微毛细管线材涂布模具组件的制作方法

文档序号:18029739发布日期:2019-06-28 22:31阅读:204来源:国知局
微毛细管线材涂布模具组件的制作方法

本发明涉及一种微毛细管线材涂布模具组件,所述模具组件用于生产具有微毛细管结构的电缆护套和电信线缆护套。



背景技术:

电缆和电信线缆由坚固的聚合材料制成,设计用于多年的无缺陷服务,因此,线缆护套通常难以撕裂,并且需要特殊的切割工具和经过培训的安装人员在不损坏线缆的情况下进行安全安装。由此,最终用户特别需要易于安装和“易剥离”的护套以便随时接近内部组件,以及光缆的简易连接,总体目标是减小总系统成本。

为此目的,已开发出具有撕裂特征的线缆护套。这些结构使得线缆护套易于剥离,从而提供对线缆内部组件的接近以及光缆之间的简易连接。包括撕裂特征的产品以及用于制造这些产品的过程是所属领域中众所周知的。参见例如wo2012/071490a2、us2013/0230287a1、usp7,197,215、usp8,582,940、usp8,682,124、usp8,909,014、usp8,995,809、us2015/0049993a1、cn103665627a和cn201698067。

备受关注的一个撕裂特征是微毛细管。这些结构是在线缆护套形成时形成在线缆护套壁中的小直径通道,并且沿着线缆护套的纵向轴线延伸。此处,所属领域同样有许多关于微毛细管的性质和形成的公开内容。参见例如wo2015/175208a1、wo2014/003761a1、ep1691964b1、wo2005/056272a2、wo2008/044122a2、us2009/0011182a1、wo2011/025698a1、wo2012/094315a1、wo2013/009538a2和wo2012/094317a1。

在环形微毛细管产品的生产中,产品(例如线缆护套)通常具有多层,其中两层围绕微毛细管形成。由于形成产品的模具的区域通常小而紧凑,因此可能难以制出此类产品。这继而需要使用较大直径模具,这会增加设备的资金成本和操作成本。线缆护套行业关注一种将允许挤制线缆护套的模具,所述线缆护套包括带有嵌入式微毛细管的单个聚合层。



技术实现要素:

在一个实施例中,本发明是一种心轴组件,包括:

(a)壳体,其包括:

(1)壳体线材管状通道,其沿着(a)所述壳体的长度以及(b)所述壳体的纵向中心线轴线延伸;

(2)流体环形通道,其环绕所述线材管状通道;

(3)流体环,其与所述流体环形通道流体连通,所述流体环定位于所述壳体的一端处;以及

(b)圆锥形尖端,其具有宽端和窄端,所述尖端的所述宽端附接到所述流体环所位于的所述壳体的所述端,所述尖端包括:

(1)尖端线材管状通道,其沿着(a)所述尖端的长度以及(b)所述尖端的纵向中心线轴线延伸;

(2)尖端流体通道,其与所述流体环流体连通;以及

(3)一个或多个喷嘴,其与所述尖端流体通道流体连通,所述喷嘴位于所述端处且延伸超过所述尖端的所述窄端;

所述壳体线材管状通道与所述尖端线材管状通道彼此开放连通,使得线材能够从一个通道直线通向另一通道而无中断。

在一个实施例中,本发明是一种模具组件,其用于将包括微毛细管的聚合涂层涂覆于线材或光纤,所述组件包括上文所描述的心轴组件。

在一个实施例中,本发明是一种线材涂布设备,其用于将包括微毛细管结构的聚合涂层涂覆于线材或光纤,所述设备包括上文所描述的模具组件。

在一个实施例中,本发明是一种包括聚合涂层的线材或光纤,所述聚合涂层包括微毛细管结构,使用上文所描述的设备将所述聚合涂层涂覆于所述线材或光纤。

附图说明

图1a是用于挤制线缆护套的模具组件的透视图。

图1b是图1a的模具组件的截面图。

图1c是图1a和1b的模具组件的分解视图。

图2a是微毛细管心轴组件的透视图。

图2b是图2a的微毛细管心轴组件的截面图。

图2c是图2a和2b的微毛细管心轴组件的分解视图。

图3a至3d是线缆护套壁中的微毛细管通道的放置的示意图。

图4是如实例中所描述的利用空气制备的具有两个微毛细管通道的线材护套的显微图。

图5是如实例中所描述的未利用空气制备的没有微毛细管通道的线材护套的显微图。

图6a和6b分别是来自实施例的本发明涂布线材撕裂样本和对比的涂布线材撕裂样本的照片。

具体实施方式

出于美国专利实务的目的,尤其在定义(就与本公开具体提供的任何定义并无不一致来说)和所属领域中的通用知识的公开方面,任何所提及的专利、专利申请或公开的内容都以全文引用的方式并入(或其等同美国版以引用的方式如此并入)。

