光学头的制作方法

文档序号:20166595发布日期:2020-03-24 21:36
光学头的制作方法

本发明涉及一种用于激光透射焊接的一装置的光学头,以及通过激光透射焊接来焊接两个接合配对件的方法。



背景技术:

自现有技术中已知使用一激光焊接塑料的方法。在一激光透射焊接过程中,待接合或焊接的接合配对件中的其中一个对激光束为高度可穿透的,而另一个接合配对件则相对于激光束具有高度的吸收度。因此,穿过一接合配对件的激光束在位于两个组件之间的一接合处提供局部加热。焊接所需的压力通过将两个接合配对件压在一起而以已知的方式建立。

已知用于激光透射焊接的装置及方法的许多变型。

例如,用于激光透射焊接的包括一光学头的装置是已知的。特别地,包括在其内部具有一激光透光球的一壳体的光学头或处理头是已知的。这种光学头适合例如于通过将球压在相应的接合点上而将两个待焊接的塑料接合配对件接合在一起,并同时用作用于焊接的一激光束的一透镜,所述激光束被引导通过所述球至所述接合点上。优选地,所述球可移动地安装在所述壳体的内部,使得所述光学头容易地沿着待产生的一焊缝或将被形成的焊缝所沿着的一路径被引导。所述球在所述接合配对件的其中一个的一表面上滚动,并不断施加焊接所需的接触压力。

在ep1405713b1、de4319742a1及wo2014072326a1中公开了这种包括一光学头的装置。根据上述文献,光学头的优点之一是,不必在所有要焊接的位置处或沿着整个焊缝将待焊接的部件同时压在一起。取而代之的是,球仅在激光束击中多个部件的点及时刻将待焊接的部件压在一起。

ep1405713b1公开了一种机械架,其中球被支撑;同时根据wo2014072326a1,球在光学头内可移动地被引导或支撑,即除了滚动运动之外,球还可在光学头内移动。在这种情况下,它是光学头内垂直于焊接表面的的垂直位移。在焊接过程中,使用压缩空气将球压在接合配对件上。根据de4319742a1,光学头也可与压缩空气一起运作。

已知的具有一机械架的光学头的缺点,例如球的一空气轴承,是最大接触压力,所述最大接触压力通过架自光学头传递到球上,从而传递到待焊接的接合配对件,受到机械架的设计的限制。出于同样的原因,尚无法在具有机械架的光学头中使用直径小于30毫米的球。

已知的具有一滑动球的光学头的缺点是聚焦距离是根据球在光学头中的位置而变化。如果使用压缩空气对这种光学头的球加压,以将必要的压力传递至接合配对件,则通常不可能传递大的力。自球传递至接合配对件的力以及所产生的压力取决于许多因素,包括球的直径。在这种情况下,大的力可以理解为至少约50牛顿(n)的力。

聚焦距离是镜头与焦点(focus)或焦点(focalpoint)之间的距离,即使入射的辐射没有被准直也是如此。相反,焦距是透镜的特征值,限于入射的光束或辐射是准直辐射或准直光束的情况。

已知的具有用于球的一机械架的光学头的一另一缺点是,它们通常不允许将一预定的小的力可靠地施加至接合配对件。此处的限制因素是,例如,作用在接合配对件上的光学头的重量,以及通常可用的压光学头的装置,例如气动滑块,通常必须在至少1巴的压力下运作。具有机械架的光学头的装置通常是为大的力而设计的。然而,如果将大的力自光学头传递至接合配对件,则球会产生一个珠并将其推向其前面,这会导致变形及起皱。例如,在如上所述已知的具有滑动球的光学头的情况下,整个光学头的重量不作用在待接合的接合配对件上,而仅作用在球的重量上。然而,已知的具有滑动球的光学头不能解决这个问题,因为改变轴中的球的位置会显着改变聚焦距离,这意味着不再保证可靠的焊接。

为了抵抗起皱及变形,还可以考虑使用厚的透光激光箔或玻璃板,其被放置在球与接合配对件之间。然而,这使得焊接过程更加复杂及不灵活。

待解决的问题

本发明的目的是克服现有技术的缺点。

问题的解决方案

独立权利要求的主题使得所述问题被予以解决。在从属权利要求中描述了有利的实施方式。

根据本发明,一种用于激光透射焊接的一装置的光学头包含一壳体,具有在相对于一激光束的出口端上的一端;以及一球,安装在所述壳体中。所述球是由高于石英玻璃的折射率的一材料制成。已知石英玻璃的折射率为约1.45。

