用于生产加压气态产品的低温空气分离方法

文档序号:4765854阅读:180来源:国知局
专利名称:用于生产加压气态产品的低温空气分离方法
背景技术
由空气分离设备生产的气态氧通常处于大约20到50巴的高压。基本的蒸馏方法通常是在以1.4到4巴的压力运行的低压塔的底部生产氧的双塔方法。必须通过氧压缩机或泵压液体方法将氧压缩至较高的压力。由于与氧压缩机有关的安全问题,目前大多数制氧设备都基于泵压液体方法。为了使高压液态氧气化,需要额外的增压压缩机以将一部分供给空气或氮提高到大约40到80巴范围内的较高压力。本质上,用增压机代替了氧压缩机。由增压压缩机输送的加压空气在分离单元的换热器内与正在气化的液态氧相互作用而冷凝。这种方法的能耗很大,因此希望在存在另一种便宜的其它形式的潜在能量流例如低温液体、加压气体等的供给时降低能耗。
图1示出典型的泵压液体方法。在此类型的方法中,通过主空气压缩机(MAC)1将大气压缩到大约为6巴的绝对压力,然后在吸附器系统2内净化以去除杂质——例如在深冷温度下可能凝固的水分和二氧化碳——以得到净化的进给空气。然后,在换热器30内将该净化进给空气的一部分3冷却到接近其露点,并将其以气态形式引入双塔系统的高压塔10以便进行蒸馏。在该高压塔的顶部提取富氮液体4,并将一部分作为回流送到低压塔11的顶部。在高压塔底部的富氧液流5也作为进给被送到低压塔。这些液体4、5在膨胀之前在低温冷却器内与冷气体相互作用而低温冷却,为简化起见在附图中未示出低温冷却器。从低压塔11的底部提取液态氧6,用泵将其加压到所需压力,然后使其在换热器30内气化以形成气态氧产品7。已净化进给空气的另一部分8在增压空气压缩机(BAC)20内进一步压缩至高压,以便在换热器30内与正在气化的富氧流相互作用而冷凝。根据富氧产品的压力,增压空气的压力可以为大约65巴或者有时会高于80巴。冷凝的增压空气9也作为进给被送到塔系统以便蒸馏,例如被送到高压塔。可从高压塔提取一部分液态空气并在低温冷却和膨胀之后将其送到低压塔。还可以与液态氧相同的方式,从高压塔的顶部提取富氮液体,然后将其泵压到高压(流13)并在换热器内使其气化。将进给空气的一小部分(流14)进一步压缩并膨胀到塔11内以提供单元的制冷。
当可以低成本获得低温液体源时,例如来自附近的生产液体作为副产品的空气分离单元的液体,或者通过在晚上或在功率比低期间运行的液化器生产的液体,或者仅是来自过剩源的低成本液体,则希望将此液体供给到空气分离设备以降低其能耗。但是,当为空气分离设备供给液体时,由于整体的冷平衡而必须从设备提取一些液体产品。但是,由于已经可低成本地获得液体供给,所以没有很大的动力来生产任何大量的额外的液体产品。因此,提供一种能够有效地消耗这些液体的过程是有利的。
现有技术内说明的冷压缩方法可以是该问题的一个良好的解决方案,因为它使用成一体的膨胀机产生的制冷能量来实现有效的产品压缩。
US 5478980所述的冷压缩方法提供了一种利用单个空气压缩机驱动制氧设备的技术。在此方法中,待蒸馏的空气在主换热器中冷却;然后通过由向双塔方法的高压塔中排气的涡轮机驱动的增压压缩机进一步压缩。这样,空气压缩机的排气压力在15巴左右,该压力范围也非常有利于净化单元。此方法的一个不利点在于较高的功耗,并且必须使用膨胀机来驱动该方法。
US 5379598、US 5901576和US 6626008中也说明了一些不同形式的冷压缩方法。
在US 5379598中,一部分进给空气通过增压压缩机然后通过冷压缩机进一步压缩,以产生气化氧所需的加压流。此方法仍然使用膨胀机作为制冷的主要供应者。
US 5901576描述了多个冷压缩方法的布置,所述冷压缩方法利用高压塔底部的气化的富液的膨胀或高压氮的膨胀来驱动冷压缩机。在一些情况下,也使用电动机驱动的冷压缩机。
US 6626008说明了利用冷压缩机改进蒸馏方法的热泵循环,该蒸馏方法用于生产双蒸发器氧处理用的低纯度氧。
现有技术没有解决在不必生成其它液体或冷气体的情况下有效地使用液体供给的问题。

发明内容
本发明的目的是提供一种解决此问题的方法。