本文所公开的数值范围包含上限值和下限值之间的所有值,并且包含上限值和下限值。对于含有显式值的范围(例如,1或2;或3至5;或6;或7),包含任何两个显式值之间的任何子范围(例如,1至2;2至6;5至7;3至7;5至6等)。

术语“包括”、“包含”、“具有”和其衍生词并不在于排除任何另外组件、步骤或程序的存在,无论是否已具体地公开所述组件、步骤或程序。为了避免任何疑问,除非陈述为相反情况,否则通过使用术语“包括”而要求保护的所有组合物,无论是聚合还是以其它方式,可包含任何额外添加剂、佐剂或化合物。相比之下,术语“基本上由…组成”从任何随后引述的范围中排除任何其它组件、步骤或程序,而对于操作性来说并非必不可少的那些除外。术语“由…组成”排除未特定叙述或列出的任何组件、步骤或程序。除非另外陈述,否则术语“或”是指单独列出的以及呈任何组合的所列出成员。单数的使用包括复数的使用,且反之亦然。

“混合线缆”和类似术语意指在单个线缆构造中含有两个或更多个类型的相异传输介质的线缆。混合线缆包含但不限于含有例如铜双绞线的金属线和一个或多个光纤或含有光纤和同轴传输构造的线缆。

“线缆”、“电力缆线”和类似术语意指在鞘(例如绝缘套或保护性外护套)内的至少一个线材或光纤。通常,线缆是通常在常见绝缘套和/或保护性护套中绑在一起的两个或更多个线材或光纤。鞘内部的个别线材或光纤可能是裸露的、覆盖的或绝缘的。线缆可设计用于低压、中压和/或高压应用。usp5,246,783;6,496,629和6,714,707中说明典型的线缆设计。

“导体”表示用于传导热、光和/或电的一种或多种线材或纤维。导体可以是单线材/纤维或多线材/纤维并且可呈股束形式或呈管状形式。合适导体的非限制性实例包含金属,如银、金、铜、碳和铝。导体还可以是由玻璃或塑料制成的光纤。

除非陈述为相反情况,否则按上下文的暗示或所属领域的惯例,所有份数和百分数均基于重量,并且所有测试方法是截至本公开的提交日期最新的。

“流体连通”和类似术语意指邻接的装置以这样的方式连接,使得流体可在不中断的情况下从一个装置传递到另一装置。

“开放连通”和类似术语意指邻接的装置以这样的方式连接,使得目标可在不中断的情况下从一个装置传递到另一装置。

图1a至1c示出典型微毛细管线材涂布设备。线材涂布设备10包括牢固地附接到壳体12的一端的端盖11。配合在端盖11内的是模具13,所述模具由模具保持器14和模具保持器持留螺杆15保持在适当位置,所述保持器和螺杆用于调整线材护套厚度均一性和中心性。

微毛细管心轴组件16配合于壳体12内并延伸通过所述壳体。微毛细管心轴组件16通过心轴持留螺杆17、心轴保持器18和调整螺杆19配合于壳体12内。围绕微毛细管心轴组件16配合于壳体12内的是树脂导流管20。间隔件21维持模具13与壳体12之间的所要距离。

图2a至2c示出本发明的微毛细管心轴组件的一个实施例。微毛细管心轴组件16包括心轴主体22、心轴尖端23、心轴转接器24和心轴转接器持留螺杆25。心轴尖端23和心轴转接器持留螺杆25通常以与主体和螺杆的相对螺纹之间的高温螺纹密封剂的螺纹关系附接到心轴主体22的相对端。心轴转接器24通过转接器持留螺杆25固定到心轴主体22。

