对碳氢化合物燃料进行脱硫的方法及组合物的制作方法

文档序号:5015558阅读:561来源:国知局
专利名称:对碳氢化合物燃料进行脱硫的方法及组合物的制作方法
政府资助本发明完全或部分由美国国防部根据编号为DAAH01-99-C-R170和F08630-02-C-0073合同给予的基金资助。因而政府对本发明享有权利。
背景技术
碳氢化合物燃料通常含有浓度从低于10ppm重量比到高于1%重量比的有机硫化物形式的硫。当所述燃料在内燃机中燃烧时,硫以硫氧化物(SOx)形式排放,构成酸雨的主要成分。由于硫可作为煤灰形成的起始物,所以硫的存在对柴油机排放的颗粒物质(PM)的量具有显著的影响。因为硫对NOx排放控制催化剂具有不利影响,所以引擎排放的氮氧化物(NOx)也受燃料中的含硫量影响。在诸如燃料电池的先进发电装置中,硫对诸多燃料电池催化成分的表现出毒性,从而限制了这些装置的应用。
对这种情况已有健全的分级体系,采用这样的体系可从石油化学物流中去除多种有机硫化物。简单的脂肪族、环烷基和芳香族硫醇,硫化物,二硫化物和多硫化物等等比包含噻吩及其高级同系物和类似物的杂环硫化合物更容易给出硫。在普通噻吩族化合物中,脱硫反应的活性随分子结构和分子复杂性的升高而降低。简单的噻吩代表更不稳定的硫类型,而其它有时称为“稳定硫”的硫化合物则极其稳定,其代表是硫芴衍生物,尤其是硫原子的β-碳上带有取代基的单取代硫芴和二取代硫芴。由于空间位阻阻碍了必要的催化剂-底物互作,这些高度稳定的硫杂环可以耐受脱硫反应。由于这一原因,这些物质能耐受传统的脱硫过程,并可能毒害后续的对硫敏感的操作过程。
从碳氢化合物燃料中去除硫的技术可分为以下四大类1)加氢脱硫,其特征为在氢存在的条件下将有机结合的硫转化为H2S;2)裂化,其特征在于将有机结合的硫转化为H2S;3)化学吸收,其特征在于在适当的温度下从燃料中提取硫;以及4)物理吸附,其特征在于在低温下从燃料中去除含硫化合物。
在使用之前,通常对石油馏出物进行氢化处理(加氢脱硫)以降低硫化合物的浓度。在加氢脱硫(HDS)过程中,在高温高压条件下在催化剂上用过量的氢气处理石油馏出物。该催化剂通常基于钴-钼硫化物或镍-钼硫化物,以及公知的添加剂。在HDS条件下,有机硫化物与氢反应生成H2S和小的有机化合物片断,而芳香物族化合物则被氢化。高度氢化的石油产品,如那些在美国和欧洲出售的产品,所含的硫主要在沸点高于约300℃的馏分中。这些化合物是烷基化的硫芴,而且那些在紧邻硫原子的碳原子上被烷基化的化合物是最难通过HDS去除的。
尽管HDS非常适合于大规模固定应用,但由于系统尺寸、成本和复杂性的原因,其难以应用于分散式的发电应用。当使用HDS来对原料实施深度脱硫时,高压氢气(大于500psig或高于约3.5MPa)通常是必需的,因而需要辅助的氢供应,或者如果将所述脱硫系统与燃料重整器偶合则需要大量的氢循环。可以在相对剧烈的反应条件下实现破坏最稳定的硫物质的目的,但由于其可引发有害的副反应产生高含量的芳香族化合物和碳沉积,因而被证明不是所期望的。
HDS的缺点包括以下几点1)催化剂对诸多精细(subtle)的过程参数敏感,其中任意一个参数都可以缩短其寿命和/或降低其活性;2)为了形成所需的金属硫化物相,必须在使用前用含硫的物流对催化剂进行预处理;3)催化剂具有不可再生性;4)需要大量高压氢气推动HDS反应完成;以及5)通过该方法很难去除烷基化硫芴,尤其是该方法需要剧烈得多的反应条件,并且大幅提高了燃料成本并降低了燃料生产速率。去除烷基化硫芴所需的剧烈条件包括需要超过1000psig(7.0MPa)的压力和向所述HDS过程提供更多的氢气。
