去除金属污染物用的添加剂的制作方法

文档序号:5020219阅读:333来源:国知局
专利名称:去除金属污染物用的添加剂的制作方法
技术领域
本发明提供用于减轻金属污染物对催化裂化的毒害作用的组合物和方法。
背景技术
催化裂化是一种大规模商业应用的石油精炼方法。在美国,大部分精炼汽油调合池(blending pool)都由这种方法制成,并且几乎所有的都使用流体催化裂化(“FCC”)方法。在FCC过程中,重质烃馏份通过在催化剂存在下发生高温反应转化成轻质产品,其中大部分转化或裂化在气相中发生。因此,FCC原料转化成汽油,馏出物和其他液体裂化产物以及含四个或更少碳原子的更轻质的气态裂化产物。这些产品、液体和气体由饱和和不饱和烃组成。
在FCC过程中,原料注射进FCC反应器的提升管部分,并在那里接触从催化剂再生器循环至提升管-反应器的热催化剂,从而裂化成更轻质、更有价值的产品。随着吸热裂化反应的发生,重碳沉积在催化剂上。这种重碳被称作焦炭,降低了催化剂的活性,因而催化剂必须再生以恢复活性。催化剂和烃蒸汽上升到提升管,再到FCC反应器的分离部分,在那里得以分离。随后,催化剂流进抽提部分,催化剂所带的烃蒸汽在那里通过蒸汽注射被抽提。从废裂化催化剂除去夹杂的烃之后,抽提的催化剂流经废催化剂竖管并进入催化剂再生器。
通常,通过将空气引入再生器,并烧掉焦炭以恢复催化剂活性,由此实现催化剂再生。这些焦炭燃烧反应是高度放热的,并因此加热催化剂。热的再活化催化剂流经再生的催化剂竖管,返回到提升管,从而完成催化剂循环。焦炭燃烧废气流通过再生器烟道升至再生器的顶部。废气通常含有氮氧化物(NOx),硫氧化物(SOx),一氧化碳,二氧化碳,氨,氮和氧。
可通过使粗烃原料转化成可用的产品如汽油来测量流体催化裂化单元的性能。通过加入催化裂化催化剂,转化率将增大,但会生产出不需要的副产品,包括焦炭和氢气。需要增大FCC单元的转化率,同时使焦炭和H2副产品的增加最小化。
原料中存在金属污染物会带来严重问题。常见金属污染物包括铁,镍,钠和钒。这些金属中的一些可能促进裂化过程中的脱氢反应,所述反应可以汽油生产的花费为代价得到增大量的焦炭和轻质气体。金属污染物也可能对裂化产品有毒害作用。金属污染物可能沉积在催化剂上,影响其稳定性和结晶性。在一些情况下,催化剂可被金属污染物钝化。在再生步骤中,催化剂内存在的金属在水热条件下可能挥发,并在催化剂上再次沉积。
例如,原料中的钒污染物可能毒害裂化催化剂并降低其活性。一种解释这种毒害机理的理论是,原料中的钒化合物可以混合进在裂化催化剂上沉积的焦炭中,然后在再生器中氧化成五氧化二钒,同时燃烧掉焦炭。五氧化二钒可以与再生器中的水蒸汽反应,形成钒酸,然后与裂化催化剂反应,破坏其结晶性并降低其活性。
由于含有钒和其他金属污染物的化合物通常不能从FCC单元中作为挥发性化合物除去,因此常用技术是在裂化过程所处的条件下使这些化合物钝化。钝化可能涉及到将添加剂混合进裂化催化剂中,或将分离的添加剂颗粒连同裂化催化剂一起加到FCC单元中。这些添加剂可以优先与金属污染物结合,并用作“捕集器”或“收集器”,从而保护裂化催化剂的活性成分。然后,可以将金属污染物与在正常操作中从单元取出的催化剂一起除去。然后,可以将新鲜的金属钝化添加剂及补充催化剂一起加到单元中,从而在FCC单元的操作中实现有害金属污染物的连续取出。取决于原料中的金属污染物水平,添加剂的量可以相对于补充催化剂变化,从而实现所需的金属钝化程度。
工业设备中一直试图找到新的改进方法,以增大FCC单元转化率,同时最小化焦炭和H2副产品的增加。本发明涉及这些和其他重要的目的。