在本发明的上下文中,所述激光束优选地被理解为由一激光源发出的辐射。

所述球是一激光透光球。每当本发明涉及一球时,总是指这样的激光透光球。

可以在所述出口端的对面设置一光纤,例如一玻璃纤维或类似物,以将所述激光束引入所述壳体。它穿过所述壳体以及充当一透镜的球。

例如,这种光学头可用于轮廓焊接的设备中。轮廓焊接是激光透射焊接的一种变型,在这种焊接中,光学头沿着要产生的焊缝而被引导,从而激光束仅通过所述焊缝上的每个点一次。然而,本发明也可以应用于激光透射焊接的其他变型。

所述球可以由折射率为至少1.6的一材料制成。优选地,所述球由折射率为至少1.7的一材料制成。此外,也可以考虑具有至少1.75的一折射率的材料。例如,可以考虑折射率在1.76与2.15之间的材料。

所述球的材料包括蓝宝石、红宝石、尖晶石、立方氧化锆、lah79、n-sf8、n-lasf44、s-lah53、lasf35、n-lasf9、lasfn9、slah58、slah65,slah71、slah79、stih53、l-bbh1、k-vc89或k-psfn203。

优选地,所述球旋转地安装在所述壳体内,以便能够产生任何几何形状的焊缝。

所述球的直径可以小于或等于15毫米(mm),优选地小于或等于10mm。

可以考虑在所述壳体上安装一限制件来保持所述球。优选地,所述限制件位于所述壳体的所述出口端。

另一方面,所述限制件用来保持所述球,使所述球不会自所述出口端掉出。

另一方面,所述保持装置用于密封所述壳体的所述出口端或所述光学头。如下更详细地解释的,优选地,压缩空气被引入所述光学头中。为此可以提供合适的一进气口。这可以提供必要的接触压力,所述球通过所述压力被压至要连接的部件上。它也可用于为所述球提供一空气轴承。接合配对件通常是塑料部件,例如薄膜或类似部件。

上述的限制件优选地仅提供在所述光学头的实施方式中,在所述实施方式中,所述球可滑动地安装在所述壳体或轴部内,因为仅这些实施方式需要密封。当然,下面更详细描述的包括一空气轴承的光学头的一实施方式还具有至少一个保持所述球的装置,使得所述球不会自所述出口侧的所述空气轴承中掉出。这样的装置在设计上可以类似于上述的限制件。

所述壳体可包括一圆柱形轴部。所述球可滑动地安装在所述轴部中。例如,所述球可以在纵向方向上滑动地安装在圆柱形轴部中。所述光学头可以包括一准直透镜或准直仪,其被设计成在所述激光束撞击所述球之前,基本上准直所述激光束。

一准直透镜通常是一会聚透镜。然而,在本发明的上下文中,仅当所述激光束聚焦于所述球时,沿着所述光学头内自所述激光束的入口的点朝所述球的一光路称为会聚透镜。另一方面,例如,如果自点状入口的点发射至所述壳体中的所述激光束通过一会聚透镜被准直,从而使所述球的辐射方向被准直,在这种情况下通常使用准直透镜这样的术语。

在本发明的所有实施方式中,优选地提供一压缩空气入口。

若所述球可滑动地安装在所述轴部中,则通过压缩空气入口被提供至所述光学头的内部的压缩空气用于在所述球的出口端的方向上施加一力。在焊接过程中,优选地,仅通过所述压缩空气将所述球压在要焊接的部件上。

优选地,所述准直透镜布置在所述光学头中,使得所述激光束在击中所述球之前被准直或至少基本上被准直。当一准直光束击中所述球时,聚焦距离不会根据所述球在轴中的位置而改变。另一方面,若在击中所述球之前光束立即发散或会聚,聚焦距离将根据所述球在轴中的位置而改变。