采用热裂化或催化裂化将有机硫化物裂化为H2S和其它小分子碳氢化合物片断也可从碳氢化合物中去除硫,比如,通过将碳氢化合物的物流与酸性催化剂的流化床接触。
使用HDS或裂化进行脱硫的缺点在于在远离精炼厂的应用中(分散的或小到中等规模的发电厂),副产物H2S必须在处理或排放之前转化成更加无害的物质。可以在液-气分离器中或通过使用碱性吸收剂从脱硫液态燃料物流中分离硫化氢。其它分离H2S的方法还包括使用H2S特异性溶剂将H2S从气流中转移出来,使用H2S-可渗透膜实现所述分离,以及使用分子筛从气流中吸收H2S并将其释放到排放物流中。
还可以通过化学吸收H2S来实现从脱硫的碳氢化合物燃料物流中去除H2S。许多用于从石油基进料气流中去除H2S的现有技术都集中于根据以下反应在中等高温(200-600℃)下使用吸收H2S的过渡金属氧化物(1)其中M通常为Zn、Cu、Ni或Fe。
理论上,可以根据以下反应通过金属硫化物的空气氧化来对所述吸收剂进行再生(2)然而,当在较低到中等温度进行再生时,所述金属硫化物通常是中间体,并且是热阱(thermodynamic sink)。如果在中等温度进行再生,这会使金属氧化物吸收剂的使用限制为仅仅一次或少数几个再生循环。为了不形成ZnSO4,ZnS再生为ZnO的温度必须超过625℃。氧化锌吸收剂是从例如热酸性气流中去除H2S的最常用的吸收剂。基于钛酸锌的吸收剂表现出比ZnO稍好的可再生性。
通过物理吸附结合硫化氢的硫化氢吸收剂可用于从燃料流中去除H2S。通常通过调整处理温度、压力和/或气体比率使得这些吸收剂在吸附和解吸附状态之间循环,从而使这些吸收剂具有可再生性。这些吸收剂可包括沸石材料、尖晶石、中孔和微孔过渡金属氧化物,尤其是元素周期表第四周期元素的氧化物。
不借助H2S中间体而进行有机硫化物的直接化学吸收是对含硫燃料进行脱硫的第三种方式。一些这类直接化学吸收方法在通过氢共投料提供的氢存在的条件下进行,而吸收剂的再生可能需要特别高的温度,并且在该吸收剂再次使用之前可能需要吸收剂还原步骤。一些对H2S吸收有效的吸收剂表现得更加适于这种直接脱硫技术。氧化锌、氧化锰和氧化铁都是有效的吸收剂。尽管许多探讨直接化学吸收的参考文献都公开了金属和金属氧化物吸收剂可用于燃料脱硫,但这些参考文献并没有公开这些类型吸收剂的可再生性,也没有公开直接化学吸收方法在取代的硫芴化合物脱硫中的应用。
有机硫化物的低温物理吸附是降低碳氢化合物流中的硫成分的另一种方式。例如,一种方法使用沸石和粘土在室温从汽油中去除含硫化合物。除非做好准备对再生低温吸收剂床进行再生,否则当处理高含硫量的燃料时,这些系统可能会大得惊人。
发明概述尽管上述方法提供了多种去除硫或含硫化合物的方法,但本发明还提供了许多在现有方法中未发现的独特优点。特别是本发明还可用于借助小型设备以可靠的方式从碳氢化合物燃料中有效地去除更稳定的有机硫化物。更特别的是可采用温和的处理条件且无需向所述碳氢化合物中加氢来实现这些方法。
在以下详细描述的方法中,脱硫剂可从碳氢化合物燃料中的含硫碳氢化合物中去除硫。所述碳氢化合物燃料可以是例如汽油、煤油、柴油、航空燃料、加热油或其组合物。由于硫会在可再生吸收剂中积累,所以所述吸收剂在其失活之前具有确定的可处理燃料量。在硫吸收之后,通过在适中的温度下将所述吸收剂暴露于流动空气(或其它氧气源),所述可再生吸收剂的活性可以恢复到其原始水平。通过在再生过程中暴露于氧,硫从所述脱硫剂上释放了出来,从而恢复了所述脱硫剂的活性,使其可再次用于从含硫的碳氢化合物中去除硫。