发明内容
本发明涉及催化裂化添加剂,其包括金属捕集材料;和高活性催化剂。本发明涉及催化裂化原料的方法,包括在催化裂化条件下使所述原料与包括主体催化剂和催化裂化添加剂的组合物接触,其中所述催化裂化添加剂包括金属捕集材料;和高活性催化剂。本发明还涉及在至少一种金属存在下提高主体催化剂性能的方法,包括使原料与催化裂化添加剂接触,所述催化裂化添加剂包括金属捕集材料;和高活性催化剂。


图1表明高活性催化剂和主体催化剂的X-射线衍射(“XRD”)图。
图2表明新鲜的和钝化的主体催化剂的XRD图。
图3表明在本发明的催化裂化添加剂存在下新鲜的主体催化剂,钝化的主体催化剂和主体催化剂的XRD图。
具体实施例方式
本发明涉及催化裂化添加剂,其包括金属捕集材料;和高活性催化剂。本发明涉及催化裂化原料的方法,包括在催化裂化条件下使所述原料与包括主体催化剂和催化裂化添加剂的组合物接触,其中所述催化裂化添加剂包括金属捕集材料;和高活性催化剂。本发明还涉及在至少一种金属存在下提高主体催化剂性能的方法,包括使原料与催化裂化添加剂接触,所述催化裂化添加剂包括金属捕集材料;和高活性催化剂。
本文中,术语“XRD”指x-射线衍射。
本文中,术语“FCC”指流体催化裂化。
本文中,术语“Re”指稀土。
申请人意想不到地发现,本发明的催化裂化添加剂可以提高催化转化率,但不会增大焦炭或气体产生。
申请人认为,关于原料中可能存在的金属污染物,催化裂化是两步过程,其中1)在FCC单元中的提升管/反应器条件下,金属污染物与包括焦炭的副产品一起沉积在催化剂颗粒上;和2)含有金属的催化剂颗粒与蒸汽接触,从而再生催化剂颗粒。
尽管不希望限于理论,申请人认为应从催化剂颗粒中除去金属污染物以保持其催化能力。这种金属污染物的物理去除是需要的,而不管在提升管/反应器中是否存在能够防止催化剂颗粒受金属污染的传统金属钝化剂。申请人还认为,在蒸汽和高温下,如在可有效地再生催化剂颗粒的条件下,金属污染物是挥发性的,并可以在催化剂颗粒中移动或从中移出。申请人认为,在蒸汽和高温下,这里催化裂化添加剂可以通过优先吸收已沉积在催化剂颗粒上的挥发的金属污染物起作用。
I.催化裂化添加剂在一个实施方案中,提供一种催化裂化添加剂,其包括金属捕集材料和高活性催化剂。
在一个实施方案中,金属捕集材料和高活性催化剂包括分离的颗粒。在一个实施方案中,金属捕集材料和高活性催化剂颗粒同时加到催化裂化单元中。
在另一个实施方案中,金属捕集材料和高活性催化剂在相同颗粒内。
a)金属捕集材料在一个实施方案中,金属捕集材料包括含钙化合物,含镁化合物,或其组合。
在一个实施方案中,金属捕集材料是低密度材料。在一个实施方案中,金属捕集材料其密度约0.50g/cc~约1.0g/cc。在另一个实施方案中,密度约0.7~约0.9g/cc。在一个实施方案中,密度约0.50g/cc~约0.70g/cc。在另一个实施方案中,金属捕集材料其密度小于约0.70g/cc;小于约0.69g/cc;小于约0.68g/cc;小于约0.67g/cc;小于约0.66g/cc;小于约0.65g/cc;小于约0.60g/cc;或小于约0.55g/cc。
在一个实施方案中,金属捕集材料是多孔材料。在一个实施方案中,根据水吸附技术测量,金属捕集材料其孔隙度大于约0.40cc/g。在另一个实施方案中,金属捕集材料其孔隙度大于约0.45cc/g;大于约0.50cc/g;大于约0.55cc/g;或大于约0.60cc/g。