根据本发明,提供了一种低温空气分离方法,该方法在使用蒸馏塔系统和得自空气的液体进给流的空气分离单元内生产加压气态产品,该方法包括以下步骤i)在换热器内冷却压缩空气流以在换热器内形成被冷却的压缩空气流;ii)在具有第一进气温度的第一压缩机内低温压缩所述被冷却的压缩空气流的至少一部分以形成第一加压气流;iii)在所述换热器内冷却所述第一加压气流的至少一部分以形成第一被冷却的加压气流;iv)在具有第二进气温度的第二压缩机内低温压缩所述第一被冷却的加压气流的至少一部分以形成第二加压气流;v)冷却并至少部分液化所述第二加压气流,并将其供给到蒸馏塔系统;vi)用液体进给流供给所述蒸馏塔系统;以及vii)从所述蒸馏塔系统提取液体产品,然后使所述液体产品的至少一部分增压、气化并在所述换热器内加热以生成加压气态产品。
在此文献的上下文内,“得自空气”包括被冷却的净化空气以及已被冷却和净化的风煤气混合物。


为了进一步理解本发明的特征和目的,应参考下文结合附图给出的详细说明,其中相同的元件用相同或类似的参考标号指示,在附图中
-图1示出现有技术;-图2示出本发明的一个实施例;-图3示出本发明的另一个实施例;-图4示出本发明的一种运作模式;以及-图5示出本发明的第二运作模式。
具体实施例方式
使绝对压力大约为6巴的基本没有水分和CO2的压缩空气(流1)在换热器65内冷却。从换热器65处于深冷温度-125℃下的中间位置提取流量大约为流1的20%的一部分52,并送到第一冷压缩机50压缩至大约为45巴的较高压力,以生成第一加压气流53。压缩热使流53的温度升高,并且将流53再次引入换热器65的暖端并冷却以生成同样大约为-125℃的被冷却的第一加压气流55。第二冷压缩机51将进一步压缩流55以生成大约为60巴的第二加压气流54。将流54在换热器65的一中间位置再次引入,至少部分液化、冷却到大约-176℃,并从换热器65的冷端作为流56排出,以在阀内膨胀之后供给到高压蒸馏塔80。压缩空气的剩余部分2也以气态形式被供给到以大约6巴压力运行的塔80。在塔80的顶端抽取富氮液体8并作为回流送到低压塔81。可选地,从塔80提取组分接近空气的侧流4并将其作为进给送到塔81。在塔80的底部抽取也称为富液的富氧液流3并作为回流供给到塔81。回流优选地在被送到塔81之前低温冷却。将来自储存箱70的液态空气源30作为额外进给提供给塔81,其流量大约为进给空气1的10%mol.。在低压塔81的底部生成为流20的液态氧通过泵21泵压到40巴的高压,并使其在换热器65中气化以生成气态氧产品22。来自塔81的大约为1.5巴的低压富氮气体9在换热器65内被加热并作为流41离开。可从塔80抽取中压氮气6并在换热器65内加热以生产中压气态产品7。可选地,可向该方法中添加氩产品(未示出)以生产氩。
如果冷压缩机50的排出气体的温度因其高压缩比而远高于环境温度,则可在将压缩机的排出气体引入换热器65进行冷却之前使用水冷或气冷换热器(未示出)冷却该排出气体。
液体源30是空气分离设备或液化装置的产品,并且可以是空气成分即氧气和氮气的任何合成物。它应当不包含对装置的安全和可靠操作有害的杂质例如碳氢化合物、水分或CO2等。在图2中,流30示出为液态空气或具有与液态空气类似的组分。如果液体30是富氮液体,则可将其作为如虚线所示的流32供给到塔81。如果其是组分与底部液体3类似的富液,则可将其作为如虚线所示的流34供给。如果其是液态氧,则可将其作为也如虚线所示的流33供给到塔81的底部。
如果液体30确实包含一些氧(例如液态空气、富液或液态氧),则可减小气态进给空气流1的流量以在氧分子内形成同样的平衡。由此氧产品流22可保持不变。
