从富甲烷气中脱氢气、氮气、一氧化碳并生产液化天然气的工艺的制作方法

文档序号:4776917阅读:489来源:国知局
专利名称:从富甲烷气中脱氢气、氮气、一氧化碳并生产液化天然气的工艺的制作方法
从富甲烷气中脱氢气、氮气、一氧化碳并生产液化天然气的 工艺技术领域
本发明提供了一种从富甲烷气中脱氢气、氮气、一氧化碳并生产液化天然气的工 艺。煤基合成气、焦炉气以及焦炉气甲烷化后的气体等除含有甲烷外,还含有氮气、氢气、 一氧化碳,为得到液化天然气,需将其脱除到一定程度,才能作为液化天然气(LNG)产品产 出。
背景技术
迫于环保及能源成本压力,天然气作为一次能源在社会各个领域所占比例正逐渐 提升,其应用领域已逐渐扩大到发电、汽车用气、工业用气、城市居民用气、化工用气等方 面,市场需求量迅速增加。传统的天然气管输供应方式仍为主流,但受原料条件及用户分布 限制,有相当一部分资源无法进行管道长距离输送,需选择液化的方式,将甲烷转变为液体 再采用灵活的运输方式将其送往用户终端。并且,液化天然气(LNG)体积只有同量气体体 积的1/625,液化后可以降低贮存和运输成本,且可以提高单位体积的燃值。液化天然气工 业的不断发展,对天然气液化方法和装置在能耗、投资和效率等方面提出了更高的要求。
对于某些富含甲烷气体,例如煤基合成气和焦炉气甲烷化后得到的合成天然气 等,其组成除甲烷外,还含有氮气、氢气、一氧化碳等,为得到高纯度的液化天然气,需将其 中的氮气、氢气、一氧化碳脱除到一定程度,才能作为液化天然气(LNG)产品产出。
目前常用的气体分离方法一般有低温液化分离、变压吸附及膜分离等,每种技术 方案均具有自己的特色且具有各自的应用范围。一般来说,变压吸附及膜分离的分离纯度 较低,且产品产率及纯度之间往往存在矛盾,而目前将低温液化分离应用于富甲烷气体提 纯并生产液化天然气的报道较少。发明内容
本发明的目的在于提供一种从含氢气、氮气、一氧化碳的富甲烷气(富含甲烷的 气体)中脱除氢气、氮气、一氧化碳并将甲烷组分液化生产天然气(LNG)的方法,使本发明 能将氢气、氮气、一氧化碳脱除的同时得到相比传统工艺净化效果更好的液化天然气,工艺 路线先进,且较传统工艺相比,系统能耗显著降低。
本发明提供一种从富甲烷的气体中脱氢气、氮气、一氧化碳以并生产液化天然气 的工艺,该工艺包括低温液化工序和精馏分离工序两部分;低温液化工序包括由混合冷剂 提供冷量在冷箱中实现天然气的液化;精馏分离工序包括含氢气、氮气、一氧化碳的富甲 烷混合气体采用单塔精馏或双塔精馏流程脱除氢气、氮气、一氧化碳;其中含氢气、氮气、一 氧化碳的富甲烷的混合气体依次经冷箱、精馏塔底再沸器、冷箱将甲烷组分液化后,进入精 懼分离系统中脱除氮气、氢气、一氧化碳,得到氢气含量< 4000ppm(优选< 3500ppm,更优 选< 3000ppm,进一步优选< 2500ppm,更进一步优选< 2000ppm,尤其优选< 1700ppm,特 别优选< 1500ppm,最优选< IOOOppm),和氮气含量< 8% (优选< 7 %,更优选< 6 %,进一步优选< 5%,更进一步优选< 4%,更好< 3%,尤其优选< 2%,特别优选< 1.5%,更特别优选< 1%,最优选< O. 5% ),一氧化碳含量< 9% (优选< 8%,更优选< 7%,进一步优选< 6%,更进一步优选< 5%,更好< 4%,再更好< 3%,尤其优选< 2%,特别优选(1. 5%,更特别优选彡1%,最优选彡O. 5% )的液化天然气(LNG)产品。