在一个实施方案中,金属捕集材料是低密度和高孔隙度材料。在一个实施方案中,金属捕集材料其密度小于约0.70g/cc,和孔隙度大于约0.40cc/g。申请人认为,低密度和高孔隙度的金属捕集材料在蒸汽和高温下可以优先吸收挥发性金属污染物。本领域所属技术人员应认识到,材料的孔隙度可以是材料密度的函数。
在一个实施方案中,金属捕集材料包括类水滑石化合物,含二氧化硅和含氧化铝的化合物,混合的金属氧化物,或其组合。
i)类水滑石化合物在一个实施方案中,金属捕集材料是类水滑石化合物。类水滑石化合物的特征在于,其结构具有正电荷层,所述层被填隙阴离子和/或水分子分开。类水滑石化合物的示例性天然矿物包括羟镁铝石,鳞镁铁矿,水镁铁矿,水滑石,碳铬镁矿,陨菱铁镍矿,eardleyite,mannasite,水镁铬矿和水铝钙石。其他类水滑石化合物和其制备方法公开在Cavani等人,Catalysis Today,11173-301(1991)中,其全部公开内容在此引入作为参考。
在其他实施方案中,类水滑石化合物可以是式(I),(II),(III)和/或(IV)的化合物(X2+mY3+n(OH)2m+2n)An/aa-·bH2O (I)(Mg2+mAl3+n(OH)2m+2n)An/aa-·bH2O(II)(X2+mY3+n(OH)2m+2n)OHn-·bH2O (III)(Mg2+mAl3+n(OH)2m+2n)OHn·bH2O (IV)其中X是镁,钙,锌,锰,钴,镍,锶,钡,铜或两种或多种的混合物;Y是铝,锰,铁,钴,镍,铬,镓,硼,镧,铈或两种或多种的混合物;A是CO3,NO3,SO4,Cl,OH,Cr,I,SiO3,HPO3,MnO4,HGaO3,HVO4,ClO4,BO3或两种或多种的混合物;a是1,2或3;b是0~10;和选择m和n使得m/n的比为约1~约10。
在一个实施方案中,类水滑石化合物是水滑石,即,Mg6Al2(OH)16CO3·4H2O。在另一个实施方案中,类水滑石化合物是Mg6Al2(OH)18·4.5H2O。本发明的类水滑石化合物,组合物和/或成形体可通过美国专利6,028,023中记载的方法制备。
在一个实施方案中,类水滑石化合物是包括镁和铝的比为约1∶1~约6∶1的固溶体。
ii)含二氧化硅和含氧化铝的化合物在一个实施方案中,金属捕集材料是铝硅酸盐材料。
在一个实施方案中,铝硅酸盐材料是结晶材料,半结晶材料,无定形材料,或其组合。
在另一个实施方案中,铝硅酸盐材料含有钙,主要的金属捕集能力由钙成分完成。
在一个实施方案中,铝硅酸盐材料不含有沸石成分。
iii)混合的金属氧化物在一个实施方案中,金属捕集材料是混合的金属氧化物。本文中,术语“混合的金属氧化物”指其中氧与两种或多种金属化合的化合物。
在一个实施方案中,混合的金属氧化物是铝酸镁。
在本发明一个实施方案中预期的混合的金属氧化物记载在例如共同未决的美国专利,序列号为60/527,258和60/576,146中。在一个实施方案中,混合的金属氧化物是包括镁和铝的比为约1∶1~约6∶1的固溶体铝酸镁,其中煅烧形式的固溶体铝酸镁其X-射线衍射图在2θ峰位的约43度和约62度表现出至少一个反射,和其中混合的金属氧化物不是衍生于类水滑石化合物的含镁和铝的化合物。
在一个实施方案中,混合的金属氧化物是尖晶石。在另一个实施方案中,混合的金属氧化物是铝酸镁尖晶石。
在另一个实施方案中,混合的金属氧化物衍生于类水滑石化合物,例如通过使类水滑石化合物断裂。
