用于在伪等温条件下进行化学反应的方法

文档序号:5014699阅读:277来源:国知局
专利名称:用于在伪等温条件下进行化学反应的方法
技术领域
本发明总体上涉及用于在受控的伪等温条件下、换言之在反应温度保持在预定反应温度T周围的值的小范围内的条件下、进行化学反应的方法。
本发明具体涉及用于控制反应器的催化床中的反应温度的方法,在所述催化床中,通过相应的工作流体横穿的至少一个热交换器在伪等温条件下发生化学反应,其中所述热交换器浸在所述催化床中。
背景技术
已知的是,对于现有技术的伪等温反应和催化反应器,通过工作流体与催化床之间的热交换控制反应速度,其中工作流体在适合的热交换器内流动,在所述催化床中浸入所述热交换器,且在所述催化床中发生反应。
并且已知的是,为了提高反应产量,一直在寻求优化所述热交换的方法。执行所述热交换,以使得在工作流体和催化床之间传递可能的最大热量,更确切地说,使工作流体流动的热交换器内和催化床内的热交换系数最大。
然而,通过这样做,已经注意到,甚至具有相当大的值的温度梯度出现在催化床中。
具体而言,催化床中每点的温度在热交换器处的第一值即热交换器自身的外壁的温度和在离热交换器最大距离的催化床的点中间侧的第二温度值之间改变。
在以下描述和所附权利要求书中,将所述第二温度值用术语“极限温度”T1表示。
如果发生在反应器内的反应是放热的,则所述极限温度T1应对应于超过此值不利于反应发生的预定最大温度值Tmax,因为第二反应介入,降低了产量,此外,降低了催化剂的效率。
如果发生在反应器内的反应是吸热的,则所述极限温度T1应对应于低于此值不发生反应的温度值。
由此产生的温度分布的不均匀性导致在催化床内部离理想的伪等温条件很远,造成反应器自身的整体产量降低。

发明内容
构成本发明基础的技术问题是,通过减少在热交换器的壁处的催化床的温度和极限温度T1之间的温差(ΔT),或换言之,通过减少交换器外壁和极限温度T1之间的温度梯度,实现了以简单方式控制催化床内化学反应的伪等温性的方法。
这样,克服了现有技术的缺陷。
根据本发明,通过一种控制反应器催化床中的反应温度的方法解决上述技术问题,其中在所述催化床中,通过相应的工作流体横穿的至少一个热交换器在伪等温条件下进行化学反应,所述热交换器浸在所述催化床中,所述方法的特征在于,其包括以下步骤-将相应的热交换器内的所述热交换流体的速度设定在预定值内,以使所述热交换器内部的热交换系数小于催化床中的热交换系数。
通过使热交换器内的热交换系数减少为低于催化床中的热交换系数,实现所述热交换器内的温度梯度的增加,从而提高了热交换器的壁处的温度。
结果是,减少了在热交换器的壁处的催化床的温度和催化床中的极限温度T1之间的温差(ΔT)。
在与现有技术的经常教导的完全对比中,已经惊奇地发现,通过适当减少热交换器内的热交换系数,横穿催化床的反应物/产物混合物得益于较大的温度均匀性(低于ΔT),这反过来使得获得更大的反应效率,从而更大的整体转化产量。
优选地,但无限制的意义,在使得热交换器内的热交换系数等于或小于催化床中的热交换系数的2/3的值之内调节相应的热交换器内的所述热交换流体的速度。
所述方法使得解决了所述技术问题,克服了上述现有技术的缺陷。
根据本发明的一个特别的方面,浸在催化床中的热交换器数目至少为二,且刚描述的方法的特征在于其包括以下步骤-在所述催化床中连续确定在所述热交换器处的催化床的温度和在所述热交换器之间的中点的极限温度T1之间的温差(ΔT);-根据上述温差ΔT,改变所述热交换器内的所述热交换流体的速度,获得所述热交换器内的热交换系数的相应改变。
根据以下为了表征和非限定的意义,参看附图给出的根据本发明的方法的实施例的详细描述,本发明的进一步的特征和优点将变得更清楚。


图1示意性地示出用于执行本发明的方法的伪等温反应器的截面图。
图2示意性地示出根据现有技术的方法工作的伪等温反应器和相对温度曲线图。
图3示意性地示出图1的伪等温反应器和相对温度曲线图的细节的截面图。