准直发生在击中所述球之前,这意味着在准直之后以及击中所述球之前,所述激光束不再转换为发散或会聚光束。因此,在这样的实施方式中,在所述准直透镜与所述球之间,优选地,不存在影响光束的其他光学装置,特别是不存在产生会聚或发散光束的透镜。

与以滑动方式引导所述球的已知的光学头相比,在撞击所述球之前被立即地准直的一光束与具有一高折射率的一球的组合意味着改变所述球在轴内的位置对焦距的影响较小,并且焦点尽可能地靠近所述球。在此,优选地将高折射率理解为比石英玻璃的折射率高的折射率,例如高于1.45或甚至高于1.7。当所述球通过压缩空气受到小于150牛顿(n),例如小于120n、小于100n、小于80n,或甚至小于50n的力时,这样的实施方式是特别合适的。

所述光学头可被设置为使得一光斑尺寸由所述准直透镜的一安装高度及/或多个性质及条件而被确定。这适用于根据本发明的光学头的所有实施方式。

一光斑尺寸定义为在接合处所述激光束的直径。所述接合离所述球的焦点(focus)或焦点(focalpoint)越远,所述光斑尺寸越大。

根据一替代实施方式,可将用于支撑所述球的一空气轴承添加至所述壳体,其包括用于使所述激光束通过的一开口。还可以考虑将一会聚透镜放置在所述光学头中,其被设计及/或定位在所述壳体中,使得所述激光束在它到达之前先聚焦在所述球上。优选地,在所述开口的区域内,即在所述开口内或紧接在所述开口之前或之后进行聚焦,从而可以将所述开口保持得尽可能小。

所述开口的最大直径可以为4mm。优选地,所述开口的直径最大为2mm。

优选地,除了所述开口之外,所述空气轴承还具有至少一个用于使压缩空气通过的凹部。

本发明还包括一种方法,所述方法通过如上所述的包含一球的一光学头通过激光透射焊接来焊接两个接合配对件。

对于本发明的所有版本,可以通过所述准直透镜的安装高度及/或多个性质及条件来选择所述激光束的光斑尺寸。

所述激光束在击中所述球之前可以立即地被准直。这意味着在所述出口端上离开所述球的所述激光束的聚焦距离不取决于在轴内所述球的位置。换句话说,若一激光束在击中所述球之前已经经过准直,则无论所述球的位置为何,所述激光束的一入射角始终是相同的,并且所述激光束的出射角也是相同的。

或者,所述激光束可以在它到达之前聚焦在所述球上。若所述球安装在具有用于使所述激光束通过的一开口的一空气轴承中,则这特别有用。有利的是,所述开口尽可能地小,使得所述空气轴承可以将较大的力传递给所述球。在此,所述激光束优选地聚焦在所述开口的区域中。

附图说明

在以下优选的实施方式的描述以及图式中,可以发现本发明的其他优点、特征及细节;这些显示在:

图1是一已知的光学头1,其中所述球3可滑动地被引导;

图2是根据本发明的一第一实施方式的一光学头1;

图3是针对具有不同折射率的球3,根据图2的光学头中的激光束5的不同路径;

图4是处于非运作位置的根据图2的光学头1;

图5显示一已知的光学头1,其中球支撑在一空气轴承10中;

图6是根据本发明的一第二实施方式的一光学头1;

图7是针对具有不同折射率的球3,根据图6的光学头中的激光束5的不同路径;

图8是针对不同的准直透镜7,根据图6的光学头中的激光束5的不同路径,以及;

图9是图6的放大部分。

具体实施方式

图1示出根据现有技术的一光学头1。一球3位于相对于一激光束5或光路5的出口端上的一壳体2的一端中。还示出一圆柱形轴部4、所述出口端的一限制件9、一压缩空气入口6、一光纤12、一准直透镜7及一会聚透镜8。另外,示出待焊接的接合配对件13、14。

图2示出根据本发明的一第一实施方式的一种光学头1。所述光学头1与根据图1的已知的光学头1不同,一方面在所述会聚透镜8的方面,其已经由一密封板15代替,另一方面在制造所述球3的材料的折射率方面。