一般情况下,在低温液化工序中,冷箱的冷量由或主要由混合冷剂提供;第一股液相混合冷剂首先进入冷箱的第一液相通道,在板翅式换热器组中被预冷至一定温度后引出冷箱,经节流阀节流后与从换热器组后一级换热器返回的混合冷剂流股汇合并反向进入前一级换热器为换热器组提供冷量;第二股液相混合冷剂通过冷箱第二液相通道预冷至一定温度后出冷箱,再经节流阀节流后,与从换热器组后一级换热器返回的混合冷剂流股汇合返回换热器组前一级换热器;一股气相冷剂流股通过冷箱的一气相通道冷却至一定温度,再经节流阀节流后反向进入换热器组为换热器提供冷量。低温液化部分在冷箱中完成,冷箱的冷量主要由混合冷剂提供。优选,举例来说,第一股液相混合冷剂首先进入冷箱的第一液相通道,在其中被预冷至约10°C -30°c,经第一个节流阀节流至O. 3 O. 6MPaA后与从板翅式换热器组后一级换热器返回的混合冷剂流股汇合并反向进入前一级换热器为换热器组提供冷量;另外,第二股液相混合冷剂通过冷箱第二液相通道预冷至-30°C -80°C,再经第二个节流阀节流至O. 3 O. 6MPaA后,与从换热器组后一级换热器返回的混合冷剂流股汇合返回换热器组前一级换热器;此外,一股气相冷剂流股通过冷箱的一气相通道冷却至_135°C _171°C,再经第三节流阀节流至O. 3 O. 6MPaA后反向进入换热器组为换热器提供冷量。优选地,在所述单塔精馏流程中,含氢气、氮气、一氧化碳的富甲烷的混合气首先经冷箱预冷(一般在-100°C至-140°C范围,优选在-105°c至-135°c范围,更优选在-11 (TC至_130°C范围,进一步优选在-115 °C至-125 °C范围,尤其优选在-118 °C至-122 °C范围),之后进入精馏塔的塔底再沸器为精馏塔提供热量,混合气流股出塔底再沸器后(一般,混合气的自身温度降低在-105 0C至-145 °C范围,优选在-107 °C至-141 °C范围,更优选在-112°C至-138°C范围,进一步优选在-116°C至-132°C范围,尤其优选在_120°C至_128°C范围,特别优选在-121°C至_125°C范围,最优选在_121°C至_123°C范围)返回冷箱的后序换热器中继续冷却(一般至在_140°C至_170°C范围,优选在_145°C至_165°C范围,更优选在_150°C至-160 °C范围),之后进入精馏塔中精馏(一般操作压力是在O. 15-2. 5MPaA范围,优选在O. 20-2. OMPaA范围,更优选在O. 25-1. 8MPaA范围,进一步优选在 O. 30-1. 5MPaA 范围,特别优选在 O. 35-1. 4MPaA或O. 40-1. 4MPaA或O. 45-1. 4MPaA范围),塔顶部得到含有绝大部分的氢气和少量的氮气、一氧化碳的混合气,该氢气、氮气、一氧化碳混合气经冷箱回收冷量(即复热)后出冷箱系统作他用;精馏塔底部的液相返回冷箱中过冷至一定程度(一般过冷至在_130°C至_170°C范围,)后出冷箱系统,得到LNG产品。所得LNG产品具有以上所定义的范围内的氢气含量和氮气含量。这里,压力单位MPaA(兆帕,绝对压力)。作为优选的方式,在上述单塔流程中在精馏塔中精馏时,从精馏塔的顶部引出的气相进入塔顶冷凝器中,经液氮冷凝后,塔顶部得到含有绝大部分的氢气和少量的氮气、一氧化碳的混合气,塔底得到LNG产品,然后返回冷箱中进行过冷操作后出冷箱系统,得到LNG产品。优选,精馏塔的 塔顶冷凝器采用液氮提供冷量,液氮首先通过冷箱,并经节流阀节流后进入精馏塔的塔顶冷凝器来冷却塔顶气相物流,液氮出冷凝器后,以气相的形式经冷箱回收冷量后出冷箱系统。优选地,所述双塔精馏流程采用一台低压精馏塔和一台高压精馏塔;低压精馏塔包括塔底的再沸器和塔顶的冷凝器,高压精馏塔包括塔顶的冷凝器;低压精馏塔顶部得到富氮气、一氧化碳,高压精馏塔顶部得到富氢气。 