图4示意性地示出图1的伪等温反应器的进一步的细节的放大截面图。
具体实施例方式
参看图1,用于根据本发明的方法合成例如氨、甲醇、甲醛和硝酸等化学物质的催化伪等温化学反应器整体用1表示。
所述反应器1包括柱形壳体2、上底板3和下底板4、用于供应反应物的开口5、用于排放反应产物的开口6、用于供应工作热交换流体的开口7和用于排放所述工作流体的开口8。
反应器1也包括催化床24,所述催化床24限定在虚线24a和24b之间,且以本质上已知的方式被支撑,在所述催化床24的内部放置热交换单元9,所述热交换单元9包括多个热交换器12。热交换器12通过分配管道10在其下端与所述供应开口7流体连通,通过收集管道11在相对端与所述排放开口8流体连通。特别地,所述热交换器12举例来说是热交换管或板。
图2和3分别表示根据现有技术的方法工作的伪等温反应器的细节和根据现有技术的方法工作的图1的反应器的细节。
在所述附图中,彼此相等和/或等价于图1的反应器的细节的细节用相同附图标记表示。
位于催化床24内的热交换器12的壁整体用13表示。另一方面,我们希望表示热交换器12的壁13的外表面或催化剂侧表面。
在工作中,热交换工作流体横穿热交换器12内的区14,而反应物和产物的混合物在限定在相邻热交换器12之间的催化床24的反应区15中流动。
温度分布曲线在图2和3中用线17和19表示。线17关于交换器12内的区14中的温度分布,而线19关于催化床24内区15中的温度分布。一般而言,相应伪等温反应器内的温度曲线图是由线17和19的组合产生的温度曲线图。
在现有技术的反应器(图2)中,可容易看到,线17是非常扁平的,几乎成直线,且垂直于热交换器12的壁13。这由所述热交换器12内高的热交换系数(可能最高)确定。
不同地,仍在现有技术的反应器(图2)中,关于催化床24的区15中的温度分布的线19大体为弧形。另一方面,这由于存在于催化床24中的热交换系数(较低)与交换器12内的热交换系数(较大)不同而产生,这造成交换器12的壁温度(表面13a)和在反应区15中流动的反应物/产物混合物的温度之间的温差(不均匀性)很大。
换言之,两个区14和15之间的温度在相应于热交换器12内的区14的中心的最小值Tmin和相应于催化床24的区15的中心(即,在两个相邻热交换器12之间的中点)的最大值Tmax(等于上述极限温度T1)之间改变。
因此,在两个区14和15之间存在温度梯度ΔTtot,如可在图2中看到的,温度梯度ΔTtot主要位于区15中,在催化床24中产生温度的高度不均匀性,由于下述原因,造成反应效率的损失,从而减少了转化产量。
位于区15中的温度梯度ΔTtot的部分用附图标记ΔT表示,用于表示上述极限温度T1(相应于Tmax)交换器12的外表面13a处的温度之间的温差。
在反应区15中的温差(或梯度)ΔT内,温度范围表示反应发生在效率高的条件下,从而具有最优产量(伪等温条件)。所述温度范围在温度Tmax(T1)和低于此点反应不会发生或至少在效率低的条件下发生的温度T0之间。
根据图2,可清楚地看到,催化床24的区15的相当大的部分是用18表示的,反应温度低于最优值,从而损害反应器的效率和整体转化产量。
由于根据本发明的方法,通过适当调节工作流体横穿所述热交换器12的速度(即,在图3的实例的情形下,相对于图2的实例的横穿速度减少所述速度),将热交换器12内的热交换系数有利地减少为相对于催化床24内的热交换系数的较低值。
同样,如图3中所示的,实现交换器12内的温度梯度的增加(线17实际上具有比图12更大的凹度),从而温度在交换器12的外表面13a增加。
因此,对于与现有技术(图2)相同的区14和15之间的温度梯度ΔTtot,减少催化床24的区15中的温度梯度,即,减少极限温度T1(相应于Tmax)和交换器12的外表面13a处的温度之间的温差ΔT。
为此,在所述区15中的温度曲线图(线19)具有非常小的凹度,且如图3中所示的,在其中反应发生在最优效率(从而产量)条件(伪等温条件)下的温度范围内。