图3示出针对具有不同折射率的球3,根据图2的光学头1中的激光束5的不同路径。

图4示出处于一非运作位置的根据图2及图3的光学头1。

图5示出根据现有技术的另一光学头1。除了已经参照图1所述描述的一些特征之外,所述光学头1还包含一空气轴承10。

图6示出根据本发明的一第二实施方式的一种光学头1。所述光学头1与根据图5的已知的光学头1不同,一方面在所述会聚透镜8的组成方面,另一方面在制造所述球3的材料的折射率方面。另外,图6示出所述空气轴承10除了中央的开口11之外,还具有用于使压缩空气通过的另外的多个凹部19。在图6至8中没有进一步描述所述开口11及所述多个凹部19,然而在图9中清楚地示出了所述开口11及所述多个凹部19。

图7示出针对具有不同折射率的球3,在根据图6的光学头1中的激光束5的不同路径。

图8示出针对不同的准直透镜7.1、7.2,在根据图6的光学头1中的激光束5的不同路径。

图9示出围绕中心的开口11的图6的放大部分。

参照图1至图9,根据本发明的光学头1的功能解释如下:

图1中所示的已知的光学头1位于一焊接点或一接合点的上方,在所述焊接点或接合点处,所述接合配对件13、14通过焊接而接合在一起。所述光学头1在激光透光的所述接合配对件13的上方的一小段距离处被引导。所述球3被压缩空气加压,所述压缩空气通过所述压缩空气入口6输送入所述壳体2的内部。因此,沿一箭头16的方向作用的一力被施加至所述球3上,并且将所述接合配对件13、14压在一起。自所述球3传递至所述接合配对件13、14的一接触压力可以通过压缩空气的供给而被调节。输送至所述壳体中的一部分压缩空气在所述出口侧逸出,此处用未指定的箭头指示。自所述光纤12射出的所述激光束5首先被所述准直透镜7准直,然后被所述会聚透镜8及也用作一会聚透镜的所述球3聚焦。然后,所述激光束5的焦点位于所述两个所述接合配对件13、14之间的一接合点中,两个接合配对件13、14在所述接合点被焊接。

所述球3在轴4中可滑动地被引导,即,所述球3可以在所述轴部4内沿所述箭头16的方向或相反的方向移动。在图1中可以清楚地看到,当所述激光束5在所述会聚透镜8与所述球3之间会聚时,所述激光束5入射至所述球3中的一角度根据所述球3在所述轴部4中的位置而变化。

所述会聚透镜8在顶部密封所述圆柱形轴部4,以便将进入的压缩空气导向所述球3,请参见图9中所述压缩空气入口6内的未指定箭头。

若所述光学头1或所述壳体2以一恒定的高度在待焊接13、14的部件上移动,并且通过待焊接13、14的部件中的至少一个特别厚或薄的部分,则所述球3沿着箭头16的方向或逆着箭头16的方向稍微移动。尽管所述球3沿着箭头16的方向或逆着箭头的方向移动的距离通常仅为其直径的一小部分,但由于以下所述的原因,它已经可能导致焦点发生明显变化。

在根据图1的已知的光学头1中,只要在所述接合配对件13、14及所述壳体2的位置维持不变,一方面通过沿着或逆着所述箭头16方向改变一入射角来移动焦点。这是根据已知的光学定律得出的,根据所述光学定律,当所述激光束5进入所述球3时,即进入光学密度较高的介质时,所述激光束5向垂直方向折射。

另一方面,若保持所述接合配对件13、14以及所述壳体2的位置,则所述焦点的位置由于所述球3在所述轴部4内的位置变化而改变,因为所述激光束5离开所述球3的一出口点已经沿着或逆着所述箭头16的方向移动。根据所述光学头1的设计,两种效果通常会产生相同的影响,即,当所述球3沿着箭头16的方向移动时,上述两个效果通常加起来并影响所述焦点的位置。因此,对于根据图1的已知的一光学头1,即使所述球3在所述壳体2内或在所述轴部4内的位置的微小变化,也会导致所述焦点沿着或逆着所述箭头16的方向发生显着变化。

在图2所示的根据本发明的一第一实施方式的所述光学头1中,在所述准直透镜7之后的所述准直的激光束5平行于用作透镜的所述球3的光轴17行进。因此,不会出现上述关于取决于所述球3沿着箭头16的方向的不同入射角的第一影响。

