转轴和驱动轮60。

行星齿轮机构50具有上述构造,由此电动发电机mg1的转速(太阳齿轮s的转速)、发动机40的转速(载架ca的转速)和电动发电机mg2的转速(齿圈r的转速=传动轴73的转速)具有通过共线图上的直线连接的关系(即,在两个转速被确定的情形中,剩余的转速也被确定的关系)。在后文中,上述关系被称为“共线图的关系”。将在图3和图5中更详细地描述共线图的关系。

电动发电机mg1和电动发电机mg2中的每个电动发电机均是交流旋转电机,并且例如是三相交流永磁同步电机。在启动发动机40的情形中,电动发电机mg1使用电池10的电力使发动机40的曲轴71旋转。电动发电机mg1可使用发动机40的动力生成电力。通过电动发电机mg1生成的交流电力被pcu30转换为直流电力并且该直流电力被充电到电池10中。通过电动发电机mg1生成的交流电力可被供给到电动发电机mg2。

电动发电机mg2使用来自电池10的电力和由电动发电机mg1生成的电力中的至少一个使行星齿轮机构50的输出轴旋转。在使用者不压下加速器踏板的状态下,电动发电机mg2使用从驱动轮60传递的车辆1的动能执行再生发电。由电动发电机mg2生成的交流电力被pcu30转换为直流电力并且该直流电力被充电到电池10中。

电动发电机mg1设置有旋转变压器81。旋转变压器81检测电动发电机mg1的转速(mg1转速)nm1并将检测结果输出到ecu100。类似地,电动发电机mg2设置有旋转变压器82。旋转变压器82检测电动发电机mg2的转速(mg2转速)nm2并将检测结果输出到ecu100。

传动轴73设置有车速传感器83。车速传感器83检测传动轴73的转速(传动轴转速)np并将检测结果输出到ecu100。ecu100基于传动轴转速np计算车速v。

作为用于车辆1的行驶控制的构造,车辆1进一步设置有加速器踏板84、加速器位置传感器85、巡航控制开关86、换档槽90和换档传感器91。

加速器位置传感器85检测与使用者对加速器踏板84的压下量对应的加速器操作量acc并将检测结果输出到ecu100。

在巡航控制开关86被使用者操作成打开的情形中,巡航控制开关86向ecu100输出指示要求巡航控制的巡航指令cr。巡航控制是用于与加速器操作量acc无关地将车速v维持在目标车速(目标值)vtag处的控制。具体地,在具有可跟随车速的车辆(未示出)处于车辆1前方的情形中,前方车辆的车速能够被设定为目标车速vtag。距前方车辆的车辆间距离能够使用摄像头、雷达等(未示出)来测量。可替代地,由使用者设定的车速能够被设定为目标车速vtag。

换档杆的位置(换档位置sp)根据使用者的换档杆操作而沿着换档槽90移位。在换档槽中形成有例如驻车(p)位置、倒档(r)位置、空档(n)位置、驱动(d)位置和顺序换档(s)位置。此外,在换档槽中,设置有以s位置作为空档位置的加(+)位置和减(-)位置。换档传感器91检测换档位置sp并将检测结果输出到ecu100。

ecu100包括中央处理单元(cpu)101、存储器102和缓存器(未示出)。ecu100基于从传感器接收到的信号以及存储在存储器102中的映射和程序来控制机器,使得车辆1处于期望的行驶状态下。ecu100的部分或整体可被构造成利用诸如电子电路的硬件来执行计算处理。

具体地,ecu100在巡航控制的执行期间基于目标车速vtag与当前车速v之间的差值来计算用于将车速v维持在目标车速vtag处所要求的扭矩。

在下文中,负的要求扭矩被称为“减速扭矩”tr*。与要求扭矩对应的功率被称为“要求功率”,并且与减速扭矩tr*对应的功率(在减速方向上为正的功率)被称为“减速功率”pr*。

ecu100基于由电池传感器11检测到的电池10的电压vb、电流ib和温度tb来设定可充电到电池10中的上限电力(在后文中,简称为“可充电电力”)win。例如,ecu100根据电池10的温度tb将可充电电力win限制为比预定值小的值。当电池10的soc较高时,ecu100将可充电电力win限制为较小的值。然后,ecu100控制由电动发电机mg1、mg2生成的电力,使得电池10的充电电力不超过可充电电力win。

ecu100被构造成控制发动机40和pcu30(电动发电机mg1、mg2),使得行星齿轮机构50作为电动变速器(无极变速器)工作。更具体,ecu100基于共线图的关系(见图3和图5)合适地调整mg1转速nm1(=太阳齿轮s的转速),因此无极地切换“传动比”,所述“传动比”是发动机转速ne(=载架ca的转速)对传动轴转速np(=齿圈r的转速)的比。传动比还能够被称为利用行星齿轮机构50的发动机转速ne的减速比。

