使用不同密度填料的深冷分馏系统的制作方法

文档序号:4791249阅读:247来源:国知局
专利名称:使用不同密度填料的深冷分馏系统的制作方法
技术领域
本发明涉及应用一或多个分馏柱的深冷空气分离,其中至少一个柱内使用结构填料(structured packing)。
将流体混合物如空气分馏成为富含有关组分的两个或多个部分,一般是使用一个或多个分馏柱,柱内使用塔盘或无规填充的填料作为传质元件。
近来的发展是使用结构填料作为分馏柱的传质元件,因为结构填料比塔盘的压力降小,并且比无规填料更能预见其性能。
然而,在多于一段的柱中,特别在其一段的水力负荷与其他段水力负荷显著不同的场合,存在的问题是由于水力负荷的变化而引致一段或多段比其他段更接近于泛液状态。这使该柱的操作带来重大的局限性,并且与无泛液或其他问题的危险时所能达到的物料流量变化相比,物料流量变化幅度显著下降。虽然可以借助于变化每段柱的内径来对付这一问题,但此办法成本很高。
因此,本发明目的是为空气深冷分离提供方法和设备,即采用内含结构填料的分馏柱,从而与已知系统相比,具改进的操作灵活性。
本发明的一个方面是空气分离装置,包括至少一个分馏柱,并具有将进料空气送入以及将产品送出该装置的设备,所述分馏柱至少其一具有多个柱段并具有传质元件,在至少其二柱段中的传质元件是结构填料,其中在第一柱段的结构填料的填料密度与该柱的第二柱段中结构填料的填料密度有所不同。
本发明的另一个方面是含至少二个具不同挥发性的组分的混合物的分离方法,其中组分之一是氧,分离后成为富含具较第二组分更高挥发性的第一组分的第一部分,以及富含第二组分的第二部分,该方法包括将该混合物送入一个分馏柱,该柱具多个柱段和所具有的传质元件在至少二个柱段是结构填料,其中第一柱段的结构填料的填料密度与第二柱段中结构填料的填料密度有所不同;还包括从该柱中取出至少一些该第一部分和至少一些该第二部分。
此处所用“柱”一词是指一个蒸馏或分馏区,即一个接触柱或区,其中的液相与汽相逆流接触,使流体混合物分离,例如,使汽相与液相在该柱内的填料元件上或竖向隔开安装的多个塔盘或塔板上进行接触。关于分馏柱的进一步叙述请见Chemical Engineers′Handbook,Fifth Edition,edited by R.H.Perry and C.H.Chilton,Mc Gr a w-Hill Book Company,New York,Section 13,“Distillation”B.D.Smith,et al.,page 13-3 The Continuous Distillation Process.此处所用“双柱”一词是指一种高压分馏柱,其上部是与下部的低压柱处于热交换关系。关于双柱的进一步叙述,请见“The Separation of Gases”,Oxford University Press,1949,Chapter Ⅶ,Commercial Air Separation此处所用“氩柱”是指在柱中上流的蒸汽通过与下流的液体逆流接触而逐渐富含氩,并从该柱取出氩产品。
此处所用“HETP”是指所产生的组成变化相当于一个理论板达到的组成变化时的填料高度。
此处所用“理论板”是指蒸汽与液体相接触后使得出去的蒸汽与液体流处于平衡的接触过程。
此处所用“结构填料”是指在填料中,其个别元件相对于其他元件以及相对于该柱的轴心是呈特定方向取向的。结构填料的实例见之于US2047444的Stedman填料,见之于Ellis等,Trans.Instn.Chem.Engrs.,41,1963的Goodloe填料,还有近来研制的结构填料如Huber的US4186159、Meier的US4296050、Lockett等的US4929399中所披露者。
此处所用“柱段”是指该柱中,填装了该柱直径的一个区段。当蒸汽或液体从该柱取出或进入该柱时,一个特定区的顶或底结束。
此处所用“填料密度”是指单位体积填料中,可用的表面面积。
此处所用“正常设计点的泛液百分率”是指在设计点即正常操作条件的该蒸汽水力负荷乘以100,再除以在泛液点该蒸汽的水力负荷,泛液点即该柱开始泛液并且该柱不可能在高于该点的条件操作。