在本发明一个实施方案中的混合的金属氧化物,组合物和/或成形体可通过美国专利6,028,023中记载的方法制造。
iv)金属捕集材料的形式在一个实施方案中,金属捕集材料是固溶体形式。在一个实施方案中,金属捕集材料本身用在催化裂化添加剂中。在一个实施方案中,金属捕集材料是成形体形式。在一个实施方案中,成形体是干燥的,煅烧的或其混合物。
在一个实施方案中,金属捕集材料还可以包括一种或多种其他金属成分,如金属锑,铋,镉,钙,铈,铬,钴,铜,镝,铒,铕,钆,锗,金,钬,铱,铁,镧,铅,镁,锰,钼,钕,镍,铌,锇,钯,铂,镨,钷,铼,铑,钌,钐,钪,硒,硅,银,硫,钽,碲,铽,锡,钛,钨,铥,钒,镱,钇,锌,或两种或多种的混合物。金属可以是单质态和/或可以是金属氧化物,金属氢氧化物,金属硫化物,金属卤化物,或其两种或多种的混合物。一些或所有的金属成分还可以是有机或无机盐,包括例如金属硝酸盐和/或金属醋酸盐。在一个实施方案中,水性反应混合物还包括钙(例如,CaO,Ca(OH)2,或CaCO3),镁(例如,MgO,Mg(OH)2,或MgCO3),或其组合。按氧化物当量计,一种或多种金属成分(或氧化物,硫化物,和/或其卤化物)在金属捕集材料中的存在量可达到约50wt%;达到约40wt%;达到约30wt%;或约1%~约25wt%;或约2%~约20wt%。在加入金属捕集材料成分的同时,可以将一种或多种其他金属成分加到金属捕集材料中。
在另一个实施方案中,本发明提供成形体,其包括金属捕集材料和一种或多种金属成分。在另一个实施方案中,金属捕集材料是固溶体形式。在一个实施方案中,金属成分中的金属是锑,铋,镉,钙,铈,铬,钴,铜,镝,铒,铕,钆,锗,金,钬,铱,铁,镧,铅,镁,锰,钼,钕,镍,铌,锇,钯,铂,镨,钷,铼,铑,钌,钐,钪,硒,硅,银,硫,钽,碲,铽,锡,钛,钨,铥,钒,镱,钇,锌,或两种或多种的混合物。在另一个实施方案中,金属成分中的金属是钙,镁,或其混合物。在一个实施方案中,该成形体是干燥的,煅烧的或其混合物。
在另一个实施方案中,本发明提供一种或多种包括金属捕集材料和载体的成形体。在另一个实施方案中,该金属捕集材料是固溶体形式。在一个实施方案中,该载体是尖晶石,类水滑石化合物,醋酸镁,硝酸镁,氯化镁,氢氧化镁,碳酸镁,甲酸镁,钛酸铝,钛酸锌,铝酸锌,钛酸锌/铝酸锌,锆酸铝,氧化钙,铝酸钙,硝基水合铝,氢氧化铝化合物,含铝金属氧化物(例如,除了氧化铝或氢氧化铝化合物),水合氯化铝,氧化钛,氧化锆,粘土(例如,多水高岭石,累托石,汉克特石,蒙脱石,合成蒙脱石,海泡石,活化的海泡石,高岭土),粘土磷酸盐物质,沸石,或两种或多种的混合物。在一个实施方案中,该载体是钛酸锌,铝酸锌,或钛酸锌/铝酸锌。制备这种组合物的方法记载在例如WO 99/42201中。在一个实施方案中,该成形体可以是干燥的,煅烧的或其混合物。
在另一个实施方案中,本发明提供成形体,其包括金属捕集材料;一种或多种金属成分;和载体。在另一个实施方案中,金属捕集材料是固溶体形式。在一个实施方案中,成形体是干燥的,煅烧的或其混合物。
在本发明所述的一些实施方案中,按氧化物当量计,金属成分的存在量达到约50wt%;约0.1wt%~约40wt%;约1wt%~约30wt%;约1wt%~约25wt%;约1wt%~约20wt%;约1wt%~约15wt%;或约1wt%~约10wt%。在一个实施方案中,固体载体存在量达到约50wt%约1wt%~约30wt%;约1wt%~约20wt%;约1wt%~约15wt%;约1wt%~约10wt%;或约1wt%~约5wt%。