在换档杆被操作到d位置的情形中,车辆1被设定为自动换档模式。在自动换档模式中,ecu100与使用者的换档杆操作无关地无极地设定传动比。

在换档杆被操作到s位置的情形中,车辆1被设定为顺序换档模式。顺序换档模式是根据使用者的换档杆操作将传动比设定到多个规定值中的一个规定值的模式。在顺序换档模式中,ecu100使用共线图的关系像有级变速器那样模拟地控制行星齿轮机构50。

在实施例中,作为示例,将描述换档级的数量为10个并且换档级被设定成第一档位级(最低档位级)到第十档位级(最高档位级)中的一个档位级的情形。第一档位级的传动比最大,且第十档位级的传动比最小。用于向高档位侧改变换档级的控制(用于相对地减小传动比的控制)被称为“升档”,且用于向低档位侧改变换档级的控制(用于相对地增大传动比的控制)被称为“降档”。

巡航行驶期间的拖动

在下文中,在执行巡航控制的同时行驶(巡航行驶)的车辆1中,假定车速v很可能增加的行驶状态持续的情形。作为上述情形,例如,典型的是车辆1在相对长的下坡路上行驶的情形。

图2是图示了实施例中的巡航行驶期间的控制的流程图。图2中示出的流程图和下文中描述的图8中示出的流程图从主例程被调出且在每次预定的条件达成时或者在每次经过预定的计算周期时被执行。流程图的每个步骤(下文中以“s”指示)基本上通过由ecu100处理的软件实现,但是可通过在ecu100中制备的硬件(电子电路)实现。

参考图1和图2,在s10中,ecu100确定车辆1是否正在巡航行驶。能够基于来自巡航控制开关86的巡航指令cr来做出车辆1是否正在巡航行驶的确定。

在车辆1正在巡航行驶(s10中为是)的情形中,ecu100计算车辆1的要求扭矩(s20),并且确定要求扭矩是否为负(s30)。已经参考图1描述了要求扭矩的计算方法,且因此将不重复描述。

在车辆1不是正在巡航行驶(s10中为否)的情形中,ecu100跳过随后的处理并将处理返回到主例程。在要求扭矩为负的情形中,即,在生成减速扭矩tr*的情形中(s30中为是),ecu100将处理前进到s40。

为了在相对长的下坡路上行驶期间将车速v维持恒定,存在整个车辆1持续地生成足够的制动扭矩的需求。作为实现该目的方法,能够通过电动发电机mg2持续地生成再生扭矩。然而,在该情形中,由于电动发电机mg2的再生电力(与再生扭矩对应的功率)持续地充电到电池10中,所以电池10的soc可能接近完全充电状态。作为结果,存在可充电电力win被限制为比阈值wth小的值的可能性。

在s40中,ecu100确定可充电电力win是否等于或小于阈值wth。在可充电电力win等于或小于阈值wth的情形中(s40中为是),ecu100将处理前进到s50,并且执行通过电动发电机mg1的发动机40的拖动。

图3a和图3b是图示了在巡航行驶期间执行发动机40的拖动的情形中(在执行图2的s50的处理的情形中)车辆1的行驶状态的共线图。由于巡航控制正在执行,所以车速v被维持在恒定的速度vc。

在拖动开始前,如在图3a中所示,发动机40处于自维持运行中,在正方向上的发动机扭矩te和在负方向上的摩擦扭矩tf相互平衡。从电动发电机mg2输出再生扭矩tm2,并且再生电力被充电到电池10中。发动机40可停止。

在可充电电力win变成等于或小于阈值wth的情形中,执行拖动。当执行拖动时,如在图3b中所示,从电动发电机mg1输出在正方向上的扭矩tm1,由此发动机转速ne上升。与此同时,摩擦扭矩tf被定义为反作用力,由此来自电动发电机mg1的扭矩tm1作为制动扭矩(所谓的发动机制动)被施加到齿圈r(换言之,被施加到驱动轮60)。因此,上述扭矩在下文中被称为“发动机制动扭矩”teb。

在用于将车速v维持在恒定速度vc处的要求扭矩(减速扭矩tr*)、再生扭矩tm2和发动机制动扭矩teb之间建立如下描述的表达式(1)。

tr*=tm2+teb...(1)