此处所用“不同填料密度”是指一个填料密度与参比填料密度相比其差异为每立方米至少50平方米。
此处所用“负荷下限(turndown limit)”是指蒸汽水力负荷再低就使分离效率显著变差的数值乘以100,再除以设计点的蒸汽水力负荷。


图1是按本发明实施方案之一的空气分离装置简化示意图,其中包括一双柱,其低压柱与高压柱处于热交换关系,还有一个氩柱,其中该低压柱有4个柱段,其中至少二个柱段使用不同密度的结构填料。
图2示出图1中4个段在正常设计点的泛液百分率以及蒸汽水力负荷。
图3示出一个柱中4个段在正常设计点的泛液百分率以及蒸汽水力负荷。
图4是具给定填料密度(例如500米2/米3)的结构填料简化图,其中a、b、c表示分开的填料元件。
图5是填料密度比图4所示者更大的结构填料简化图,其中a、b、c表示分开的填料元件。
参照附图1,高压进料空气1送入柱2,这是双柱系统的高压柱。在柱2内,进料空气经深冷分馏而分离,成为富氮蒸汽和富氧液体。富氧液体3从柱2取出,送入氩柱顶部冷凝器20,在其中至少有部分汽化,同时使氩柱顶部蒸汽冷凝,然后成为蒸汽流21和液流23而进入柱4,柱4是双柱系统的低压柱。富氮的蒸汽5进入冷凝器6,通过热交换而冷凝,同时使柱底部沸腾。所得富氮液流7一部分作为液流8进入柱2作为其回流液体,一部分作为液流9进入柱4作为回流液体。低压进料空气22亦可送入柱4。在柱4中,进料流通过深冷分馏成为富氮和富氧部分。
富氮部分作为料流10从柱4取出,并回收作为产品氮。富氧部分作为料流11从柱4取出,并回收作为产品氧。从柱4排出废料流12作为控制手段。料流13主要含氧和氩,从柱4的中间部分放出,送入氩柱14,通过深冷分馏成为富氩部分和富氧部分。富氩部分于柱顶冷凝器20处冷凝,一部分成料流15从柱14取出,成为氩粗产品。富氧部分从柱14取出,成为料流16而送入柱4。
如图1所示,柱4分为Ⅰ、Ⅱ、Ⅲ、Ⅳ4段。段Ⅰ由料流11和13的取料点所限定;段Ⅱ由13取料点和料流21和23的进料点所限定;段Ⅲ由21和23进料点和料流12取料点所限定;段Ⅳ由料流12和10的取料点所限定。在实施本发明时,使用具有至少2段的分馏柱。一般,柱中最多段数为约8段。
由于在柱4送入并取出物料流,也由于流体组成的变化,各段的水力负荷显著不同。蒸汽水力负荷可以由下式表达CV=MG/ρAT×[ρG/(ρL-ρG)]0.5其中MG=蒸汽流量(磅/秒),ρG=蒸汽密度(磅/立方英尺),
ρG=液体密度(磅/立方英尺),AT=横截面积(平方英尺),CV=容量因数(英尺/秒)。
液体水力负荷可由式ML/ρLAT表示,其中ML=液体流量(磅/秒)。
由于柱内各段的水力负荷可有很大变化,于是有一个操作极限,因为在设计该柱时要按照最容易发生泛液的那一段来设计,以确保柱操作时没有一段发生泛液。一段,最易发生泛液的柱段的正常设计点是按达到泛液的约80%来操作,而其他段就在更低的百分率条件下操作。
本发明处理并解决此一问题是借助于采用不同密度的结构填料应用于一个柱中的至少2段,使该柱中第1段的结构填料密度要不同于该柱第2段的结构填料密度。不言自明,所述柱的第1段可以是指该柱的任一段。本发明中特别有用的结构填料其密度范围为250-1000平方米/立方米。应用这样的结构填料之后,使得每一柱段的设计点都是优选在50-95%泛液百分率范围内。本发明要涉及的是柱的操作范围,或负荷变化范围。由于柱的进料和出料以及组成变化,每一柱段都具有不同的蒸汽和液体负荷,即水力负荷。利用不同密度的填料,就可以使整个柱采用给定的柱直径,同时使各柱段都在合适的负荷范围内。
按本发明的优选方案之一,在至少一个较高的柱段中的结构填料密度应大于至少一个较低柱段中的填料密度。在一本发明优选方案中,在最低柱段中的结构填料密度是小于高于该最低段的至少一个柱段中的填料密度。在本发明另一优选方案中,最低柱段中的填料密度小于700平方米/立方米。
在本发明范围内,一个柱段之内的结构填料密度也是可以变化的。