v)金属捕集材料的量在一个实施方案中,金属捕集材料占催化裂化添加剂重量的约2%~约98%。在一个实施方案中,金属捕集材料占催化裂化添加剂重量的约30%~约95%。在一个实施方案中,金属捕集材料占催化裂化添加剂重量的约30%~约60%;或约40%~约60%。在另一个实施方案中,金属捕集材料占催化裂化添加剂重量的约60%~约95%;或约70%~约90%。
b)高活性催化剂本文中,术语“高活性催化剂”指比主体催化剂具有更高百分比的沸石和/或更高总表面积和/或更高总结晶度的催化剂。在一个实施方案中,高活性催化剂相对于主体催化剂具有至少约1.5倍的沸石百分比和/或1.5倍的总表面积和/或1.5倍的总结晶度。在另一个实施方案中,高活性催化剂相对于主体催化剂具有至少约2.0倍的沸石百分比和/或总表面积和/或总结晶度;或者相对于主体催化剂具有至少约2.5倍的沸石百分比和/或总表面积和/或总结晶度;或者相对于主体催化剂具有至少约3.0倍的沸石百分比和/或总表面积和/或总结晶度;或者相对于主体催化剂具有高至少约3.5倍的沸石百分比和/或总表面积和/或总结晶度;或者相对于主体催化剂具有高至少约4.0倍的沸石百分比和/或总表面积和/或总结晶度。
作为例子,图1表明常规制备的Y沸石主体催化剂(下迹线),并与本发明的高活性Y沸石催化剂成分(上迹线)相比。比较Y沸石在约6.3度的XRD峰,表明高活性催化剂具有显著更大的衍射强度。更大的衍射强度表明上迹线的高活性催化剂的结晶度增大。更大的衍射强度也表明高活性催化剂具有较高沸石含量,并且是高活性催化剂后来较高活性的指示。
i)沸石在一个实施方案中,高活性催化剂是沸石。在一个实施方案中,高活性催化剂是原位合成的沸石。沸石可以用例如约0.1~约10wt%的量的稀土稳定。包括沸石的催化剂可以含有不同量的稀土化合物。这些稀土化合物可以在合成沸石过程中存在,或可以在合成之后在沸石上交换。稀土-稳定的沸石通常称作“REY”。
沸石也可以用蒸汽稳定,包括例如称作“USY”的蒸汽稳定的Y沸石。
在一个实施方案中,沸石是沸石X,Y沸石,沸石A,沸石L,沸石ZK-4,β沸石,八面沸石,或其组合。在另一个实施方案中,高活性催化剂是大孔沸石。在一个实施方案中,高活性催化剂是β沸石,Y沸石,八面沸石,或其组合。在另一个实施方案中,高活性催化剂是稀土稳定的β沸石,稀土稳定的Y沸石,稀土稳定的八面沸石,或其组合。
在一个实施方案中,高活性催化剂其总表面积大于约350m2/gr;或大于约400m2/gr;或大于约450m2/gr。在一个实施方案中,高活性催化剂其总表面积约400m2/gr。
本发明的示例性高活性催化剂包括例如可以从EngelhardCorporation以商品名ConverterTM商购得到的催化剂。
ii)高活性催化剂的量在一个实施方案中,高活性催化剂占催化裂化添加剂重量的约5%~约60%。在一个实施方案中,高活性催化剂占催化裂化添加剂重量的约5%~约40%;或约10%~约30%。在另一个实施方案中,高活性催化剂占催化裂化添加剂重量的约40%~约60%。
II.催化裂化方法在一个实施方案中提供流体催化裂化方法中的催化剂颗粒循环装载(inventory),其中约2%~约80wt%的所述循环装载包括上述催化裂化添加剂。
在一个实施方案中提供了催化裂化原料的方法,包括在催化裂化条件下使所述原料与包括主体催化剂和催化裂化添加剂的组合物接触,其中所述催化裂化添加剂包括金属捕集材料和高活性催化剂。
在另一个实施方案中提供了通过将本文所述添加剂加到FCC单元中而提高流体催化裂化单元的FCC催化剂性能的方法。
