用于起动混动牵引架构中的内燃机的起动方法与流程

文档序号:30391357发布日期:2022-06-11 21:21阅读:111来源:国知局
用于起动混动牵引架构中的内燃机的起动方法与流程

1.本发明要求于2019年10月31日提交的法国申请1912279的优先权,该申请的内容(文本、附图和权利要求)在此并入本文引作参考。
2.本发明涉及一种用于操控尤其是用于机动车辆的混动牵引架构中的热力发动机的起动的操控方法。


背景技术:

3.众所周知,机动车辆的牵引链可包括安装在机动车辆的车桥(尤其是前车桥)上的热力发动机和牵引电动机。
4.所述牵引电动机借助于第一离合器与所述热力发动机联结。所述牵引电动机借助于第二离合器与变速箱联结。所述变速箱的输出轴借助于差速器与所述车辆的车轮接合。
5.为了起动热力发动机,需要向曲轴施加一定等级的转矩。在混动牵引链所具有的电气架构具有例如大约48伏特标称的低运行电压的情况下,电动机专用于车辆的运动性。通常在尤其是12伏特的低压电气网络上运行的起动器(所谓经加强起动器)经使用用于在行驶过程中起动和重新起动所述热力发动机。
6.已观察到,为了在电动行驶模式向热力行驶模式之间过渡的过渡期间确保良好的性能,特别是对于在电动行驶模式下车轮的微弱功率来说,需要具有非常短的起动时间(大约500ms)。然而,本身独自确保向所述曲轴提供转矩的该经加强起动器不能够满足该重新起动时间。


技术实现要素:

7.本发明旨在通过提供一种用于操控属于混动牵引链的热力发动机的起动的操控方法来有效地克服该缺点,所述混动牵引链安装在配备有车轮的机动车辆的车桥上,所述牵引链还包括牵引电动机、具有初级轴和次级轴的变速箱以及与所述热力发动机的起动齿环接合的起动器,所述牵引电动机借助于第一离合器与所述热力发动机联结并且借助于第二离合器与所述变速箱的初级轴联结,
8.当所述机动车辆处在由所述牵引电动机确保的电动行驶阶段中且所述热力发动机的起动被请求时,在所述电动行驶阶段中所述第一离合器断开而所述第二离合器闭合,所述方法包括选择步骤,所述选择步骤用于根据所述变速箱的初级轴的转速从所述起动器和所述牵引电动机之中选择一个或两个构件来确保所述热力发动机的起动。
9.本发明在必要时能够分摊(mutualiser)经加强起动器的动作和牵引电动机的动作,以确保热力发动机的起动。由此,本发明能够增加给曲轴提供的转矩等级并且减少热力发动机的重新起动时间。本发明还能够最大地限制牵引电动机的功率,同时可使用已存在于任何装备有热力发动机的机动车辆上的经加强起动器。
10.根据实施例,在所述变速箱的初级轴的转速小于阈值的情况下,所述牵引电动机通过独自向所述热力发动机的曲轴提供转矩来独自确保所述热力发动机的起动。
11.根据实施例,在所述变速箱的初级轴的转速大于阈值的情况下,所述牵引电动机和所述起动器通过共同向所述热力发动机的曲轴提供转矩来共同确保所述热力发动机的起动。
12.根据实施例,所述方法包括用于控制使所述牵引电动机与所述热力发动机机械联接的离合器的部分闭合的控制步骤以及用于激活所述起动器的激活步骤,以使得所述起动器和所述牵引电动机同时向所述热力发动机提供转矩来确保所述热力发动机的起动。
13.根据实施例,在操控所述起动器的激活之前,离合器置于滑动状态并且仅传输几牛顿米,以便补偿在所述离合器的完全打开位置与所述离合器的结合点(point de l
é
chage)之间的死行程。
14.根据实施例,用于控制所述离合器的部分闭合的控制步骤和用于激活所述起动器的激活步骤彼此并行地操控。
15.根据实施例,用于控制所述离合器的部分闭合的控制步骤和用于激活所述起动器的激活步骤相对于彼此错位地操控。
16.根据实施例,所述阈值对应于第一挡的减挡转速(r
é
gime de r
é
trogradage de premi
è
re)。
17.根据实施例,所述牵引链没有配备经由配件立面(accessoires)与所述热力发动机联结的可逆旋转电机。
18.本发明还旨在提供一种计算机,所述计算机包括用于获取和通过存储器中所存储的软件指令进行处理的获取和处理部件以及实施如上文限定的用于操控热力发动机的起动的操控方法的步骤所需的控制部件。
附图说明
19.通过阅读本发明的详细说明和附图,将更好地理解本发明,在所述附图中:
[0020]-图1是用于机动车辆的牵引链的示意性视图,所述牵引链实施根据本发明的用于操控热力发动机的起动的操控方法;
[0021]-图2是示出了电气功率和机械功率在图1的牵引链的不同组成部件之间的分布的示意性视图;
[0022]-图3是牵引电动机的最大化可用转矩和热力发动机的起动阈值随变速箱的初级轴的转速的演变的曲线图;
[0023]-图4是当变速箱的初级轴的转速小于第一挡的减挡阈值时经实施用于从电动行驶模式向热力行驶模式过渡的策略的时间性线图;
[0024]-图5是当变速箱的初级轴的转速大于第一挡的减挡阈值时经实施用于从电动行驶模式向热力行驶模式过渡的策略的时间性线图。
具体实施方式
[0025]
图1示出了用于机动车辆的牵引链10,该牵引链包括与惯性飞轮系统12相关联的热力发动机11以及牵引电动机13,所述热力发动机和所述牵引电动机安装在机动车辆的车桥(尤其是前车桥)上。热力发动机11例如是三气缸式热力发动机。在变型中,热力发动机11当然可包括不同数量的气缸。
[0026]
牵引电动机13借助于第一离合器k0与热力发动机11联结。牵引电动机13借助于第二离合器k1与变速箱15联结。变速箱15包括初级轴14以及借助于差速器(未示出)与车轮17连接的次级轴16。
[0027]
在电气运行模式中,离合器k0断开而离合器k1闭合。在热力运行模式中,这两个离合器k0和k1都闭合。
[0028]
在配件立面处,空调压缩机20可借助于运动传输装置21与热力发动机11联结。该装置21可例如包括分别与由曲轴和压缩机20的轴承载的滑轮配合的链条或皮带。
[0029]
起动器22设置用于热力发动机11的冷起动以及所述热力发动机在根据通行条件执行断开之后的重新起动。为此,起动器22包括与热力发动机11的齿环啮合的驱动小齿轮。
[0030]
牵引链10没有配备经由配件立面与热力发动机11联结的可逆旋转电机。
[0031]
图2示出了电气功率(实心箭头)和机械功率(虚线箭头)在牵引链10的不同组成部件之间的分布的示例。
[0032]
在所示的示例中,牵引电动机13由牵引电池25供电。牵引电动机13可具有48伏特的供电电压。
[0033]
起动器22由电池28供电,该电池具有12伏特的运行电压。12伏特的电气网络(附图标记为26)借助于直流/直流转换器27与48伏特的电气网络联接。
[0034]
图1上所示的计算机23能够根据变速箱15的初级轴的转速从起动器22和牵引电动机13之中选择一个或两个构件来确保热力发动机11的起动。计算机23能够操控起动器22、牵引电动机13以及离合器k0和k1。更一般地,计算机23包括用于获取和通过存储器中所存储的软件指令进行处理的获取和处理部件以及实施根据本发明的方法的步骤所需的控制部件。
