一种智能排污锅炉的制作方法_4

文档序号:9233200阅读:来源:国知局
料量和/或吨汽耗电量的参数,对并列运行的锅炉实现对标分析,始终使效率最高的锅炉处于最大负荷状态,效率低的锅炉及时发现问题并尽快解决,始终使运行的锅炉保持高效。
[0109]通过分析对标每台锅炉的吨汽耗煤量和/或吨汽耗电量指标,分析判断出热效率较高的锅炉,增大其运行负荷;而对于热效率相对较低的锅炉,减少其运行负荷,如果锅炉热效率低于正常运行经验数据,则需要尽快停炉检修,提高其热效率后再尽快投入运行。
[0110]作为优选,所述的汽水换热器和余热利用换热器为板式换热器。板式换热器采用如下结构:
[0111]所述板式换热器包括换热板片10、密封垫片13,密封垫片13位于相邻的换热板片10之间,所述密封垫片13安装在换热板片10周边的密封凹槽28内,所述密封凹槽28为梯形结构,所述梯形结构的上下两边为平行得边,上边为短边,下边为长边,所述梯形结构的平行的两条边的短边位置设置开口 31,所述密封垫片13为与密封凹槽互相配合的梯形结构,所述密封垫片13从开口 31处放入到密封凹槽28内。
[0112]通过设置梯形结构的密封凹槽以及与之对应的密封垫片,可以使得密封凹槽和密封垫片紧紧的嵌合在一起,避免使用粘合剂,增加了密封的牢固性。
[0113]作为优选,所述的梯形结构为等腰梯形结构。
[0114]作为优选,所述密封凹槽28在左右两条边的内部设置凸起29,与之对应,在密封垫片13的梯形结构的左右两条边的外部设置与凸起29对应的凹部。通过上述结构,使得密封凹槽和密封垫片嵌合的更加牢固,密封效果更好。
[0115]作为优选,所述密封凹槽28在下部的边的内部设置凸起30,与之对应,在密封垫片13的梯形结构的下部的边的外部设置与凸起30对应的凹部。通过上述结构,使得密封凹槽和密封垫片嵌合的更加牢固,密封效果更好。
[0116]作为优选,凸起29为三角形,凸起30为长方形。
[0117]作为优选,所述凸起29在每一边分别设置多个,作为优选为3 — 5个。
[0118]作为优选,三角形凸起29的下部边与梯形的下部的边平行。通过这样设置,可以使得安装密封垫片13更加容易,安装方便。
[0119]作为优选,梯形的左右两条边和长边(即下部的边)的夹角为40 — 70°,优选为50 — 60°。梯形的高度与短边之间的长度为1: (2 — 4),优选为1:3。设置这样的角度和长度,一方面要考虑嵌合的牢固性,一方面要考虑安装的便利性。角度越小,高度越高,则安装越困难,但是嵌合牢固性好,密封效果好。反之,角度越大,高度越低,则安装越容易,但是嵌合牢固性差,密封效果差。上述的角度和高度是考虑安装便利性和嵌合牢固性进行的综合考虑得到的最优的效果。
[0120]一般情况下,板式换热器板片两侧冷、热流体通道的横截面积是相等的(图6a)。在此种情况下,如果两种流体的流量(指体积流量)相差不大,此时同一种流体的流道可以采取互相平行并联的方式,如图6a,此时板式换热器两侧流体的换热系数相差不大,整个换热器换热系数很高,而且这样设置还可以使得两种流体的进出口都在一个端板5上,如图6b所示,有利于板式换热器的拆解检修和板片清洗。但是如果两种流量相差较大的流体进行换热时,如果两种流体都采取并联的流体通道,则会出现较小流量的流速太低,从而导致更低的换热系数。因此通常将低流量流体通道设置成串联的形式,如图7a所示,这样就无法将冷热流体的四个进出口全部设置在一个端板上,只能设置在两个端板5、6上,如图7b所示,在两个端板上都设置流体进出接口,在换热器跟管路处于连接状态时,板式换热器将拆卸困难,需要两端拆卸,造成检修不便。
[0121]本发明的板式换热器采取如下结构,以便适应汽液换热。
[0122]作为优选,所述流量小的换热板片10中设置至少一个分流部件,所述分流部件将流经换热板片的换热流体的流动路径分成至少两个分程流道7,所述的换热板片10中的分程流道7为串联结构。通过上述的分程流道7的串联结构,使得流体因此经过所有的分程流道7,如图6所示,从而使换热流体在换热板片10上形成S形流道。