在一个实施方案中提供了在至少一种金属存在下提高主体催化剂性能的方法,包括使原料与催化裂化添加剂接触,其中所述催化裂化添加剂包括金属捕集材料和高活性催化剂。在另一个实施方案中,催化裂化添加剂增大了原料的催化转化率。在一个实施方案中,催化裂化添加剂增大了从原料的汽油产生。在一个实施方案中,催化裂化添加剂增大了从原料的LPG产生。在另一个实施方案中,催化裂化添加剂降低了从原料的LCO产生。在一个实施方案中,催化裂化添加剂降低了从原料的塔底物质产生。在另一个实施方案中,催化裂化添加剂降低了从原料的焦炭产生。在一个实施方案中,催化裂化添加剂降低了从原料的氢气产生。
在一个实施方案中,催化裂化添加剂降低了主体催化剂结晶度的减小。在一个实施方案中,催化裂化添加剂降低了主体催化剂在6.3度处2θ峰峰面积的减小。在一个实施方案中,催化裂化添加剂降低了主体催化剂的表面积减小。
a)原料任何常规FCC原料都可用于FCC单元中。原料范围可以包括典型原料,如石油蒸馏物或残余油料,或者是原始的或者是部分精炼的,可以是非典型原料,如煤油和鲸油。原料可含有再循环烃,如已进行过裂化的轻质和重质循环油。示例性原料包括汽油,真空汽油,大气压残油,和真空残油。
b)催化裂化条件在一个实施方案中,催化裂化添加剂可以加到FCC单元的提升管或再生器中。在另一个实施方案中,催化裂化添加剂加到FCC单元的再生器中。在一个实施方案中,催化裂化添加剂加到含有主体催化剂的FCC单元中。
可以通过袋子或滚筒手动将催化裂化添加剂和主体催化剂加到FCC单元中。也可以通过例如记载在美国专利5,389,236中的自动加入系统,将催化裂化添加剂和主体催化剂加到FCC单元中。为了将催化裂化添加剂加到FCC单元中,催化裂化添加剂可以与主体催化剂预共混,并作为一个体系加到单元中。或者催化裂化添加剂和主体催化剂可以通过单独的注射系统加到FCC单元中。在另一个实施方案中,催化裂化添加剂以不同比例加到主体催化剂中。例如可以在加到FCC单元中时确定不同比例,以优化催化裂化添加剂的加入速率。
可以使用常规提升管裂化条件。通常提升管裂化反应条件包括催化剂/油比为约0.5∶1~约15∶1,催化剂接触时间为约0.1~约50秒,和提升管顶部温度为约900~约1050。在一个实施方案中,使用常规技术,如加入大量雾化蒸汽,使用多个喷嘴,使用雾化喷嘴和相似技术,在提升管反应器的基部使原料与催化剂良好地混合。提升管的基部可以包括提升管催化剂加速区。在一个实施方案中,可将提升管反应器可流注到封闭的涡旋系统中,以快速有效地从废催化剂中分离裂化的产品。
本发明的添加剂可以加到任何常规反应器-再生器体系中,加到沸腾催化剂床体系中,加到在反应区和再生区等之间连续传输或循环催化剂/添加剂的体系中。在一个实施方案中,该体系是循环床体系。典型循环床体系是常规移动床和流化床反应器-再生器体系。这些循环床体系均通常用在烃转化(例如,烃裂化)操作中。在一个实施方案中,该体系是流化催化剂床反应器-再生器体系。
本发明可以使用的其他专用提升管-再生器体系包括深度催化裂化(DCC),毫秒催化裂化(MSCC),和残油流体催化裂化(RFCC)体系。
c)主体催化剂本文中,术语“主体催化剂”指可用于在标准催化裂化条件下操作FCC单元的任何催化剂,包括上面详细讨论的那些。