根据表达式(1),由于能够在保证整个车辆1的减速扭矩tr*的同时以由于拖动而导致的发动机制动扭矩teb的增加量来降低再生扭矩tm2,所以能够进一步降低电池10的充电电力。另外,在拖动期间,电动发电机mg1向前旋转并且输出作为正扭矩的扭矩tm1。为此原因,电动发电机mg1消耗电力,由此电池10的充电电力也降低。因此,即使在可充电电力win由于在电池10的soc上升等而被限制为等于或小于阈值wth的情形中,也能够在将电池10的充电电力维持在等于或小于限制之后的可充电电力win的值处。

比较示例中的巡航行驶的时序图

在下文中,为了阐明实施例中的巡航行驶的特征,首先将描述不执行下文所述的“降档控制”的比较示例。根据比较示例的车辆的构造与根据实施例的车辆1的构造基本相同,且因此将不重复其描述。

在下文中,与随摩擦扭矩tf的升高而生成的发动机制动扭矩teb(见图4)对应的功率被称为“摩擦功率pf”。作为电动发电机mg2的再生电力被充电到电池10中的电力和被电动发电机mg1消耗以用于拖动控制的电力被全面地称为“电池功率pb”。

图4是图示了在比较示例中的巡航行驶期间的控制的时序图。在图4中,水平轴线指示经过的时间。竖直轴线从上到下指示车速v、可充电电力win、减速功率pr*和发动机转速ne。

在下文中描述的图4的示例和图7的示例中,车速v在vc处恒定不变。d位置被选择为换档位置sp,并且车辆1处于自动换档模式。减速功率pr*能够随时间改变;然而,在此,为了容易理解,减速功率pr*恒定在pc值处的情形将作为示例被描述。

参考图1和图4,在时间t90处,可充电电力win尚未被限制,且是最大值wmx。为此原因,电动发电机mg2的全部再生电力能够被充电到电池10中。此时,发动机40处于低转速(例如,大约1000rpm)下的自维持运行或停止(图4示出了自维持运行的示例)。

在时间t91处,例如,由于电池10的soc变成大于预定范围,所以可充电电力win开始降低。作为结果,在时间t92处,可充电电力win达到阈值wth。阈值wth是从减速功率pr*合适地计算的。

因此,在时间t92处,开始通过电动发电机mg1对发动机40进行拖动。以此,与用于使发动机转速ne上升的惯性功率pi(与转动惯量对应的功率)一起生成了摩擦功率pf。减速功率pr*的一部分作为惯性功率pi和摩擦功率pf被消耗,由此能够补偿可充电电力win的降低量。

然后,在可充电电力win进一步降低的情形中,存在以所述降低量来增加摩擦功率pf的需求。因此,ecu100增加电动发电机mg1的扭矩tm1,并且相应地进一步增加摩擦功率pf。惯性功率pi随着时间的经过而降低。

在时间t93后,可充电电力win达到零,电池10的充电电力变成零。即,减速功率pr*的pc值被摩擦功率pf满足,且再生电力变成零。

如在图4中所示,在控制的时间t92和时间t93的时段中,可充电电力win应根据电池10的状况迅速降低。在迅速降低可充电电力win的同时执行拖动的情形中,存在使发动机转速ne迅速上升并相应地迅速增加发动机制动扭矩teb的需求。然而,在发生这种情况时,发动机的转速即使在相对长的下坡路上行驶期间也上升,且存在使用者感受到不舒适感(发动机转速的升高量以δne指示)的可能性。

因此,在实施例中,采用了在执行拖动控制(开始由于可充电电力win的限制而进行的拖动)之前执行降档控制的构造。如将在下文中详细描述,在执行拖动控制之前通过降档控制事先使发动机转速ne上升,由此能够抑制发动机转速ne的迅速上升。

图5是图示了在巡航行驶期间执行降档的情形中的车辆1的行驶状态的共线图。车辆1被设定为自动换档模式。为此原因,通常,ecu100使行星齿轮机构50作为无极变速器工作,无极变速器能够无极地切换传动比。然而,在该实施例中,在执行巡航控制并且生成减速扭矩tr*的情形中,ecu100像有级变速器那样模拟地控制行星齿轮机构50,以设定换档级。

基本上根据车速v来确定换档级;然而,在该实施例中,将示意地描述当前换档级是第十档位级并且以逐步的方式从第十档位级向第五档位级执行降档的情形。在图5中,与第十档位级到第五档位级对应的直线由第十至第五指示。