图3示出通过选择具有一高折射率n的一材料,可以显着地提高聚焦的能力。制造所述球3的材料的折射率n越高,则所述焦点(focalpoint)或焦点(focus)位于愈高的位置,即愈接近球3。

图1至图3均示出处于运作位置的一光学头1,而在图3中,未示出所述接合配对件13、14以提供更好的概览。另一方面,图4示出处于非运作位置的根据图2及图3的所述光学头1。

图4示出所述球3在非运作位置中沿着所述箭头16的方向运动并且将所述壳体2的出口端与所述限制件9密封在一起。通过比较图1至图4中所述压缩空气入口6及所述出口端附近的未指定箭头也可以看出这一点。在根据图4的非运作位置,没有空气在所述出口端逸出。相反,在图2及图3所示的运作位置,一特定量的压缩空气总是在所述轴部4的内部与所述球3的表面之间强制移动,并在所述出口端离开所述壳体2。所述限制件9优选地一方面确保所述球3不会自所述壳体2中掉出。另一方面,在非运作位置,它与所述球3一起密封所述出口端。

如同根据图1的已知的光学头的所述会聚透镜8一样,所述密封板15确保压缩空气被导向所述球3。

图6至图8示出与图5所示的现有技术相比具有一改进的光学头1的本发明的一第二实施方式。

根据图5的光学头1的功能在很大程度上类似于以上根据图1至4所述的所述光学头1的功能。除了所述球3不是沿着所述轴部4可移动地被引导,而是被支撑在一空气轴承10中。因此,施加在所述接合配对件13、14上的压力不是压缩空气沿着箭头16作用在所述球3上的力的结果,与图1至图4的所述光学头1一样。取而代之的是,根据图5至图8的所述光学头1上的压力是由所述整个光学头1经压在所述接合配对件13、14上的力而产生。实际上,在如图5至图8所示的光学头1中,压缩空气也经由一相应的压缩空气入口6被引入壳体2的内部。然而,所述压缩空气仅用于提供所述功能性的空气轴承10,其确保了所述球3可以自由地旋转。

例如,若要通过所述球3将大的力传递至所述接合配对件13、14,则根据图5的已知的光学头1优于根据图1的所述光学头。在根据图1的一实施方式的情况下,必须经由壳体2中的所述的压缩空气入口6建立的所需气压通常太高。另外,空气流通常太高,即,太多的空气在所述出口端逸出,以致于所述球3不能以所需的压力加压。

在图6所示的根据本发明的第二实施方式的所述光学头1中,所述会聚透镜8被设计及/或布置在所述壳体2中,使得所述激光束5在它到达之前聚焦在所述球3上。这可以被称为中间聚焦(intermediatefocusing)或中间聚焦(intermediatefocusing),发生在聚焦所述激光束5之前,其是焊接所必需的,在它自所述球3离开之后在所述接合配对件13、14之间的接合处。

自图5及图6的比较可以清楚地看到,位于所述会聚透镜8与所述球3之间的所述会聚透镜8的焦点使得所述空气轴承10的所述开口11的一直径最小。应当注意,为清楚起见,附图标记11仅在图5及图9中示出,而在图6至图8中未示出。

图7清楚地示出,通过使用具有例如1.75或2.0的一高折射率n的一材料,与使用具有一低折射率n,例如1.45的材料时相比,离开所述球3的所述激光束的所述焦点与所述球3更接近。

与图5所示的所述空气轴承10相比,图6至8所示的所述空气轴承10覆盖了所述球3的更大的部分。特别地,所述开口11(未提供附图标记在图6至8中)基本上限于围绕所述光轴17的部分。如图6至图8所示的所述空气轴承10能够将作用在所述壳体2上的一力显着更好地传递至所述接合配对件13、14,因为所述空气轴承10还包含所述球3的基本上与焊接点相对的一区域。沿着箭头16方向的力传递愈有效,待传递的力的施加点愈接近与焊接点相对的一区域。