为此,在催化床24的整个区15中,可能效率高地执行对整体转化产量最有利的反应。
根据本发明的特别且有利的方面,连续确定极限温度T1(相应于Tmax)和交换器12的外表面13a处的温度之间的温差ΔT,且根据上述温差ΔT改变在热交换器12内流动的热交换流体的速度,获得所述热交换器12内的热交换系数中的相应改变,从而获得催化床24的区15内的温差(梯度)ΔT的相应改变。
为此目的,图1的伪等温反应器包括设备20,所述设备20在图4种示意性地表示,用于连续检测催化床24的区15中的温度,根据检测的温度连续检测在热交换器12内流动的工作流体的速度。
在所述图中,等同于前述图中的细节的细节用相同的附图标记表示。
设备20(图4)包括至少一个探测器23(例如,热电偶),位于反应区15内,用于连续测量区15的中心中的温度和热交换器12的外表面13a处的温度之间的温差ΔT。
所述设备20还包括控制单元21,通过流线25与探测器23进行数据通信,用于处理探测器23检测的温度值;以及工作流体Fo到热交换器12的进给速度调节器22,由所述控制单元21(流线26)控制。所述调节器22举例来说可以是用于进给工作流体的阀或泵。
附图标记P用于表示图1的反应器1内的细节,在图4中放大示出,以更好地突出设备20的特征。
所述解决方案使得反应区15内的温差ΔT被持续控制,动态地刻画了热交换器12内的工作流体Fo的传送速度。
本领域普通技术人员对这样设想的本发明容易作出进一步的改变和修改,而这些改变和修改全都由所附权利要求书限定的本发明的保护范围所覆盖。
权利要求
1.一种用于控制反应器(1)的催化床(24)中的反应温度的方法,其中在所述催化床中,通过由相应的工作流体横穿的至少一个热交换器(12)在伪等温条件下进行化学反应,所述热交换器浸在所述催化床(24)中,所述方法的特征在于,其包括以下步骤-将相应的热交换器(12)内的所述热交换流体的速度设定在预定值范围内,以使所述热交换器(12)内部的热交换系数小于催化床(24)中的热交换系数。
2.根据权利要求1所述的方法,其特征在于,在使得热交换器(12)内的热交换系数等于或小于催化床(24)中的热交换系数的2/3的值的范围内调节相应的热交换器内的所述热交换流体的所述速度。
3.根据权利要求1所述的方法,其特征在于,所述反应器(1)包括浸在催化床(24)中的至少两个热交换器(12),其特征还在于包括以下步骤-在所述催化床中连续确定在所述热交换器处的催化床的温度和在所述热交换器之间的中点的极限温度T1之间的温差ΔT;-根据上述温差ΔT,改变所述热交换器内的所述热交换流体的速度,获得所述热交换器内的热交换系数的相应改变。
4.一种伪等温化学反应器,包括催化床(24)和浸在所述催化床(24)中的至少两个热交换器(12),其特征在于,所述伪等温反应器包括用于调节限定在所述热交换器(12)之间的所述催化床的反应区(15)内的温度的设备(20),所述设备20包括探测器(23),用于连续测量所述区(15)的中心位置中的温度和所述热交换器(12)处的所述区(15)的温度之间的温差ΔT;控制单元(21),与所述探测器(23)进行数据通信;以及所述热交换器(12)中的工作流体(Fo)的进给速度调节器(22),与所述控制单元(21)进行数据通信。
全文摘要
本发明提供了一种用于控制反应器(1)的催化床(24)中的反应温度的方法,其中在所述催化床中,通过至少一个由相应的工作流体横穿的热交换器(12)在伪等温条件下进行化学反应,所述热交换器浸在所述催化床(24)中。
文档编号B01J19/00GK1747781SQ200480003479
公开日2006年3月15日 申请日期2004年1月15日 优先权日2003年2月17日
发明者埃尔曼诺·菲利皮, 恩里科·里奇, 米尔科·塔里齐 申请人:卡萨尔甲醇公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1