心轴主体22包括线材通道26a和流体通道27。线材通道26a为管状,而流体通道27为环形,且流体通道27包围线材通道26a。通道均延伸心轴主体22的长度。流体通道27提供心轴转接器24与心轴尖端23之间的流体连通,且流体通道27终止于流体环28,所述流体环位于心轴主体22与心轴尖端23的交接处。

心轴尖端23是圆锥,且窄端或锥形端配备有喷嘴29a和29b。这些喷嘴延伸超出心轴尖端23的锥形端。心轴尖端23包括流体通道30a和30b,且这些通道延伸心轴尖端23的长度并分别提供流体环28与喷嘴29a和29b之间的流体连通。心轴尖端23还包括延伸心轴尖端23的长度的线材通道26b,所述线材通道与心轴主体22的线材通道26a对齐并与之开放连通。线材通道26b沿着心轴尖端23的中心纵向线定位,且流体通道30a和30b遵循心轴尖端23的锥形线围绕线材通道26b定位,从流体环28处开始且分别终止于喷嘴29a和29b处。这些喷嘴围绕心轴尖端23的锥形端定位且超出所述锥形端。

心轴转接器24和心轴转接器持留螺杆25分别包括线材通道26c和26d。当组装时,线材通道26a至26d彼此对准且开放连通,使得线材可进入线材通道26d并且直线穿过线材通道26a至26c而无中断。心轴转接器24还配备有流体通口31,所述流体通口与心轴主体22的流体通道27流体连通。心轴主体22还配备有与聚合物熔融物通道33流体连通的聚合物熔融物通口32,所述聚合物熔融物通道由心轴组件16的外部表面以及心轴主体22和心轴尖端23的内部表面形成。

线材涂布设备10以与已知线材涂布设备相同的方式操作。将线材或预先涂布的线材,例如包括一个或多个半导体层和/或绝缘层等一个或多个线材涂层的线材,馈送到心轴转接器持留螺杆线材通道26d且牵拉通过线材通道26a-c。线材本身可包括铜或铝等任何导电金属或光纤的一个或多个股束,例如单股或双绞线股束。

通常在压力下将聚合物熔融物通过聚合物熔融物通口32馈送到心轴主体22并通过树脂导流管20偏转到聚合物熔融物通道33中。通常,线材涂布设备附接到挤制机的出口端,线材涂布设备从所述出口端接收聚合物熔融物。聚合物本身可选自任何数目的热塑性和热固性材料,针对其最终使用性能来选择特定材料。示范性材料包含各种官能化和非官能化聚烯烃,例如聚乙烯、聚丙烯、乙烯乙酸乙烯酯(eva)等等。聚合物熔融物流动通过聚合物熔融物通道33,直到其围绕喷嘴29a-b流动且涂覆到线材表面。

流体通常在压力下通过心轴转接器24的流体通口31进入流体通道27,所述流体通常是空气,但可使用任何气体、液体或熔融物。流体移动通过心轴主体22的流体通道27进入流体环28,流体从所述流体环进入心轴尖端23的流体通道30a-b。当熔融物涂覆到线材时,流体分别通过喷嘴29a-b离开通道30a-b进入聚合物熔融物。因为喷嘴延伸超过心轴尖端23的圆锥端,所以来自喷嘴29a-b的流体进入线材覆盖层,并且当聚合物熔融物凝固时在覆盖层中形成微毛细管。形成的微毛细管的数目随着延伸超过心轴尖端的圆锥端的喷嘴数目而变。同样,微毛细管在线材覆盖层中的放置随喷嘴在心轴尖端上的放置而变。图3a-d示出形成有心轴尖端的线缆护套中的四个放置模式,所述心轴尖端配备有两个喷嘴。在每个图中,微毛细管彼此相对,但在图3a中,它们在护套壁里居中,而在图3b中,它们在护套壁的内表面上,而在图3c中,它们靠近护套壁的外表面,而在图3d中,它们位于护套壁的外表面上(因此实际上在护套壁的外表面中形成凹槽)。

使得喷嘴延伸超过心轴尖端的圆锥端的喷嘴放置允许在线材涂层壁中形成微毛细管。这继而允许挤制具有微毛细管的单层线材涂层,继而允许设计一种与用于挤制层间形成微毛细管的多个层的模具相比直径更小的模具。这继而可减小与挤制围绕线材的涂层相关联的资金成本和操作成本。