在每个换档级中,如在上述表达式(1)中所描述,ecu100使电动发电机mg1输出扭矩tm1,使得根据减速扭矩tr*(负的要求扭矩)将再生扭矩tm2和发动机制动扭矩施加到驱动轮60。此时,每次换档级从第十档位级向第五档位级降低一级时(每次传动比升高一级时),发动机转速ne上升。

以此方式,降档控制是用于通过调整电动发电机mg1的扭矩tm1来使发动机转速ne上升,使得传动比变成多个规定值中的一个规定值的控制。降档控制对应于根据本公开的方面的“模拟有级变速控制”。

换档级的确定方法

虽然已描述了从第十档位级向第五档位级执行降档的情形,但是将在下文中描述目标换档级(例如,第五档位级)的确定方法。

图6是图示了实施例中的目标换档级的确定方法的示意图。在图6中,水平轴线指示车速v,且竖直轴线指示减速扭矩(制动方向上的扭矩)tr*。图6示出了在行星齿轮机构50像有级变速器那样被控制的情形中在每个换档级中的发动机制动扭矩teb与车速v之间的关系。这样的关系事先通过实验获得,并且作为映射mp存储在ecu100的存储器102中。

如在图6中所示的示例中,在车速v通过巡航控制被维持在恒定车速vc处的情形中,在第四档位级被选择为换档级时,发动机制动扭矩teb变成大于减速扭矩tr*(|teb(4,vc)|>|tr*(vc)|)。在该情形中,存在车速v被过度降低的可能性。因此,车速v能够被维持在vc处的换档级是第十档位级至第五档位级中的一个档位级,该一个档位级是发动机扭矩teb变成等于或小于减速扭矩tr*的换档级(关系|teb(n,vc)|≤|tr*(vc)|成立的换档级)。

在实施例中,发动机制动扭矩teb等于或小于减速扭矩tr*,并且选择最低档位侧的换档级(即,最大传动比)。因此,在图6中所示的示例中,第五档位级被选择为目标换档级。然后,重复执行降档,直至换档级从第十档位级达到第五档位级为止。例如,在形成第五档位级的拖动控制的执行期间,与发动机制动扭矩teb(5,vc)和减速扭矩tr*(vc)之间的差值δt对应的功率,即,与减速扭矩tr*(tv)的超过发动机制动扭矩teb(5,vc)的扭矩对应的功率被充电到电池10中或通过由电动发电机mg1进行的拖动被消耗。

实施例中的巡航行驶的时序图

图7是图示了实施例中的巡航行驶期间的控制的示例的时序图。在图7中,水平轴线指示经过的时间。竖直轴线从上到下指示车速v、可充电电力win、减速功率pr*、行星齿轮机构50的模拟换档级和发动机转速ne。

参考图1至图7,在时间t0处,类似于比较示例(见图4),可充电电力win处于最大值wmx。为此原因,与减速功率pr*的pc值对应的再生电力能够被充电到电池10中。此时,发动机40处于低转速下的自维持运行中或停止(图7示出了自维持运行的示例)。换档级被设定为第十档位级。

在实施例中,如参考图5和图6描述,在自动换档模式中的巡航行驶期间生成减速扭矩tr*的情形中(在要求扭矩变成负值的情形中),重复降档,由此以逐步的方式使发动机转速ne上升。

更具体地,在时间t1处,执行从第十档位级向第九档位级的降档。发动机转速ne随着上述降档而上升。

在时间t2处,执行从第九档位级向第八档位级的降档。类似地,在时间t3处,执行从第八档位级向第七档位级的降档,在时间t5处,执行从第七档位级向第六档位级的降档,在时间t6处,执行从第六档位级向第五档位级的降档。在实施例中,如参考图6所描述,在执行向第四档位级的降档之后执行拖动控制的情形中,摩擦功率pf超过减速功率pr*的pc值。为此原因,换档级的改变结束到第五档位级,且换档级被维持在第五档位级。

在时间t4处,为了抑制电池10的soc的升高,开始降低可充电电力win。可充电电力win持续降低,并且在时间t7处达到阈值wth。当发生该情况时,ecu100通过拖动而使发动机转速ne进一步上升并且在将换档级维持在第五档位级处的同时增加摩擦功率pf。然而,在时间t7处,发动机转速ne与执行降档控制之前的状态(时间t1之前的状态)相比是高的。因此,与比较示例相比(见图5),发动机转速ne的上升量δne是小的。