[0123]通过设置分流部件,使得流量小的流体可以充满整个换热板片,从而避免了出现一些流体短路的换热区域,从而增加了换热系数,提高了整个换热器的换热系数;此外,通过设置分流部件,使得小流量的流体也能够实现在多个板片中的流体通道的并联,如图6a所示,避免了为了提高换热系数而将小流体通道设置为图7a所示的串联的结构,从而可以使得流体的四个进出口 I 一 4都设置在同一个端板上,从而使得维护方便。
[0124]作为优选,大流量流体的体积流量是小流量流体的体积流量的2倍以上。
[0125]针对汽水换热器,作为优选,水源侧的板片设置分流部件。
[0126]作为优选,分流部件是通过密封槽8和密封垫9实现的,所述密封槽8设置在换热板片上,通过将密封垫9插入到密封槽8内,从而形成分流部件。
[0127]作为优选,分流部件是通过在换热板片上直接设置密封条来实现。作为优选,密封条和换热板片一体化制造。
[0128]在换热板片的流体进口和出口的上下两端上,即图3的上下两端,分流部件在一端是封闭的,在另一端是设置开口的,其中沿着左右方向,开口位置是交替设置在上下两端,这样保证流体通道形成S形。
[0129]请注意,前面以及后面所提到的上下左右方向并不限定于使用状态中的是上下左右方向,此处仅仅是为了表述图8中的板片的结构。
[0130]图8、11所述的板片因为设置了两个分流部件,因此流体的进出口设置在上端和下端。当然也可以设置I个或者奇数个分流部件,此时的流体的进出口位置就位于同一端上,即同时位于上端或下端。
[0131]如前所述的S形流道可以是半个S形,例如只设置一个分流部件的情况,也可以是整个S形,例如图8、11的形式,也可以是多个一个S形和/或半个S形的组合,例如设置大于2个分流部件的情况,例如3个分流部件就是I 一个S形和半个S形的组合,4个分流部件就是2个S形,等等以此类推。
[0132]对于采用密封垫的形式,作为优选,密封垫与板式换热器换热板片之间的设置的垫片一体化设计,因此本发明也提供了一中板式换热器中在换热板片之间使用的垫片。所述垫片中设置至少一个分流密封垫9,所述分流密封垫9将流经换热板片的换热流体的流动路径分成至少两个分程流道7,所述的换热板片10中的分程流道7为串联结构,从而使换热流体在换热板片10上形成S形流道。
[0133]在数值模拟和实验中发现,通过设置分流部件,能够使得换热器换热系数增加,但是同时也带来流动阻力的增加。通过数值模拟和实验发现,对于分流流道的宽度,如果过小,会导致流动阻力过大,换热器的承压太大,而且可能产生流道两侧边界层沿着流体流动方向重合,而导致换热系数下降,流道宽度过大也会导致降低板式换热器的换热系数,因此对于分流通道7具有一个合适的数值;对于分流部件开口的长度也有一定的要求,如果开口过小,会导致流体通过开口流过的数量过小,在增加压力的同时降低了换热系数,同理,如果过大,则流体会产生短路区域,起不到相应的换热效果,因此对于开口也有一个合适的长度。因此在分流部件的开口长度、分流部件的长度、分流流道宽度之间满足一个最优化的尺寸关系。
[0134]因此,本发明是通过多个不同尺寸的换热器的上千次数值模拟以及试验数据,在满足工业要求承压情况下(2.5MPa以下),在实现最大换热量的情况下,总结出的最佳的换热板片的尺寸优化关系。
[0135]如图7所示,分流部件的开口长度LI,分流部件的长度为L2,分流流道宽度W,则满足如下关系式:
[0136]Ll/L = a — b * Ln (Ll/ff) — c * (Ll/ff);
[0137]其中L = L1+L2;
[0138]400 < L < 800mm,80 < LI < 140mm,130 < W < 150mm ;Ln 是对数函数
[0139]0.17 < Ll/L < 0.22,0.5 < Ll/ff < 1.1
[0140]0.18 < a < 0.21,0.014 < b < 0.016,0.0035 < c &
当前第4页1 2 3 4 5 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1