从上述说明可见,按图2所示的实施例运行的空气分离单元可大大降低单元的功耗。实际上,不再需要图1的增压空气压缩机(BAC)20,它被两个冷压缩机50和51所替代。从换热器65提取的冷空气在低温下被经济地压缩到较高的压力。此冷压缩消耗的功率比在环境温度下执行的暖压缩低。压缩机叶轮消耗的功率与其入口绝对温度成正比。进气温度为100K的压缩机叶轮消耗的功率大约为在300K的环境温度下进气的压缩机叶轮的1/3。因此,通过利用冷压缩,可大大降低压缩的功耗。但是,压缩热被再注入此系统,因此需要额外的制冷来消除。在此方法中,液体源30提供了满足热平衡所需的制冷。此外,当将液态空气或包含氧的液体供给到系统时,如上所述,可减小气态进给空气1的流量,从而进一步节约能量。将流52和55的温度选择为优选地接近液态氧流23的沸点温度。如果氧压力高于其临界压力,则可将流52和55的温度选择为接近气化流23的临界温度。术语“接近”表示所选择的温度在液态氧的沸点温度或临界温度的7℃(误差范围)以内。
如上文所述,如果可便宜地获得液体源,则没有很大的经济动机来生产液体产品。但是,从技术角度来看,可产生一些液体。在图2中,当将液态空气30供给到系统时,可作为流25抽取液态氧产品。或者优选地,可抽取液态氮流26。制冷流30的一部分仅传输通过该方法以便可以提取这些液体产品。
应当指出,所示装置不包括任何涡轮膨胀机。因此,添加低温液体30基本上提供了该方法所需的所有制冷。
当然,该方法可配备涡轮膨胀机以在功率比低期间生产液体产品,然后,在功率比高期间将那些液体产品供给给根据本发明的方法以实现本发明所示的节约。涡轮膨胀机可以是任何类型的,例如其中使冷的高压空气膨胀到双塔设备的高压塔内的克劳德(Claude)膨胀机,或者设置成空气膨胀到低压塔内的空气膨胀机,或者其中从高压塔提取的高压富氮气体膨胀到低压的氮膨胀机。如果这样配备了涡轮膨胀机,则其在将液体供给到根据本发明的系统期间不需要运行,但是,有时为了容易操作或者为了减小液体供给量,其可保持运行。也可使用多个膨胀机。
如果需要一些高压氮,则可将液态氮产品(图2中未示出)泵压到高压并使其在换热器65内气化。
图3、4和5示出相同的设备,并在图3中示出高峰期间使用的方法,在图4和5中示出在非高峰期间使用的两种可选的运行模式。可在非高峰期间生产液体,并在高峰期间将其反馈回低温箱。也可使用外部独立的液化器来提供所需的制冷。一些其它的产生制冷的装置例如制冷单元或FreonTM单元也可与上述制冷设备一起使用。
该方法使用标准双塔,包括高压塔80和低压塔81。将空气在压缩机10内压缩,并通过以大约6巴绝对压力运行的净化单元11使该空气基本上没有水分和CO2(流1)。压缩的净化空气1在换热器65内冷却。对于图3、4和5,虚线表示没有运行的管道,粗线表示运行的管道。
当用电量高于预定水平(高峰)时,如图3所示,从换热器65处于深冷温度-125℃的中间位置提取流量大约为流1的20%的一部分52,并将其送到第一冷压缩机50压缩至大约为45巴的较高压力,以生成第一加压气流53。压缩热使流53的温度升高,并且将流53再次引入换热器65的暖端并冷却,以生成也以大约-125℃从换热器65排出的被冷却的第一加压气流55。第二冷压缩机51将进一步压缩流55以生成大约为60巴的第二加压气流54。将流54在换热器65的中间位置再次引入,至少部分液化、冷却到大约-176℃,并从换热器65的冷端作为流56排出,以在阀内膨胀之后供给到高压蒸馏塔80。压缩空气的剩余部分2也以气态形式被供给到以大约6巴压力运行的塔80。在塔80的顶端抽取富氮液体8并作为回流送到低压塔81。可选地,从塔80提取组分接近空气的侧流4并将其作为进给送到塔81。在塔80的底部抽取也称为富液的富氧液流3并作为进给供给到塔81。回流和进给流优选地在被送到塔81之前低温冷却。将来自储存箱70的液态空气源30作为额外进给提供给塔81,其流量大约为进给空气1的10%mol.。在低压塔81的底部生成为流20的液态氧通过泵21泵压到40巴的高压,并且在换热器65中气化以生成气态氧产品22。来自塔81的压力大约为1.5巴的低压富氮气体9在换热器65内被加热并作为流41离开。可从塔80抽取中压氮气6并在换热器65内加热以生成中压气态产品7。可选地,可向该方法中添加氩产品(未示出)以生产氩。
如果冷压缩机50的排出气体的温度因其高压缩比而远高于环境温度,则可在将压缩机的排出气体引入换热器65进行冷却之前使用水冷或气冷换热器(未示出)冷却该排出气体。