可以使用任何市售FCC催化剂作为主体催化剂。主体催化剂可以是100%无定形的,但是在一个实施方案中可以包括一些在多孔难熔基质(如氧化硅-氧化铝,粘土等)中的沸石。沸石通常占催化剂重量的约5~约40t%,其余的是基质或稀释剂。可以使用常规沸石(如Y沸石)或这些沸石的铝缺失形式(如脱铝Y,超稳定Y和超疏水性Y)。沸石可以用稀土稳定,例如,其量为约0.1~约10wt%。
本发明可以使用的沸石包括天然和合成沸石。
本发明中可以使用含有相对较高二氧化硅沸石的催化剂。它们可以承受高温,所述高温通常与FCC再生器内将CO完全燃烧成CO2伴生。这种催化剂包括含有约10~约40%超稳定Y或稀土超稳定Y的那些催化剂。
在一个实施方案中,主体催化剂其表面积小于约300m2/gr。在另一个实施方案中,主体催化剂其表面积约250m2/gr。
适合的主体催化剂还可以包括通过原位技术合成并然后与稀释剂共混的催化剂。其可以包括例如上述的高活性催化剂和稀释剂。在一个实施方案中,主体催化剂包括约5%~约70%重量的高活性催化剂。在另一个实施方案中,主体催化剂包括约5%~约40%重量的高活性催化剂。
d)催化裂化添加剂催化裂化添加剂包括上面详细讨论的金属捕集材料和高活性催化剂。
在一个实施方案中,催化裂化添加剂占所述组合物重量的约2%~约80%。在一个实施方案中,催化裂化添加剂占所述组合物重量的约20%~约60%。在一个实施方案中,催化裂化添加剂占所述组合物重量的约40%~约60%。在另一个实施方案中,催化裂化添加剂占所述组合物重量的约5%~约20%;或约10%。
e)其他成分除了本发明的主体催化剂和催化裂化添加剂之外,催化剂装载也可以含有一种或多种添加剂,其或者可以分离的添加剂颗粒存在,或与裂化催化剂的各颗粒混合。可以加入添加剂以增强辛烷值,如中孔径的沸石(例如ZSM-5)和其他具有相似晶体结构的材料。还可以加入添加剂以促进CO燃烧;降低SOx排放物,NOx排放物和/或CO排放物;促进催化;或降低汽油硫。
在一个实施方案中,本发明的催化裂化添加剂也用于增强辛烷值,促进CO燃烧,降低SOx排放物,NOx排放物和/或CO排放物,促进催化,或降低汽油硫。
实施例下面的实施例仅用于解释说明目的,但不用于限制权利要求的范围。
实施例1类水滑石化合物按本文所述和美国专利6,028,023所述的方法制备水滑石化合物。
MgO粉末(表面积约100m2/g)(MAGOX,Premier Chemicals,Cleveland,OH)在水中形成浆料,固体含量约14%。随后,将5.2%技术级乙酸加到MgO浆料中。
单独地将拟薄水铝石(P2Condea)分散在水中,固体含量8%,制得氧化铝溶胶。
在容器中混合MgO浆料和氧化铝溶胶,使得制剂中Mg/Al的摩尔比是4∶1。向混合物中再加入水,调节混合物的固体含量为约9%。在约5小时内将混合物加热到约214。加热后,将8干基份生成的浆料与2干基份的技术级氢氧化钙连同足量水一起混合,得到约10%的最终固体含量。然后在标准条件下喷射干燥混合物,制得微球颗粒,平均粒度约75-80微米。然后产品在旋转锻烧炉中在近似等于约600℃的温度下煅烧1小时。所得物质进一步与水水合,得到类水滑石相。x-射线衍射图表明,主要镁铝相几乎完全可由Mg6Al2OH18·4.5H2O代表,如ICDD卡35-965所示。这种物质本文称作“金属捕集器A”。然后通过在约500℃下加热直到固体含量达到约8%,破坏类水滑石化合物。得到耐磨微球,其ASTM 2小时磨损约2.1,表观体积密度约0.72g/cc,表面积约65m2/g,和孔体积约0.45cc/g。