在优选的情况下,在所述双塔流程中,富甲烷的混合气首先经冷箱预冷,冷却至一定温度(一般至-100°C至-140°c范围,优选-105°c至-135°c范围,更优选-110°c至-130°c范围,进一步优选_115°C至_125°C范围,尤其优选-118°C至-122°C范围)后出冷箱,进入低压精馏塔的塔底再沸器为低压塔提供热量,出塔底再沸器的流股(一般,它自身温度降低至-105°C至_145°C范围,优选_107°C至_141°C范围,更优选_112°C至_138°C范围,进一步优选_116°C至_132°C范围,尤其优选_120°C至_128°C范围,特别优选_121°C至_125°C范围,最优选_121°C至_123°C范围)返回冷箱继续冷却(一般至_145°C至_170°C范围,优选-147°C至_165°C范围,进一步优选_148°C至_162°C范围,更优选_150°C至_160°C范围)后,入高压精馏塔中精馏(一般操作压力是在1. 0-5. OMPaA范围,优选在1. 5-4. 5MPaA范围,更优选在2. 0-4. OMPaA范围,特别优选在2. 5-3. 5MPaA范围),高压精馏塔的塔顶得到气体为富氢气,经冷箱回收冷量后出冷箱系统作他用;高压精馏塔底部引出的液体(液相)进行减压(优选利用节流减压阀)(一般减压至O. 15-1. OMPaA范围,优选O. 20-0. 9MPaA范围,更优选O. 25-0. 85MPaA范围,进一步优选在O. 30-0. 75MPaA范围,特别优选在O. 35-0. 7MPaA或O. 40-0. 65MPaA或O. 45-0. 55MPaA范围),然后经低压精馏塔中部进入低压塔中精馏(操作压力在O. 15-1. OMPaA范围,优选在O. 20-0. 9MPaA范围,更优选在O. 25-0. 85MPaA范围,进一步优选在O. 30-0. 75MPaA范围,特别优选在O. 35-0. 7MPaA或O. 40-0. 65MPaA或
O.45-0. 55MPaA范围),塔顶气体为富氮气、一氧化碳,经冷箱回收冷量后出冷箱系统作他用;低压精馏塔的底部液相返回冷箱中过冷至一定程度(一般过冷至_140°C至_170°C范围,)后作为液化天然气产品引出,得到LNG产品。所得LNG产品具有以上所定义的范围内的氢气含量、氮气含量、一氧化碳含量。作为优选的方式,在上述双塔流程中在高压精馏塔中精馏时,从高压精馏塔的顶部引出的气相另外进入到塔顶冷凝器中冷凝(优选经液氮冷凝),然后进入到第一气液分离器中进行气液分离,第一分离器底部的液相回流到高压精馏塔中,分离器顶部得到富氢气,优选地,该富氢气进一步流经冷箱回收冷量,被复热后出冷箱系统。优选,低压精馏塔顶部引出的气相送入该塔的顶部冷凝器中冷凝,然后经第二分离器进行气液分离,第二分离器底部的液相回流入低压精馏塔,第二分离器顶部得到富氮气、一氧化碳,优选地,该富氮气、一氧化碳进一步经冷箱E4回收冷量,复热后出冷箱系统作他用;经精馏后,低压精馏塔底部得到LNG产品,然后返回冷箱进行过冷,出冷箱系统。在上述双塔流程中,低压精馏塔和高压精馏塔两者的塔顶冷凝器均采用液氮提供冷量,液氮经冷箱后分为两路,一路经第一个节流阀节流后进入低压精馏塔的塔顶冷凝器,另一路经第二个节流阀节流后进入高压精馏塔的塔顶冷凝器,出高压塔的塔顶冷凝器和低压塔的塔顶冷凝器的两股冷物流以气氮的形式汇合,通过冷箱复热后出系统。本发明的优点1、本发明采用全新的分离氢气、氮气、一氧化碳的工艺路线,液化和分离都在低温下进行,在分离氢气、氮气、一氧化碳的同时就可制取LNG,经济可靠;2、单塔流程中的精馏塔及双塔流程中的低压精馏塔,其塔底再沸器的热量均由工艺物流提供,不但省去外部热源,降低了能耗,同时也冷却了工艺物流;且将出塔底再沸器的物流继续经冷箱冷却后再送入塔中精馏,相比出再沸器后直接入塔精馏,其能耗降低近20%。3、双塔流程中,低压精馏塔分离富氮气、一氧化碳,高压精馏塔分离富氢气,为高纯度的氢气、氮气、 一氧化碳的利用提供条件。