脱硫剂包括浸渍在由诸如氧化铝制成的多孔支持物内的过渡金属氧化物,例如氧化钼。脱硫剂的表面积可大于150m2/g,其孔隙容积可大于0.45cm2/g。除硫和再生过程都可在相对适中的温度如300-600℃,和适中的压力如约0.79MPa至约3.5MPa的条件下完成;此外脱硫剂的除硫和再生可在基本相同的温度下完成。此外,无需向系统中加入额外的氢就可以有效地实施所述过程的各个方面。
在整个过程的一个特定实施方案中,在用脱硫剂从所述燃料中去除硫之前或同时,将碳氢化合物燃料裂化以降低其分子量。裂化催化剂可帮助使所述含硫分子分裂产生小分子,可回收吸收剂可容易地从这些小分子中吸收硫。根据脱硫燃料的最终用途,由于该燃料的分子量降低,所述裂化成分还可以使该燃料更加易于处理(如蒸汽重整、部分氧化、燃烧等等)。
除硫后,可在所述脱硫剂下游使用分离器以从所述反应产物中分离高沸点馏分和低沸点馏分。然后可将所述低沸点馏分通过次级脱硫剂进一步脱硫,所得产物可作为燃料用在例如常规加热或发电装置中,或者在诸如燃料电池的高级发电装置中。
可再生的吸收剂从燃料中去除了大部分硫,使用分离器去除部分高沸点化合物,以在最终使用次级吸收剂来进一步降低所述低沸点物流的硫含量之前进一步减少所述低沸点物流中的含硫量。如果需要少去除硫,在所述除硫系统中可省去次级吸收剂和/或分离器。
参照以下详细说明以及附图,本发明的诸多其它特征对本领域所属技术人员而言是显而易见的。
附图的简要说明在下述附图中,在各个附图中相同的参考标记指相同或类似的部分。附图并非按比例所绘,重点在于对发明的详细说明中所描述的方法和设备的特定原理进行说明。


图1所示为脱硫系统的示意图。
图2所示为使用氧化钼/氧化铝吸收剂的脱硫过程随时间变化的图。
图3所示为柴油的硫特异性气相色谱图。
图4所示为脱硫柴油的硫特异性气相色谱图。
图5所示为柴油的碳特异性气相色谱图。
图6所示为脱硫柴油的碳特异性气相色谱图。
详细说明本文所述的可再生脱硫剂可从稳定的有机硫化物中提取(去除)硫,这些有机硫化物包括噻吩、取代的噻吩、苯并噻吩、取代的苯并噻吩、硫芴和取代硫芴。相对于在先的脱硫材料,这些脱硫剂可在中等的温度和中等的压力以及没有氢的条件下从稳定的有机硫化物中提取硫。且通过将所述脱硫剂在与其从燃料中提取硫时基本相同的温度条件下暴露于空气可将该脱硫剂完全再生。尽管温度可能略有波动,但并未主动采取升高或降低温度的步骤。虽然并不希望被任何特定的理论所约束,但是在脱硫过程中金属或金属氧化物都转化成了金属硫化物,而在再生过程中所述金属硫化物又转化回金属氧化物。当存在还原性的含硫气体时,如果所述金属或金属氧化物转化成了对应的金属硫化物,则所述化学系统的吉布斯(Gibbs)自由能最低。
图1是适用于含硫碳氢化合物燃料的除硫系统的示意图。用燃料泵6对待处理燃料的加压,并通过导管流入可再生脱硫反应器10a或10b(以下再进行描述)中的一个,在那里从所述燃料中去除硫,且任意地,可降低所述燃料的分子量。然后所述燃料经过导管从反应器10a/10b中流出通过使来自反应器10a、10b的物流合并的接头,随后通过压力/流动控制器14进入气-液分离器16(以下再进行描述),在那里通过离开分离器16的分离导管将液体18与所述过程物流分离。可将液体18燃烧来加热所述脱硫系统的元件或联合发电装置的元件。还可以将液体18返回所述未处理的燃料储罐,并再次通过所述除硫系统。