可优化微毛细管几何形状以适合覆盖层厚度并实现所要的易撕性,同时对机械特性的影响最小。微毛细管可以是非连续或间断的,从而实现特定长度中的护套撕裂。可将微毛细管置于护套外周上的所要径向位置处(如图3a-d中所示)。可通过打印或压痕或模压线材覆盖层的外部表面来标记微毛细管以便查找。微毛细管还可通过使用辅助挤制机将聚合物熔融物泵入微毛细管通道中而填充有大体上更弱的非覆盖聚合材料,例如弹性体。微毛细管的短轴不应超过含有微毛细管的护套或线缆层的厚度。微毛细管几何形状受流率和压力控制,例如受空气流率和气压控制。

以下实例是本发明实施例的另一说明。

实例

在图1a-c和2a-c中描述此实例中使用的线材涂布设备。树脂导流管将传入的聚合物熔融物分布成穿过环形通道的均匀流。通过心轴转接器将空气引入微毛细管心轴,并通过中空通道将空气输送到心轴尖端。空气被分成两股流,且接着到达微毛细管喷嘴。聚合物熔融物卷绕微毛细管喷嘴且与模具出口处的空气相遇。

线材涂布设备是戴维斯标准(davis-standard)线材涂布线,其由单螺杆挤制机、线材绞合单元、微毛细管导管型十字头模具、用于向微毛细管通道提供气流的空气线、具有温度控制器的一系列水浴槽和长丝卷取装置构成。

所用的聚合物树脂是中密度聚乙烯(mdpe)化合物(axelerontmgp6548bkcpd),密度为0.944g/cm3,且熔体流动速率为0.7g/10min(190℃,2.16kg)。表1中示出挤制线的温度曲线。将气压初始设置为20磅/平方英寸(psi)(137,896帕斯卡),并将空气流率设置成84.7cc/min以启动挤制。使用常规线材绞合单元,将14号(0.064英寸)铜线牵拉通过微毛细管线材涂布模具。在到达模具之前将线材预加热到225-250°f。将聚合物颗粒通过料斗馈送到挤制机中,且接着熔融并泵送到微毛细管十字头模具中。熔融聚合物围绕微毛细管喷嘴流动接近模具出口,并涂覆于铜线的表面上。这种涂布的线材穿过一系列水冷却槽。由此制造的线材汇集于长丝卷取装置上。缓慢下调气压和空气流率,使得挤制涂布过程可以在稳定状态下运行。对于本发明的样本,螺杆速度从18.5转/分钟(rpm)改变到45.75rpm,且线速度从100英尺/分钟(ft/min)变化到300ft/min(30.48米/分钟(m/min)到91.44m/min)。气压保持在10psi(68,948帕斯卡),而空气流率从15cc/min变化到23.1cc/min。

对于对比的样本,将空气关断,但保持与本发明样本相同的挤制条件。

表1.用于制作微毛细管线材涂层的挤制线的温度曲线

表2中给出详细处理条件以及护套和微毛细管尺寸。图4和5示出本发明微毛细管线材护套以及对比的线材护套的实例,本发明微毛细管线材护套通过螺杆速度30.5rpm、线速度200ft/min(60.96m/min)、气压10psi(68,948帕斯卡)和空气流率15cc/min的条件制备,而对比的线材护套通过螺杆速度30.5rpm和线速度200ft/min(60.96m/min)的条件制备。

进行剥离试验以测量本发明微毛细管护套和对比的固体护套的撕裂强度。将样品切出1.0英寸(2.56cm)的开口以形成唇缘。如表中所示,对比的11a固体护套的最高剥离力为13.18(磅-英尺(lbf))(58.63牛顿(n)),而具有两个微毛细管通道的本发明7a展示最低剥离力3.37lbf(15n)。这表示,相比于对比的11a,本发明7a的剥离力降低75%,本发明9a中的微毛细管通道导引撕裂路径且以较小力实现干脆利落的剥离,如图6a中所示。相比之下,对比的11a固体护套示出不受控制的方式的破裂(图6b)。还如表2所示,剥离力与总微毛细管壁厚之间存在强相关性。壁厚越小,剥离力越低。

表2.微毛细管线材护套与对比的固体护套的处理条件、护套和微毛细管尺寸以及撕裂强度

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1