本发明还处理和解决另一个问题,即氧是要分离的组分之一的场合,例如分离含氧、氮的混合物或分离含氧、氩的混合物。结构填料的一种优选结构材料是铝,因为它成本低。然而,由于个别结构填料元件的截面很薄,在氧浓度大于21%的环境中,铝制结构填料出现易燃性的问题。因此,在此情况下建议使用铜制的结构填料(Bennett等的US4813988)。本申请人发现,通过填料元件和多个填料元件的燃烧试验得知,若是在深冷分馏柱的温度和其他工艺条件下点火,可以抑制燃烧。虽然不拟局限于任何理论,相邻密集排布的箔制元件由于在发生点火时有利于发散热量,从而可抑制燃烧。制造结构填料的材料中,铝含量可以在50-99.99%范围。这样,使用了铝制的变化密度的结构填料之后,可以安全高效地进行空气深冷分离,并可改进分馏柱的操作范围,使总成本降低。
由以下非限定性实例阐明本发明实例将类似于图1所示的空气分离装置付诸操作。其设计点生产量是190吨氧/天。该装置在该双柱系统的低压柱中采用铝制结构填料。
柱段Ⅰ中的填料具给定的密度,如图4所示,柱段Ⅱ中的填料密度大于柱段Ⅰ的填料密度,如图5所示。柱段Ⅰ中密度为500平方米/立方米,柱段Ⅱ中为700平方米/立方米。柱段Ⅲ中为350平方米/立方米,柱段Ⅳ中为500平方米/立方米。柱段Ⅲ中为350平方米/立方米,柱段Ⅳ中为500平方米/立方米。分馏柱的内径各段相同,为52.5英寸。
图2是在其设计点的泛液百分率以及其容量因数。可以看到,各段的泛液百分率都在65-80%范围,所有段的容量因数都超过0.06英尺/秒,低于这个值将使HETP大至不可接受的程度。此外,该装置的负荷下限低达67%,不超此限可成功操作。
在Bennett等的US4836836中描述了分离氩和氧所必需的HETP值。本发明本方案中如图1所示上柱的柱段Ⅰ就是用于分离含氩和氧的混合物,并由于这项分离是很困难的,在段Ⅰ中需要的理论板数很多。该美国专利指出,若填料的HETP达到7.6-8.2英寸,则使用填料柱要比使用塔盘时的投资额高很多。原因是采用塔盘的HETP要小于7.6-8.2英寸。该专利还指出,当HETP约为7.0英寸,使用填料与塔盘相比投资并不高,因此,在柱段Ⅰ采用HETP远低于7.6-8.2英寸的结构填料对于投资的经济性是必需的。从该先有技术还可知,为了给柱段Ⅰ选择适当的填料密度,应选择HETP远低于7.6-8.2英寸的那些。通过实验,在直径12英寸的实验室柱中,申请人发现在深冷分馏氧-氩混合物时,使用密度500平方米/立方米的结构填料时其HETP为7.4-8.0英寸范围,使用密度700平方米/立方米的填料时,HETP为5.6-6.3英寸范围。通常在从实验室规模转到工业规模时,按一般接受的15%HETP增加计,计算得知在柱段Ⅰ使用的填料密度应至少为700平方米/立方米。
对于多类结构填料而言,在低于某一CV最小值情况下HETP迅速增大。US4836836示出一典型实例,当CV下降至低于约0.06英尺/秒,HETP迅速增大。在低于某一CV临界最低值时分离效率变差的原因还不清楚。可能是由于蒸汽湍流减小,进一步减小传质系数,或者还可有其他解释。无论如何,必须保持CV值在一个最小值约0.06英尺/秒以上,以避免性能下降的危险。现在,一个空气分离装置必须不仅在其设计点操作,还要在操作下限条件操作。在本发明的实施中,如图2所汇总,在不同柱段使用了不同密度的结构填料,具体是在柱Ⅰ使用密度500平方米/立方米的填料,并在至少一个较高柱段使用密度更高的填料,其性能得到改进。由于柱段Ⅰ的较低密度填料的水力容量较高,分馏柱直径是根据柱段Ⅳ来确定的。在该设计点柱段Ⅱ的CV是0.09英尺/秒。负荷下限是由柱段Ⅱ所限定,但该负荷下限值为正常设计点的0.06/0.09×100%=67%。这是可接受的数值,因为它符合其余装置部件的正常负荷下限范围。
若图1所示装置的操作是在柱段Ⅰ使用密度为700平方米/立方米的填料的情况下进行,则计算所得结果如图3所示。这时,分馏柱容量由柱段Ⅰ所限定,在设计点是保持80%泛液,分馏柱直径必须加大至58.5英寸。由于直径加大,在柱段Ⅱ中,在设计点的CV下降至0.07英尺/秒。柱段Ⅱ仍然限定着负荷下限,但这时的负荷下限值为正常设计负荷的0.06/0.07×100%=86%,因为当CV下降至低于0.06英尺/秒,在柱段Ⅱ会发生HETP过大的危险。负荷下限值只有86%,使装置的操作范围大大受限。