图1是本发明的单塔工艺流程图;图2是本发明 的双塔工艺流程图。
具体实施例方式本发明的工艺包含低温液化工序和精馏分离工序两部分;低温液化部分由混合冷剂提供冷量在冷箱中完成;精馏分离部分采用单塔或双塔流程脱除氢气、氮气、一氧化碳;含氢、氮气、一氧化碳的富甲烷混合气依次经冷箱、精馏塔底再沸器、冷箱将甲烷组分液化后,进入精馏分离系统中脱除氢气、氮气、一氧化碳,得到的LNG产品中氢气含量^ 2000ppm,氮气含量< 4%, 一氧化碳< 6 %。低温液化部分在冷箱中完成,冷箱的冷量主要由混合冷剂提供。参照附图1,第一股液相混合冷剂首先进入冷箱的第一液相通道,在其中被预冷至约10°c -30°c,经节流阀Vl节流至O. 3 O. 6MPaA后与从板翅式换热器组后一级换热器返回的混合冷剂流股汇合并反向进入前一级换热器为换热器组提供冷量。第二股液相混合冷剂通过冷箱第二液相通道预冷至_30°C _80°C,再经节流阀V2节流至O. 3 O. 6MPaA后,与从换热器组后一级换热器返回的混合冷剂流股汇合返回换热器组前一级换热器。一股气相冷剂流股通过冷箱的一气相通道冷却至_135°C _171°C,再经节流阀V3节流至O. 3 O. 6MPaA后反向进入换热器组为换热器提供冷量。双塔流程中的低温液化部分与单塔部分相同。双塔流程的低温液化部分也在冷箱中完成,冷箱的冷量主要由混合冷剂提供。参照附图2,第一股液相混合冷剂首先进入冷箱的第一液相通道,在其中被预冷至约10°C _30°C,经节流阀V4节流至O. 3 O. 6MPaA后与从板翅式换热器组后一级换热器返回的混合冷剂流股汇合并反向进入前一级换热器为换热器组提供冷量。第二股液相混合冷剂通过冷箱第二液相通道预冷至-30°C -80°C,再经节流阀V5节流至O. 3 O. 6MPaA后,与从换热器组后一级换热器返回的混合冷剂流股汇合返回换热器组前一级换热器。一股气相冷剂流股通过冷箱的一气相通道冷却至-135°C _171°C,再经节流阀V6节流至O. 3 O. 6MPaA后反向进入换热器组为换热器提供冷量。精馏分离部分,参见附图1,说明单塔流程如下含氢气、氮气、一氧化碳的富甲烷气首先通过冷箱El的一气相通道进入冷箱中预冷,冷却至-100 -140°c后,混合流股出冷箱E1,进入精馏塔Tl的塔底再沸器E2作为精馏塔的热源为其提供热量,同时混合流股自身的温度降至-105 _145°C,混合流股出塔底再沸器E2后返回冷箱El的后序换热器中继续冷却,之后由精馏塔Tl中部进入塔中精馏;精馏塔Tl操作压力控制在O. 15 2. OMPaA,塔顶部采出的气相进入塔顶冷凝器E3中,经液氮冷凝后,从精馏塔Tl顶部得到含有绝大部分的氢气及少量的氮气、一氧化碳的混合气,氢气、氮气、一氧化碳的混合气经冷箱El复热后出冷箱系统;精馏塔Tl底部得到LNG,其中的氢气含量< 2000ppm,氮气< 4%,一氧化碳< 6%,出精馏塔的LNG返回冷箱El中过冷至-135 -170°C后,作为产品出冷箱系统。精馏塔Tl塔顶冷凝器采用液氮提供冷量,液氮首先通过冷箱E1,并经节流阀V4节流后进入精馏塔塔顶冷凝器E3冷却塔顶气相物流,液氮出冷凝器E3后,以气相的形式经冷箱El回收冷量后出冷箱系统。