以此方式,根据实施例,在由于可充电电力win的限制而抑制电池10的充电之前,执行降档控制,由此以逐步的方式事先使发动机转速ne上升。以此,即使在电池10的充电电力受到可充电电力win的抑制的情形中,仍然能够通过拖动控制相对地降低发动机转速ne的上升量δne。因此,能够抑制由于发动机转速ne即使在相对长的下坡路上行驶期间也上升所导致的使用者的不舒适感。

降档控制流程

图8是图示了实施例中的降档控制的流程图。在图8中,在以车速v行驶期间的当前换档级被描述为n(n是等于或大于1且等于或小于10的整数)。参考图1和图8,s110至s130的处理与在图4中所示的s10至s30的处理相同,且因此将不重复其详细描述。

在车辆1正在巡航行驶且生成减速扭矩tr*的情形中(在s110中为是且在s130中为是),ecu100根据当前车速v和减速扭矩tr*参考在图6中所示的映射mp计算第n档位级中的发动机制动扭矩teb(n,v)并且确定目标换档级。

在s150中,ecu100确定发动机制动扭矩teb(n,v)大于减速扭矩tr*的状态是否持续了预定的基准时段δt1(例如,数百毫秒)。

在发动机制动扭矩teb(n,v)大于减速扭矩tr*的状态持续了基准时段δt1的情形中(s150中为是),通过电动发电机mg2的扭矩tm2调整发动机制动扭矩teb(n,v)的超过减速扭矩tr*的扭矩。

相反,在发动机制动扭矩teb(n,v)大于减速扭矩tr*的状态没有持续基准时段δt1的情形中(s150中为否),ecu100将处理前进到s160。

在s160中,ecu100确定发动机制动扭矩teb(n,v)等于或小于减速扭矩tr*的状态是否持续了预定的基准时段δt2。在发动机制动扭矩teb(n,v)等于或小于减速扭矩tr*的状态没有持续基准时段δt2的情形中(s160中为否),ecu100跳过随后的处理并将处理返回到主例程。

在发动机制动扭矩teb(n,v)等于或小于减速扭矩tr*的状态持续了基准时段δt2的情形中(s160中为是),ecu100停在当前换档级(第n档位级)预定时间δt(例如,大约两秒)(s170),且然后确定当前换档级是否达到目标换档级(s180)。

在当前换档级没有达到目标换档级的情形中(s180中为否),ecu100执行降档一级(s190)。在当前换档级达到目标换档级的情形中(s180中为是),ecu100将处理返回到主例程且不执行降档。

如上所述,根据实施例,在巡航行驶期间生成减速扭矩(负的要求扭矩)tr*的情形中,在执行拖动控制之前执行降档控制。通过上述降档控制,行星齿轮机构50的模拟换档级向低档位侧改变一级,且相应地,使发动机转速ne上升(见图5或图7)。因此,与在执行拖动控制之前不执行降档控制的情形相比,通过拖动控制导致的发动机转速ne的上升量δt变小。即,能够抑制发动机转速ne的迅速上升。作为结果,能够抑制由于发动机转速ne即使在相对长的下坡路上行驶期间也上升而导致的使用者的不舒适感。

在s160中,在发动机制动扭矩teb(n,v)等于或小于减速扭矩tr*的状态没有持续基准时段δt2的情形中(s160中为否),即,在发动机制动扭矩teb(n)变成大于减速扭矩tr*的时刻在基准时段δt2经过之前即使发生了一次的情形中,存在减速扭矩tr*暂时不稳定或者发生用于计算要求扭矩的多种信号的振荡的可能性。然而,在执行降档的情形中,不必要地改变传动比,因此在车辆1中发生的振动、噪声等并且使用者的舒适性恶化。根据实施例,降档被抑制,直至发动机制动扭矩teb等于或小于减速扭矩tr*的状态持续了基准时段δt2为止。以此,能够进一步降低车辆1的振动、噪声等。这同样适用于s150的处理。s150中的基准时段δt1和s160中的基准时段δt2可相互相同或不同。

在实施例中,虽然已经描述了以一级来执行降档的构造作为示例,但是,例如,降档可通过两级来执行。然而,在单次降档改变的级数过大的情形中(例如,三个级或更多级),发动机转速ne随着降档迅速上升。降档被限制为以一级来执行,以此能够使发动机转速ne逐渐上升。

在此所公开的实施例仅被认为是示意性的,且在所有方面上不是限制性的。本公开的范围由权利要求的范围限定,而非由实施例的以上描述限定,并且旨在包括与权利要求的范围相当的范围和意义内的任何改型。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1