当燃料流经可再生脱硫反应器10a时,空气流经另一可再生脱硫反应器10b,使反应器10b中的脱硫剂再生,并通过导管12b排放。尽管图1描绘了平行操作的两个可再生脱硫反应器,但由于可再生脱硫反应器的数量依赖于所述可再生脱硫反应器的相对操作和再生次数,因此在所述燃料处理系统中可采用任意数量的可再生脱硫反应器。离开所述气-液分离器16的过程物流通过管道流经压力/流控制器20并进入到次级脱硫床22以进一步降低所述燃料中的含硫量。用于次级脱硫床22的气流排放的导管可与诸如燃料电池的加热或发电装置偶合,在那里所述气流被用做燃料。
脱硫反应器10a、10b包括可再生脱硫剂,所述可再生脱硫剂包含于定向的金属容器中,以使燃料流的方向与所述容器的最长尺寸方向平行。脱硫反应器10a、10b可在约100到500psig(约790KPa到约3.5MPa)的压力和约300-600℃的温度条件下运行。在特定的实施方案中,脱硫反应器10a、10b可在约200到350psig(约1.5KPa到约2.5MPa)的压力和约350-475℃的温度条件下运行。再生可在约0到100psig(约100KPa到约790KPa)的压力和约300-600℃的温度条件下发生(在特定实施方案中为350-475℃)。
包含于脱硫反应器10a、10b中的是一种或多种无机材料(举例如下),它们(a)非常适于通过反应去除硫或(b)非常适于通过裂化降低分子量且随后通过反应去除硫。裂化功能可由酸性无机材料完成,例如可从Süd-Chemie(慕尼黑,德国)购得的质子化的ZSM-5沸石、β沸石和/或USY沸石。当使用不同的材料进行裂化和除硫时,这两种材料可占据所述容器的不同部分;或者如果采用颗粒形式,可以将这两种材料梯度混合,其中裂化材料和脱硫剂在容器内的浓度从入口到出口都在变化。特别适于除硫的材料(即脱硫剂)也可具有允许其降低所述燃料分子量的官能度,从而减少或消除对适于降低分子量的第二种不同材料的需求。
可再生脱硫剂可以通过硫化物与承载在无机载体上的过渡金属或过渡金属氧化物反应来去除硫,这类载体具有如蜂巢结构的多孔高表面积结构,该结构具有用于气体流通的通道。当所述试剂为金属氧化物时,脱硫反应可通过反应3或4的形式进行,再生可通过反应6的形式进行。当所述试剂为过渡金属时,脱硫反应可通过反应5的形式进行,再生可通过反应6并随后将MOx暴露于碳氢化合物的形式进行,该暴露过程除了M之外还生成了CO2和H2O。对某些元素而言,金属可能比氧化物更有效。过渡金属物质可基于Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Zr、Nb、Mo、Ag、In、Sn、Hf、Ta、W、Pb或其混合物。适用于所述可再生脱硫剂的载体包括诸如氧化铝、硅石、氧化镁、氧化钛、氧化锆、碳化硅或其混合物的材料。根据下列的典型反应可以去除硫(其中M代表过渡金属物质)(3)(4)(5)再生可通过以下常规反应进行(6)在再生过程中可观察到放热,这种放热可将所述吸收剂的温度提高至正常操作温度之上。在特定的实施方案中,所述可再生脱硫剂是承载于高表面积无机载体上的氧化钼。在一个实施方案中,所述吸收剂包含15-30%重量比的MoO3和70-85%重量比的Al2O3并具有超过150m2/g的表面积和大于0.45cm3/g的孔隙容积。在另一实施方案中,将MoO3组分尽量提高使得尽可能多地吸收硫。
虽然并不希望被特定的理论所约束,但都相信MoO3/Al2O3吸收剂通过优选使有机硫化合物通过S原子与所述吸收剂表面或小孔内的Mo位点结合来去除有机硫化物。相邻的载体酸性基团也会对所结合的有机硫化物的催化裂化有所帮助,留下MoS2且释放出碳氢化合物片断。任何在裂化过程中生成的H2S会与MoO3按照(4)式进行反应。再生过程中,可通过在温度高于200℃的条件下使空气流过所述催化剂来实现MoS2到MoO3的转化。因为460℃时所述Mo-O-S相图中并不含有任何的硫酸盐相,所以MoS2到MoO3的完全转化是可实现的。与此类似,WO3和Ta2O5也不能转化为硫酸盐相。