由于本发明在一个分馏柱的不同柱段采用不同的填料密度,因而带来益处。在每一柱段选择填料密度取决于对泛液、负荷下限、HETP以及柱直径的综合考虑。借助于在最低柱段采用较低密度的结构填料,所述到的操作范围要大于先有技术中所提出者。
虽然本发明结合具体方案作了详细说明,但本领域技术人员将可了解,在本发明权利要求书的精神和范围内,还可有若干其他方案。
权利要求
1.一种空气分离装置,其中包括至少一个分馏柱,以及将进料空气送入该装置的设备,以及将产品送出该装置的设备,所述分馏柱的至少其一具有多个柱段,在至少其中2个柱段中具有结构填料(structu-red packing)作为传质元件,其中所述分馏柱的第1柱段中结构填料的填料密度不同于所述分馏柱的第2柱段中结构填料的填料密度。
2.按权利要求1的空气分离装置,其中所述分馏柱的各段内径都是相同的。
3.按权利要求1的空气分离装置,其中所述第2柱段是高于所述第1柱段,并且该第2柱段中结构填料的填料密度不同于并且大于所述第1段中结构填料的填料密度。
4.按权利要求3的空气分离装置,其中所述第1柱段是该分馏柱的最低的柱段。
5.按权利要求1的空气分离装置,其中该柱的所述最低柱段的填料密度是小于700平方米/立方米。
6.按权利要求4的空气分离装置,其中该柱的所述最低柱段的填料密度是小于700平方米/立方米。
7.按权利要求1的空气分离装置,其中所述结构填料包含铝。
8.按权利要求4的空气分离装置,其中所述结构填料包含铝。
9.按权利要求5的空气分离装置,其中所述结构填料包含铝。
10.按权利要6的空气分离装置,其中所述结构填料包含铝。
11.按权利要求1的空气分离装置,其中的一个柱段中含有具不同填料密度的结构填料。
12.按权利要求1的空气分离装置,其中该分馏柱具有2至8个柱段。
13.按权利要求1的空气分离装置,其中所述结构填料的填料密度在250-1000平方米/立方米范围。
14.按权利要求1的空气分离装置,其中包括多个分馏柱。
15.按权利要求14的空气分离装置,其中包括一个双分馏柱。
16.按权利要求15的空气分离装置,其中还包括一个氩分馏柱。
17.一种将含有至少二个具不同挥发性的组分并且该组分之一是氧的混合物进行分离的方法,分离后成为第1部分和第2部分,所述第1部分中富含具较高挥发性的第1组分,第2部分中富含具较低挥发性的第2组分,所述方法包括将该混合物送入一个具有多个柱段并具有传质元件的分馏柱,在其中至少二个柱段中的传质元件是结构填料,在该柱的第1柱段中结构填料的填料密度不同于该柱第2个柱段中结构填料的填料密度;还包括从该分馏柱中取出至少一些该第1部分和至少一些该第2部分。
18.按权利要求17的方法,其中所述混合物包含氮和氧。
19.按权利要求17的方法,其中所述混合物包含氧和氩。
20.按权利要求17的方法,其中所述填料密度是经过选择,使得每一柱段在正常设计点的泛液百分率在50-95%范围内。
21.按权利要求17的方法,其中所述第2柱段是高于所述第1柱段,并且第2柱段中结构填料的填料密度是不同于并且大于第1柱段中结构填料的填料密度。
22.按权利要求18的方法,其中所述第1柱段是该分馏柱中最低的柱段。
23.按权利要求17的方法,其中所述分馏柱的最低柱段中的填料密度为小于700平方米/立方米。
24.按权利要求22的方法,其中所述分馏柱的最低柱段中的填料密度为小于700平方米/立方米。
25.按权利要求17的方法,其中所述结构填料包含铝。
26.按权利要求22的方法,其中所述结构填料包含铝。
27.按权利要求23的方法,其中所述结构填料包含铝。
28.按权利要求24的方法,其中所述结构填料包含铝。
全文摘要
一种深冷分馏系统,该系统采用一个多柱段的分馏柱,其中在该分馏柱的至少二个柱段中使用具不同填料密度的结构填料。
文档编号F25J3/04GK1063756SQ9110500
公开日1992年8月19日 申请日期1991年7月19日 优先权日1990年7月20日
发明者M·J·洛基特, R·A·维克托, R·扎维尔卢察, K·麦基尔罗伊, S·L·库珀 申请人:联合碳化工业气体技术公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1