[0035]
图3示出了牵引电动机13的最大化可用转矩cmax_mt和热力发动机的起动阈值s_mth随变速箱15的初级轴的转速w_ap的演变。所述热力发动机的起动阈值s_mth经确定用于优化所述机动车辆的燃料消耗。所述热力发动机的起动阈值s_mth可根据热力发动机11的类型变化。
[0036]
注意到,经提供至热力发动机11(来确保所述热力发动机的起动)的转矩c需在70n.m与80n.m之间。
[0037]
可观察到,当初级轴的转速w_ap小于阈值s_ret时,电动机13的转矩储备在区域z1中足以起动热力发动机11,所述阈值对应于第一挡位的减挡阈值。
[0038]
相反地,由于电动机13的可用转矩随着电动机转速增加而下降,当初级轴的转速w_ap大于第一挡位的减挡阈值s_ret时,电动机13的转矩储备在区域z2中不足以起动热力发动机11。
[0039]
因此,设置了两个重新起动模式。根据当所述初级轴的转速w_ap小于所述减挡阈值s_ret时(参见区域z1)实施的第一起动模式,牵引电动机13独自确保所述车辆的运动性和为曲轴提供转矩以实施热力发动机11的重新起动。
[0040]
根据在所述初级轴的转速w_ap大于所述减挡阈值s_ret时(参见区域z2)实施的第二起动模式,牵引电动机13和起动器22通过共同向热力发动机11的曲轴提供转矩来共同确保热力发动机11的起动。起动器22由此提供在运行区域z2中的转矩,在该运行区域中,观察到牵引电动机13的转矩下降。
[0041]
对于机动车辆,减挡阈值s_ret通常为大约1100转/分钟。“大约”理解成围绕目标值的加减10%的变化。注意到,较高挡位的减挡阈值s_ret处在至少大于或等于第一挡位转速的转速处。
[0042]
下文参考图4描述了当变速箱15的初级轴的转速w_ap小于第一挡的减挡阈值s_ret时在阶段ph_dem上实施从电动行驶模式向热力行驶模式过渡所需的策略。上部的曲线图示出了牵引链10的不同组成部件的转矩c的演变。下部的曲线图示出了电动机13和热力发动机11的转速w的演变。
[0043]
更确切地,在时刻t0之前,热力发动机11熄灭,而转矩由牵引电动机13施加到车轮17。离合器k1闭合。离合器k0断开。
[0044]
在时刻t0与t1之间,由离合器k1传输的转矩减少。
[0045]
在时刻t1与t2之间,牵引电动机13的转速增加,而观察到转矩的阶跃。
[0046]
在时刻t2与t3之间,离合器k0开始闭合直到达到自身的滑动点,以向热力发动机11传输转矩。
[0047]
在时刻t3与t4之间,热力发动机11被驱动旋转,以使得自身的转速增加。
[0048]
在时刻t4上并且当热力发动机11在时刻t5上达到了自身的怠速转速时,燃料注射开始,离合器k0闭合,而由牵引电动机13施加的转矩变为零。热力发动机11从时刻t6起开始传输转矩。
[0049]
所述车辆由此以热力模式运行(热力发动机11向车轮17传输转矩,而电动机不再向车轮17传输转矩)。
[0050]
下文参照图5描述了当变速箱15的初级轴的转速w_ap大于第一挡的减挡阈值s_ret时在阶段ph_dem上实施从电动行驶模式向热力行驶模式过渡所需的策略。上部的曲线图示出了牵引链10的不同组成部件的转矩c的演变。下部的曲线图示出了电动机13和热力发动机11的转速w的演变。该策略旨在获得在起动器22的转矩与电动机13的转矩之间的可能的最佳定相(phasage),同时最大地减少离合器k0中的能量损失。
[0051]
更确切地,在时刻t0之前,热力发动机11熄灭,而转矩由牵引电动机13施加到车轮17。离合器k1闭合。离合器k0断开。
[0052]
在时刻t0与t1之间,由离合器k1传输的转矩减少。
[0053]
在时刻t1与t2之间,牵引电动机13的转速增加,而观察到转矩的阶跃。
[0054]
在时刻t2与t3之间,离合器k0开始闭合,以向热力发动机11传输转矩。
[0055]
在时刻t3与t3'之间,离合器k0是轻微滑动的并且仅传输几牛顿米。这能够获得离合器k0的较大反应性,因为在离合器k0的完全打开位置与所述离合器的结合点之间的死行程得到补偿。由于离合器k0在该时期中仅传输几牛顿米,且不传输电动机13的储备转矩(其对应于在该电动机的运行转矩与该电动机的峰值转矩之间的差值),能量损失减少。
[0056]
在时刻t3'与tinj(其对应于开始向发动机11中注射燃料的时刻)之间,起动器22激活,以使得起动器22和电动机13共同向热力发动机11传输转矩来确保该热力发动机的起动。
[0057]
用于控制离合器k0的部分闭合的控制步骤和用于激活起动器22的激活步骤可并行地或相对于彼此错位地操控。在任何情况下,目的在于趋向于最大化概率地在同一时刻上从两个构件向热力发动机11的曲轴布置最大转矩等级。
[0058]
事实上,延迟可应用在用于控制离合器k0的控制步骤与用于激活起动器22的激活步骤之间。这些延迟表示时间常数和构件在阶跃处的反应时间。认为与起动器22的反应时间有关的时间不确定性为大约50ms(参见窗口f1),这对于良好的性能是可接受的。
[0059]
当热力发动机11在时刻t4上达到了自身的怠速转速时,由牵引电动机13施加的转矩变为零。
[0060]
离合器k0在时刻t5上闭合,并且,热力发动机11从时刻t6起开始传输转矩。
[0061]
所述车辆由此以热力模式运行(热力发动机11向车轮17传输转矩,而电动机不再向车轮17传输转矩)。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1