气-液分离器16是允许可冷凝的碳氢化合物从气相碳氢化合物流中分离出来的金属容器。分离器16可以为空,或填充有可供气流通过的惰性材料床。所述惰性材料可以是例如钢丝线或金属(例如钢)环或其它他形式的填充材料。所述惰性材料可以增强分离器16内的热传导,并作为分离器16内的蒸发或冷凝的成核位点。在一个实施方案中,气-液分离器16可在介于脱硫反应器10a、10b和次级脱硫剂床22之间的压力条件,以及与脱硫反应器10a、10b相等或更低的温度条件下运行。
因为在处理后的柴油中的残留含硫化合物通常是高沸点的取代硫芴(参见图3和图4,在以下实施例1中进行详细描述),所以可使用分离器16将处理后的柴油燃料分离成低沸点馏分和高沸点馏分来进一步降低处理后燃料中的含硫量,例如在常压以298℃的沸点来分离,其中低沸点馏分在该温度或低于298℃沸腾,而高沸点馏分仅在高于298℃(在所述给定压力下)沸腾。低沸点馏分中将包含大部分燃料,但大部分残留的硫会包含于高沸点馏分中,如沸点高于298℃的4-甲基硫芴和更多取代的硫芴。所述低沸点产物中的硫浓度远远低于分离前所述燃料中的硫浓度。可将所述含硫的高沸点馏分循环,并再次通过所述脱硫系统以进一步降低稳定硫物质的含量,也可以将所述高沸点馏分燃烧为所述脱硫系统或联合的发电装置供热。气-液分离器16的确切运行条件可通过维持所述燃料脱硫系统或其它化学处理系统组件温度所需的可燃烧液体的量来确定。可对分离器16内的压力和温度进行控制,从而控制高沸点馏分(液体)和低沸点馏分(气体)之间的分界线。例如,可将分离器16内的温度升高,以使得原先在“高沸点馏分”的温度较低端的馏分蒸发变成“低沸点馏分”的一部分。
如果图1所示的脱硫系统对气相碳氢化合物给料进行操作,则气-液分离器16为虚拟的,无需成为该脱硫系统的组件。在这种情况下,可以通过燃烧所述气相碳氢化合物给料而非可燃物流18来为所述脱硫系统组件提供热量。
相对于没有次级脱硫剂反应器22得到的结果,使用如图1所示的气-液分离器16下游的次级不可再生脱硫反应器22,能通过降低所述燃料中的含硫量来提高所述脱硫系统的性能。尽管次级脱硫反应器22的设计可与可再生脱硫反应器10a、10b相同,但因为大多数硫已经在可再生脱硫反应器10a、10b中去除了,所以次级脱硫反应器22的尺寸可以小一些可将沉积于无机载体上的过渡金属和金属氧化物用于次级脱硫反应器22,这些过渡金属可以和那些用于初级脱硫反应器10a、10b中的金属相同或类似。
实施例实施例1已经证明在没有分离器和次级脱硫剂床的条件下运行可再生脱硫反应器可以使碳氢化合物燃料中的含硫量明显降低。在这一实施例中,采用将MoO3浸渍于多孔Al2O3基质中制备的包含18%重量比的MoO3/Al2O3吸收剂(其中MoO3为18%重量比,Al2O3为82%重量比)的可再生脱硫反应器。在200psig(约1.5MPa)、400℃和,以1.1h-1的液体空速使含硫量为300ppm的商业柴油流经所述可再生脱硫反应器。所得液体产物的含硫量为60ppm,相对于处理前的柴油,含硫量降低了80%。在硫吸收10小时后,停止向所述反应器输送柴油流,并在400℃启动空气流并持续2小时。在所述脱硫剂的再生过程中可以观察到明显的SO2生成。图2所示在十次运行-再生循环中在所述液体产物中观察到的硫去除程度,从而证明了所述脱硫剂的稳定性和可再生性。