图5至图7的比较显示,本发明尤其基于以下发现:已知的光学头1的具有石英玻璃的一球3的开口11具有如此大的直径,因为相较于根据图5的所述激光束5会聚更大程度的一激光束5,如果所述会聚透镜8在所述球3的前面引起一中间聚焦,则在通过所述球3之后,会具有离所述球3很远的一焦点。这是因为已知的光学头1的所述球3通常由折射率n低于1.75,通常甚至明显低于1.7的材料制成。另一方面,如果使用具有一高折射率n的材料,例如1.8或甚至2.0,则可以减小所述开口11,并且可以将所述激光束5聚焦在孔11的区域中,如图6至8所示。

对于如图5所示的已知的光学头1,所述空气轴承10限制了要传递的最大力。一方面,如图5所示的已知的空气轴承10不允许超过150n的力传递至所述接合配对件。另一方面,还不能使用具有小于30毫米(mm)的一小直径的球3,例如,因为与这种小的球3一起使用的所述空气轴承10在传递低于150n的力时已经达到其极限。图6至图8所示的实施方式允许传递大于150n的力,并且使用明显更小的球3,例如直径小于15mm的那些。

图8显示具有不同安装高度的不同设计的准直透镜7.1、7.2的布置如何影响焦点。所述准直透镜7.1的焦距比准直透镜7.2的焦距长。因此,当如图8所示将所述准直透镜7.1安装在所述壳体2中时,其产生具有一更宽的直径的一光束5.1。这继而导致焦点处的一小的光斑尺寸18.1。

对于如图6所示被布置的所述接合配对件13、14的情况,在图8中示出光路5.1、5.2的光斑尺寸18.1、18.2。

与准直透镜7.1相比,在图8中以虚线示出另一个准直透镜7.2。这导致具有一较小的直径的一激光束5.2,也以虚线示出。所述激光束5.2在焦点处的所述光斑尺寸18.2大于所述激光束5.1的所述光斑尺寸18.1。

尽管仅描述及给出了本发明的一个或几个优选实施方式,但是很明显,本领域技术人员可以在不脱离本发明的实质及范围的情况下进行许多修改。

例如,根据图6至图8的实施方式的所述轴部4不必是圆柱形的,因为与根据图2至图4的实施方式相比,球3不是可移位地安装在轴部4中。

除了通过使用具有不同安装高度的不同的准直透镜7.1、7.2以外,还可以通过其他方式来实现图8所示的不同光束直径。当然,提供具有不同性质但具有相同安装高度以改变光束直径的准直透镜7也可能是足够的。

或者,可以考虑仅改变所述准直透镜7的安装高度。然而,必须注意的是,由于所述准直透镜7的恒定焦距,在朝向所述球3的方向上离开所述准直透镜7的辐射不再被完全准直。如图1至图3以及图5至图8所示,只有在所述准直透镜7的焦点与来自光纤12的辐射的一入口点20一致的情况下,才是这种情况。

还可以考虑在光学头1的运作期间或运作中断期间改变所述准直透镜7的高度。为此,所述壳体2及所述准直透镜7会必须配备有用于改变高度的合适的装置。如上所述,到达球3(图2及图3)或所述会聚透镜8(图6至图8)上的所述激光束5将不再被完全准直,而是会发散或会聚到一定程度。然而,只要激光束5的发散或会聚保持在可控制的范围内,这样的实施方式就可以进行一些微调。

关于图6至图8,也可以考虑使用单个足够强的聚焦透镜代替所述准直透镜7与所述会聚透镜8的组合,所述聚焦透镜也提供在孔11的区域内的中间聚焦。然而,应注意的是,所述激光束5的准直部允许例如调节所述壳体2的一长度,并且若需要,可以将不改变准直度的其他光学元件插入至光路中,而无需使用额外的透镜等类似物。

图2至图4所示的限制件9可以是一倒角。

图6至图9所示的所述空气轴承10的所述凹部19是有利的,然而非必需的。根据一简单的实施方式,这些凹部19也可以被省去。

所述空气轴承10当然可以不同地设计。例如,它可以为形状不同的凹形或至少部分凹形底切,其与所述球3互补或至少部分地互补。

附图标记

1光学头

2壳体

3球

4圆柱形轴部

5激光束

6压缩空气入口

7准直透镜

8会聚透镜

9限制件

10空气轴承

11开口

12光纤

13激光透光接合配对件

14激光吸收接合配对件

15密封板

16箭头/箭头方向

17光轴

18光斑尺寸

19凹部

20入口点

再多了解一些
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1