液体源30可从空气分离设备本身得到。在此模式下,涡轮机13和14以及暖压缩机15不运转。
图4示出在用电量低于预定水平(非高峰)期间的运行模式。在此模式中,冷压缩机50和51都可停止运转,将被冷却的压缩空气流在换热器65的上游分成流12和流1。流12在暖增压压缩机(warm boostercompressor)15内被压缩。将在增压压缩机15的中间级提取的流分成两部分,将一部分在不进一步冷却的情况下送到涡轮机13,并将剩余部分46冷却到换热器65的中间温度然后送到涡轮机14。将膨胀流与流1混合并以气态形式送到高压塔80。膨胀机13和14提供了生产液体产品所需的制冷。通过旁路阀61从管路60中提取液态空气并将其作为流56送到高压塔80。从流8提取组分类似于空气的流65并送到储存箱70。此液态空气将在冷压缩机运行时的随后阶段(例如图3的阶段)内被提供给低温箱。可选地,可生产一些液态氧和氮并将其送到储存箱71和72。可以看到,在此模式中,暖增压压缩机15替代了冷压缩机50和51。
图5示出非高峰模式的另一个变型。冷压缩机51可保持运行而没有停止,只有冷压缩机50停止。用虚线示出到冷压缩机50的管路以表示这种情况。这允许进行更简单的操作,因为当改变模式时只需要启动或停止一个冷压缩机。将净化单元11之后的压缩空气的一部分12送到暖增压压缩机15进一步压缩。在压缩机15的中间级提取侧流64并将其分成两部分62和63。流62供给膨胀机13,并且冷却流63以形成供给膨胀机14的流46。膨胀机13和14提供了生产液体产品所需的制冷。膨胀机13的进气温度大约为环境温度(或者如果使用制冷单元则低于环境温度),膨胀机14的进气温度为换热器65的中间温度。将来自膨胀机13和14的膨胀空气与空气流1混合,并作为流2以气态形式送到塔80。将来自压缩机5的最后一级的加压空气冷却,作为流55从换热器65提取出来,然后供给到冷压缩机51。从冷压缩机51排出的流54在换热器65内进一步冷却和液化,然后经由管路56供给高压塔80。可以看到,在此模式中,暖增压压缩机15替代了冷压缩机50。
应当理解,本领域技术人员可在所附权利要求所表述的本发明的原理和范围内对文中为了解释本发明的特性而说明的细节、材料、步骤和部件的布置进行多种额外的改变。因此,本发明并不局限于上文给出的示例中的特定实施例。
权利要求
1. 一种可用于生产加压气态产品的低温空气分离方法,该方法包括a)在换热器内冷却压缩空气流以形成被冷却的压缩空气流;b)通过在第一压缩机内低温压缩所述被冷却的压缩空气流的至少一部分来形成第一加压气流,其中所述第一压缩机具有第一进气温度;c)在所述换热器内冷却所述第一加压气流的至少一部分以形成第一被冷却的加压气流;d)通过在第二压缩机内低温压缩所述第一被冷却的加压气流的至少一部分来形成第二加压气流,所述第二压缩机具有第二进气温度;e)冷却和至少部分液化所述第二加压气流;f)将所述被冷却的、部分液化的第二加压气流供给到具有至少一个蒸馏塔的系统;g)向所述蒸馏塔系统供给液体进给流;h)从所述蒸馏塔系统提取液体产品;i)使所述液体产品的至少一部分增压;j)使所述液体产品的至少一部分气化;以及k)在所述换热器内加热所述液体产品的至少一部分以生成加压气态产品。
2.根据权利要求1的方法,其特征在于,所述液体进给流包括液态空气。
3.根据权利要求1的方法,其特征在于,所述液体进给流还包括至少一种空气组分。
4.根据权利要求1到3的方法,其特征在于,所述液体产品包括选自a)氧和b)氮的至少一种成分。
5.根据权利要求1到4的方法,其特征在于,所述第一进气温度大约为所述液体产品的沸点温度。
6.根据权利要求1到5的方法,其特征在于,所述第二进气温度大约为所述气化的液体产品的沸点温度。
7.根据权利要求1到6的方法,其特征在于,所有所述冷却都在没有涡轮膨胀的情况下执行。
8.根据权利要求1到7的方法,其特征在于,所述液体进给流的至少一部分来自储存装置。