图3和图4所示为未处理的商业柴油和由上述段落描述的过程得到的含硫量为60ppm的脱硫液体产物的硫特异性气相色谱图。未经处理的柴油主要含有取代硫芴以及一些烷基苯并噻吩。在所述脱硫燃料中,主要物质有4-甲基硫芴、4,6-二甲基硫芴、和其它二烷基硫芴,特别是那些4、6位取代的二烷基硫芴,因为在这些位置上的配基可能抑制所述硫原子与脱硫剂表面的互相作用。尽管硫芴通常是使用诸如加氢脱硫的常规脱硫技术最难以去除的物质,本方法还是能使这些稳定物质的浓度明显降低。
尽管通过将有机硫物质裂化成较小的碳氢化合物能有效地增强从燃料中除硫,但是对许多应用而言,构成所述燃料的碳氢化合物分子量的整体降低可能是不希望的。在图2、图3和图4中描述的从所述实验得到的液体燃料收率是99.6%。这样高的收率说明在脱硫反应中几乎没有气体产生也没有结焦形成。图3和图4所示燃料的碳特异性色谱图如图5和图6所示。柴油的高链烷性质得到了C9到C24的色谱强度和等距正烷烃峰的验证。处理后的脱硫柴油的色谱图几乎与其母体燃料的色谱图完全一致,说明所述液体产物的碳氢化合物分布与最初的柴油相比并未发生明显的改变。
实施例2制备可再生脱硫剂的一个实例是20%重量比的MoO3/Al2O3吸收剂的合成。将仲钼酸铵(ammonium paramolybdate)水溶液浸渍入高表面积(200m2/g)的Al2O3基质(SAB,来自于美国伊利诺斯州,德斯·普雷恩城的UOP公司)中。在这一实例中,将溶于100g水中的30.7g仲钼酸铵的溶液浸渍于75g Al2O3基质中。通过加入足量的仲钼酸铵溶液使所述吸收剂基质完全润湿,然后真空干燥来对所述基质进行浸渍。重复这一过程直至将全部浸渍溶液都装载至所述基质上。然后在空气中于550℃煅烧所述材料以使所述前体分解为MoO3。所述脱硫剂的表面积大于150m2/g且总孔隙体积大于0.45cm3/g。
表1描述了当商业柴油在400℃和300psig(约2.2MPa)以0.6h-1的液体空速流过反应器时,该可再生脱硫反应器的性能特征数据。在这种情况下,使柴油流过反应器使得该燃料的含硫量从330ppm降至33ppm(即含硫量降低了90%),且脱硫系统的液体燃料收率为98.8%。
表1柴油的脱硫
实施例3含在所述可再生脱硫反应器中的脱硫剂组合物对燃料中的可去除硫含量具有明显的作用。表2所示为不同的Al2O3-浸渍金属氧化物吸收剂从425℃、200psig(约1.5MPa)、液体空速1.1h-1的含有350ppm硫的合成燃料中去除的硫芴、4-甲基硫芴和4,6-二甲基硫芴的量。
表2浸渍吸收剂的除硫活性
实施例4在另一实施方案中,所述脱硫反应器含有可再生脱硫剂和用于降低所处理的燃料分子量的催化剂。将脱硫反应器与分离器结合从而降低通到蒸汽重整炉的燃料的含硫量,所述脱硫反应器含有三份23%重量比的MoO3/Al2O3可再生脱硫剂,一份质子化的沸石ZSM-5和一份质子化的沸石β。经过1013小时和41次再生循环后,从蒸气重整炉排放出的重整物的含硫量以体积计算为十亿分之50-150单位(ppbv)。从脱硫系统流至重整器的燃料含硫量计算值以重量体积计算低于百万分之1.5单位(ppmw)。这一实施例证明了所述脱硫剂的可再生性以及在所述脱硫系统中包括分离器的额外优点。包含于所述脱硫反应器中的酸性裂化催化剂产生H2S,其中的硫随后被所述脱硫剂所吸收。
所以,所述可再生脱硫剂可以从H2S和有机硫物质中吸收硫。