参见附图2,说明双塔流程如下含氢气、氮气、一氧化碳的富甲烷气首先通过冷箱E4的一气相通道进入冷箱E4,混合气预冷至-100 -140°c后出冷箱E4,进入低压精馏塔T2的塔底再沸器E7,作为低压精馏塔T2的热源为其提供热量,同时自身温度降至-105 -145°C,从低压塔T2的塔底再沸器E7流出的流股返回冷箱E4中,继续在冷箱E4的后序换热器组中冷却,冷却至-145 -170°C后去高压精馏塔T3塔釜,在高压精馏塔T3中精馏,高压精馏塔T3操作压力控制在1. O 5. OMPaA ;高压塔T3塔顶引出的气相进入塔顶冷凝器E6中冷凝,后进入第一个分离器T5中,从分离器T5底部得到的液相回流入高压精馏塔T3中,分液器T5顶部得到富氢气,富氢气经冷箱E4回收冷量,复热后出冷箱系统作他用;高压精馏塔T3底部引出的液相,经节流阀VlO节流减压至O. 15 1. OMPaA,进入低压精馏塔T2的中部精馏,低压精馏塔T2操作压力控制在O. 15 1. OMPaA ;低压精馏塔T2顶部引出气相送入塔顶冷凝器E5中冷凝,然后经第二分离器T4分液,分离器T4底部液相回流入低压精馏塔T2中,顶部得到富氮气、一氧化碳,富氮气、一氧化碳经冷箱E4回收冷量,复热后出冷箱系统作他用;经精馏后,低压精馏塔T2底部得到的LNG中的氢气含量< 2000ppm,氮气< 4%,一氧化碳彡6%;出低压精馏塔的LNG返回冷箱E4中继续过冷至-145 -170°C后,作为产品出冷箱系统。

优选,低压精馏塔T2和高压精馏塔T3塔顶冷凝器均采用液氮提供冷量,液氮经冷箱E4后分为两路,一路经节流阀V8节流后进入低压精馏塔的塔顶冷凝器E5,另一路经节流阀V9节流后进入高压精馏塔的塔顶冷凝器E6,出高压塔的塔顶冷凝器E6和低压塔的塔顶冷凝器E5的两股冷物流以气氮的形式汇合,通过冷箱E4复热后出系统。
权利要求
1.一种从富甲烷的气体中脱氢气、氮气、一氧化碳以并生产液化天然气的工艺,该工艺包括低温液化工序和精馏分离工序两部分;低温液化工序包括由混合冷剂提供冷量在冷箱中实现天然气的液化;精馏分离工序包括含氢气、氮气、一氧化碳的富甲烷的混合气采用单塔精馏或双塔精馏流程脱除氢气、氮气、一氧化碳;其中含氢、氮、一氧化碳气体的富甲烷的混合气体依次经冷箱、精馏塔底再沸器、冷箱将甲烷组分液化后,进入精馏分离系统中脱除氮气、氢气和一氧化碳,得到氢气含量< 4000ppm,氮气含量< 8%,一氧化碳< 9%的液化天然气产品。
2.根据权利要求1所述的工艺,其特征在于所述单塔精馏流程中,含氢气、氮气、一氧化碳的富甲烷的混合气首先经冷箱预冷,之后进入精馏塔的塔底再沸器为精馏塔提供热量,混合气流股出塔底再沸器后返回冷箱的后序换热器中继续冷却,之后进入精馏塔中精馏,塔顶部得到含有绝大部分的氢气和少量的氮气、一氧化碳的混合气,该氢气、氮气、一氧化碳混合气经冷箱回收冷量后出冷箱系统作他用;精馏塔底部的液相返回冷箱中过冷至一定程度后出系统。
3.根据权利要求2的工艺,其中在精馏塔中精馏过程中,从精馏塔的顶部引出的气相进入塔顶冷凝器中,经液氮冷凝后,塔顶部得到含有绝大部分的氢气和少量的氮气、一氧化碳的混合气,塔底得到LNG产品,然后返回冷箱中进行过冷操作后出冷箱系统,得到LNG产品O
4.根据权利要求3的工艺,其中精馏塔的塔顶冷凝器采用液氮提供冷量,液氮首先通过冷箱,并经节流阀节流后进入精馏塔的塔顶冷凝器来冷却塔顶气相物流,液氮出冷凝器后,以气相的形式经冷箱回收冷量后出冷箱系统。