9.一种可用于生产加压气态产品的低温空气分离方法,该方法包括a)在用电量高于预定阈值的第一阶段期间执行下列操作,所述第一阶段的操作包括1)在换热器内冷却压缩空气流以形成被冷却的压缩空气流;2)通过在第一压缩机内低温压缩所述被冷却的压缩空气流的至少一部分来形成第一加压气流,其中所述第一压缩机具有第一进气温度;3)在所述换热器内冷却所述第一加压气流的至少一部分以形成第一被冷却的加压气流;4)通过在第二压缩机内低温压缩所述第一被冷却的加压气流的至少一部分来形成第二加压气流,所述第二压缩机具有第二进气温度;5)冷却和至少部分液化所述第二加压气流;6)将所述被冷却的、部分液化的第二加压气流供给到具有至少一个蒸馏塔的系统;7)向所述蒸馏塔系统供给液体进给流;8)从所述蒸馏塔系统提取液体产品;9)使所述液体产品的至少一部分增压;10)使所述液体产品的至少一部分气化;以及11)在所述换热器内加热所述液体产品的至少一部分以生成加压气态产品;以及b)在用电量低于所述预定阈值的第二阶段期间生产所述液体进给流的至少一部分。
10.根据权利要求9的方法,其特征在于,在所述第二阶段期间使用所述第二压缩机。
11.一种可用于生产加压气态产品的设备,该设备包括a)具有至少一个蒸馏塔的系统;b)用于将液体流供给到所述蒸馏塔系统的管道,其中所述液体流得自空气;c)具有暖端和冷端的换热器;d)具有第一进气温度的第一压缩机;e)具有第二进气温度的第二压缩机;f)用于将压缩空气流供给到所述换热器的管道;g)用于从选自1)所述换热器的中间部分和2)所述换热器的冷端的至少一个位置提取被冷却的压缩空气的管道;h)用于将所述被冷却的压缩空气送到所述第一压缩机以形成第一加压气流的管道;i)用于将所述第一加压气流的至少一部分送到所述换热器以形成第一被冷却的加压气流的管道;j)用于将所述第一被冷却的加压气体的至少一部分从所述换热器送到所述第二压缩机以形成第二加压气流的管道;k)用于将所述第二加压气流的至少一部分送到所述换热器的管道;1)用于提取所述第二加压气流的至少一部分并将所述第二加压气流供给到所述蒸馏塔系统的管道;m)用于将液体进给流送到所述蒸馏塔系统的管道;n)用于从所述蒸馏塔系统提取液体流的管道;o)用于使所述被提取的液体流的至少一部分增压以形成加压液体流的装置;以及p)用于将所述加压液体流的至少一部分送到所述换热器的管道。
12.根据权利要求11的设备,其特征在于,该设备还包括用于将被冷却的气态压缩空气从所述换热器送到所述蒸馏塔系统的装置。
13.根据权利要求11或12的设备,其特征在于,该设备还包括a)至少一个涡轮膨胀机;以及b)用于将流体从所述蒸馏塔系统供给到所述涡轮膨胀机的管道。
14.根据权利要求11、12或13的设备,其特征在于,该设备还包括a)用于由所述蒸馏塔系统生产的所述液体进给流的储存箱;以及b)将所述储存箱连接到选自1)所述换热器和2)所述蒸馏塔系统的至少一个的管道。
15.根据权利要求11到14的设备,其特征在于,该设备还包括a)用于储存所述液体进给流的储存箱;b)将所述储存箱连接到外部液体源的管道;以及c)将所述储存箱连接到所述蒸馏塔系统的管道。
全文摘要
在换热器(65)内冷却压缩空气流(1)以形成被冷却的压缩空气流(5)。然后,在第一压缩机(50)内低温压缩该流以形成第一加压气流。该第一加压气流在换热器内进一步冷却,在第二压缩机内被低温压缩,然后被冷却和部分液化。然后,将该被冷却的和部分液化的产品(56)供给到蒸馏塔(80,81)系统。从蒸馏塔(80,81)系统提取液体产品(20)。然后在换热器(65)内使该产品增压(21)、气化并加热以生成加压气态产品(22)。用得自空气的液体进给流供给蒸馏塔系统。
文档编号F25J3/04GK1985137SQ200580023765
公开日2007年6月20日 申请日期2005年7月12日 优先权日2004年7月14日
发明者J-R·布吕热罗勒, B·哈 申请人:液体空气乔治洛德方法利用和研究的具有监督和管理委员会的有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1