实施例5在另一实施方案中,脱硫系统包括可再生脱硫反应器、分离器以及含有MoO3/Al2O3可再生脱硫剂的次级脱硫反应器,所述可再生脱硫反应器含有三份22%重量比的MoO3/Al2O3可再生脱硫剂,两份质子化的沸石ZSM-5和两份质子化的沸石β。如表3所示,在400℃和300psig(约2.1MPa)条件下运行所述脱硫系统,则流经所述系统的含硫量为300ppm的商业柴油的含硫量可降低至低于可检测水平。低沸点物流产物构成了来自所述脱硫系统的全部产物流的75%。在每一循环之间,以0.5标准升/分钟400℃的空气对可再生脱硫剂进行再生。
表3来自脱硫系统的产物流的性质
虽然参考特定实施方案对本发明进行了公开和描述,但本领域所属技术人员应该理解在不偏离由权利要求所限定的本发明范围的前提下可对本发明的形式和细节进行各种改变。
权利要求
1.从含硫碳氢化合物燃料中去除硫的方法,包括在温度300-600℃、压力约790KPa到约3.5MPa、不加氢的条件下,将碳氢化合物燃料与初级脱硫剂接触,从而使所述碳氢化合物燃料与所述初级脱硫剂发生反应,所述反应从所述碳氢化合物燃料中去除硫;以及通过在300-600℃将所述初级脱硫剂暴露于氧来对其进行再生。
2.如权利要求1所述的方法,还包括在温度300-600℃、压力约790KPa到约3.5MPa的条件下,将所述碳氢化合物燃料与酸性无机材料接触,以使所述碳氢化合物燃料的平均分子量降低的步骤。
3.如权利要求2所述的方法,其中所述酸性无机材料是沸石。
4.如权利要求3所述的方法,其中所述酸性无机材料是H-ZSM-5沸石和H-Beta沸石的混合物。
5.如权利要求1所述的方法,还包括从所述反应产物中分离高沸点馏分和低沸点馏分的步骤。
6.如权利要求5所述的方法,其中所述高沸点馏分和低沸点馏分是在温度200-400℃、压力约100KPa到约2.3MPa的条件下分离的。
7.如权利要求5所述的方法,还包括将所述低沸点馏分与次级脱硫剂接触的步骤。
8.如权利要求7所述的方法,其中所述次级脱硫剂是金属吸收剂或金属氧化物吸收剂。
9.如权利要求8所述的方法,其中所述次级脱硫剂是Ni/Al2O3或Cu/ZnO/Al2O3。
10.如权利要求5所述的方法,其中将所得的高沸点馏分燃烧以提供热量,这些热量被传递给所述初级脱硫剂。
11.如权利要求5所述的方法,其中将所述高沸点馏分循环并再次通过所述脱硫系统。
12.如权利要求1所述的方法,其中所述碳氢化合物燃料包括汽油、煤油、柴油、航空燃料、民用燃料油或其组合。
13.如权利要求1所述的方法,其中所述碳氢化合物燃料的含硫浓度大于100ppm重量比。
14.如权利要求1所述的方法,其中所述碳氢化合物燃料是在温度350-475℃、压力约1.5MPa到约2.5MPa的条件下与所述初级脱硫剂接触的。
15.如权利要求1所述的方法,其中在所述碳氢化合物燃料与所述初级脱硫剂接触之前或接触期间,所述碳氢化合物燃料中的有机硫化物裂化,生成了H2S和裂化的碳氢化合物产物。
16.如权利要求1所述的方法,其中所述初级脱硫剂包括金属或金属氧化物,所述金属选自Fe、Co、Ni、Zn、Mo、W元素及其混合物,且所述金属或金属氧化物承载在无机载体上。
17.如权利要求1所述的方法,其中所述初级脱硫剂包括金属或金属氧化物,所述金属选自Ti、V、Cr、Mn、Cu、Ga、Zr、Nb、Mo、Ag、In、Sn、Hf、Ta、W、Pb及其混合物,且所述金属或金属氧化物承载在无机载体上。
18.如权利要求1所述的方法,其中所述初级脱硫剂包括金属或金属氧化物,其中所述金属选自Mo、W及其混合物,且所述金属或金属氧化物承载在无机载体上。