5.根据权利要求1所述的工艺,其特征在于所述双塔精馏流程采用一台低压精馏塔和一台高压精馏塔;低压精馏塔包括塔底的再沸器和塔顶的冷凝器,高压精馏塔包括塔顶的冷凝器;低压精馏塔顶部得到富氮气和一氧化碳,高压精馏塔顶部得到富氢气。
6.根据权利要求5所述的工艺,其特征在于所述双塔流程中,富甲烷的混合气首先经冷箱预冷,冷却至一定温度后出冷箱,进入低压精馏塔的塔底再沸器为低压塔提供热量,出塔底再沸器的流股返回冷箱继续冷却后,入高压精馏塔中精馏,高压精馏塔的塔顶得到气体为富氢气,经冷箱回收冷量后出冷箱系统作他用;高压精馏塔底部分离出的液体节流减压后经低压精馏塔中部进入低压塔中精馏,塔顶气体为富氮气、一氧化碳,经冷箱回收冷量后出冷箱系统作他用;低压精馏塔的底部液相返回冷箱中过冷至一定程度后作为液化天然气产品引出。
7.根据权利要求6的工艺,其中在上述双塔流程中在高压精馏塔中精馏时,从高压精馏塔的顶部引出的气相另外进入到塔顶冷凝器中冷凝,然后进入到第一气液分离器中进行气液分离,第一分离器底部的液相回流到高压精馏塔中,分离器顶部得到富氢气。
8.根据权利要求6或7的工艺,其中低压精馏塔顶部引出的气相送入该塔的顶部冷凝器中冷凝,然后经第二分离器进行气液分离,第二分离器底部的液相回流入低压精馏塔,第二分离器的顶部得到富氮气、一氧化碳。
9.根据权利要求8的工艺,其中该富氮气、一氧化碳进一步经冷箱回收冷量,复热后出冷箱系统。
10.根据权利要求7或8的工艺,其中低压精馏塔和高压精馏塔两者的塔顶冷凝器均采用液氮提供冷量,液氮经冷箱后分为两路,一路经第一个节流阀节流后进入低压精馏塔的塔顶冷凝器,另一路经第二个节流阀节流后进入高压精馏塔的塔顶冷凝器,出高压塔的塔顶冷凝器和低压塔的塔顶冷凝器的两股冷物流以气氮的形式汇合,通过冷箱复热后出系统。
11.根据权利要求1-10中任何一项所述的工艺,其特征在于其低温液化工序部分中,冷箱的冷量由或主要由混合冷剂提供;第一股液相混合冷剂首先进入冷箱的第一液相通道,在板翅式换热器组中被预冷至一定温度后引出冷箱,经节流阀节流后与从换热器组后一级换热器返回的混合冷剂流股汇合并反向进入前一级换热器为换热器组提供冷量;第二股液相混合冷剂通过冷箱第二液相通道预冷至一定温度后出冷箱,再经节流阀节流后,与从换热器组后一级换热器返回的混合冷剂流股汇合返回换热器组前一级换热器;一股气相冷剂流股通过冷箱的一气相通道冷却至一定温度,再经节流阀节流后反向进入换热器组为换热器提供冷量。
12.根据权利要求1-11中任何一项的工艺,其中得到氢气含量<2000ppm,氮气含量(4%,一氧化碳< 6%的液化天然气产品。
全文摘要
一种从富甲烷气中脱氢气、氮气、一氧化碳并生产液化天然气的工艺,包含低温液化和精馏分离两部分;低温液化部分由混合冷剂提供冷量在冷箱中完成;精馏分离部分采用单塔或双塔流程脱除氢气、氮气、一氧化碳;含氢氮的富甲烷混合气依次经冷箱、精馏塔底再沸器、冷箱将甲烷组分液化后,进入精馏分离系统中脱除氢气、氮气、一氧化碳,得到的LNG产品中氢气含量≤2000ppm,氮气含量≤4%,一氧化碳≤6%。本发明提供了一种含有氢气、氮气、一氧化碳的富甲烷气的天然气液化工艺,在将氢气、氮气、一氧化碳脱除的同时得到相比传统工艺分离效果更好的液化天然气,工艺路线先进,较传统工艺相比,系统的能耗降低近20%。
文档编号F25J3/08GK103033025SQ201110291609
公开日2013年4月10日 申请日期2011年9月30日 优先权日2011年9月30日
发明者何振勇, 蔚龙, 张生, 郑忠英, 傅建青 申请人:新地能源工程技术有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1