19.如权利要求1所述的方法,其中所述初级脱硫剂包括MoO3。
20.如权利要求19所述的方法,其中所述MoO3包被在Al2O3基质上。
21.如权利要求20所述的方法,其中所述初级脱硫剂包括15-30%重量比的MoO3;以及70-85%重量比的Al2O3和其它过渡金属材料的组合物。
22.如权利要求20所述的方法,其中所述初级脱硫剂是15-30%重量比的MoO3和70-85%重量比的Al2O3。
23.如权利要求19所述的方法,其中所述初级脱硫剂包含至少约90%的MoO3。
24.如权利要求1所述的方法,其中通过将所述初级脱硫剂在350-475℃条件下暴露于氧对其进行再生。
25.如权利要求1所述的方法,其中通过将所述初级脱硫剂在一定温度下暴露于氧来对其进行再生,所述温度与所述初级脱硫剂从所述碳氢化合物燃料中去除硫时的温度基本相同。
26.如权利要求1所述的方法,其中在所述碳氢化合物燃料和所述初级脱硫剂之间的反应中,所述初级脱硫剂从所述碳氢化合物燃料中获取硫。
27.如权利要求1所述的方法,通过所述方法降低了所述碳氢化合物燃料中的硫芴、烃基硫芴化合物以及二烃基硫芴化合物中至少一种的量。
28.从含硫的碳氢化合物燃料中去除硫的方法,包括将碳氢化合物燃料与初级脱硫剂在不加氢的条件下接触,所述初级脱硫剂含有过渡金属氧化物;其中所述初级脱硫剂借助所述过渡金属氧化物向过渡金属硫化物的转化从含硫碳氢化合物燃料中去除硫;以及通过将所述脱硫剂暴露于氧使所述过渡金属硫化物转化回过渡金属氧化物来对所述脱硫剂进行再生。
29.如权利要求28所述的方法,其中所述过渡金属氧化物向过渡金属硫化物的转化和所述过渡金属硫化物转化回过渡金属氧化物的过程均在300-600℃的温度条件下进行。
30.如权利要求28所述的方法,其中所述过渡金属氧化物向过渡金属硫化物的转化和所述过渡金属硫化物转化回过渡金属氧化物的过程均在350-475℃的温度条件下进行。
31.如权利要求28所述的方法,其中从中去除硫的碳氢化合物包括硫芴、烃基硫芴化合物以及二烃基硫芴化合物中的至少一种。
32.如权利要求28所述的方法,其中所述过渡金属氧化物向过渡金属硫化物的转化和所述过渡金属硫化物转化回过渡金属氧化物的过程在几乎相同的温度下发生。
33.如权利要求28所述的方法,其中所述过渡金属氧化物包括选自MoO3、Ta2O5、WO3及其组合物的金属氧化物。
34.如权利要求28所述的方法,其中所述金属氧化物是MoO3。
35.适于从碳氢化合物燃料中去除硫的吸收剂组合物,所述组合物包括15-30%重量比的MoO3和70-85%重量比的Al2O3,并具有大于150m2/g的表面积和大于0.45cm3/g的孔隙体积。
全文摘要
通过与脱硫剂接触从碳氢化合物燃料中去除硫,然后可将所述脱硫剂暴露于氧进行再生(其中释放出硫)。所述硫去除过程和再生过程都可以在相对温和的温度如300-600℃、和相对温和的压力如约0.79MPa至约3.5MPa的条件下完成,且所述脱硫剂可包括诸如氧化钼的过渡金属氧化物。所述方法还可以包括裂化所述碳氢化合物、从所述反应产物中分离高沸点和低沸点馏分以及将低沸点馏分与次级脱硫剂接触的额外步骤。
文档编号B01J20/34GK1813043SQ200480018420
公开日2006年8月2日 申请日期2004年6月30日 优先权日2003年7月11日
发明者马克·D·福克曼, 温德尔·E·莱因, 叶能, 李康必, 詹尼弗·佩尔·戈登 申请人:阿斯彭产品集团公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1