实施例2含二氧化硅和含氧化铝的化合物通过混合按燃烧基计3份氢氧化钙,3份拟薄水铝石氧化铝凝胶,0.5份二氧化硅溶胶和4份高岭土来制备含有氧化钙活性成分的金属捕集添加剂。加入足够过量的水,使得最终固体约20wt%。生成的浆料喷射干燥至平均粒度约100微米,煅烧至最终LOI约5wt%。得到耐磨微球,其ASTM 2小时磨损约1.2,表观体积密度约0.64g/cc,表面积约60m2/g,和孔体积约0.54cc/g。这种物质本文称作“金属捕集器B”。
实施例3混合的金属氧化物按本文所述和美国专利6,028,023所述的方法制备铝酸镁。
MgO粉末(表面积约100m2/g)(MAGOX,Premier Chcmicals,Cleveland,OH)在水中形成浆料,固体含量约14%。随后,将5.2%技术级乙酸加到MgO浆料中。
单独地将拟薄水铝石(P2Condea)分散在水中,固体含量8%,制得氧化铝溶胶。
在容器中混合MgO浆料和氧化铝溶胶,使得制剂中Mg/Al的摩尔比是4∶1。向混合物中再加入水,调节混合物的固体含量为约9%。在约5小时内将混合物加热到约214。加热后,将8干基份生成的浆料与2干基份技术级氢氧化钙连同足量水一起混合,最终得到的固体含量约为10%。然后在标准条件下喷射干燥混合物,制得微球颗粒,平均粒度约75-100微米。然后产品在旋转锻烧炉中在近似等于约600℃的温度下煅烧1小时,制得镁,钙和铝的混合的金属氧化物。
实施例4改进的FCC催化剂性能为评价添加剂的性能,原料在类FCC反应器条件下用各种主体催化剂/添加剂组合进行催化裂化。主体催化剂可以与市售催化剂相比,并与约30%拟薄水铝石氧化铝凝胶和二氧化硅溶胶的活性基质中的25%稀土交换的Y沸石一起配制。喷射干燥催化剂浆料,形成微球颗粒,然后煅烧。催化剂表面积测得为约250m2/g,稀土含量按Re2O3计约1.3wt%。所用的高活性催化剂是通过原位技术从粘土微球制备的Y沸石,可以从Engelhard Corporation以商品名ConverterTM得到。表面积约400m2/g,总稀土含量按Re2O3计约5%,和孔体积约0.54cc/g。
各种催化剂混合物(含有或不含添加剂成分)首先单独在732℃下煅烧1小时,然后根据方案进行钝化。使用市售自动钝化单元(KayserTechnologies Model D-100)将钒和镍的萘烷酸盐裂化成各种特定催化剂混合物。然后用约50%蒸汽在800℃下蒸汽处理金属污染的催化剂约9小时。催化剂混合物最终钒浓度约10,000ppm和镍浓度约900ppm。为进行对比,新的主体催化剂也以与催化剂混合物相同的方案进行钝化。钝化和未钝化的主体催化剂的XRD图对比示于图2中。图2证实,钝化过程对主体催化剂中所含的Y沸石的晶体结构有明显影响。
为测量催化性能,将钝化的催化剂混合物加到市售、实验室规模FCC测试单元(Kayser Technology ACE model R+)中。ACE条件包括反应器温度约985,催化剂与油之比约7,重时空速约8,并使用标准US海湾沿岸(Gulf Coast)原料。
在测试实验1A中,没有使用添加剂。在测试实验1B-1F中,添加剂是实施例1所述的金属捕集器A和/或以商品名ConverterTM出售的高活性催化剂Y沸石。在测试实验1B-1F中,添加剂占总催化剂混合物的10%。金属捕集器A作为金属捕集材料的性能结果示于下表1中。所有数据都是重量百分比。
表1.金属捕集器A的FCC催化剂性能结果

在测试实验2A-2D中,条件是上述测试实验1A-1F的条件,除了催化剂混合物最终钒浓度约5000ppm和镍浓度2000ppm,催化剂与油之比约6.0,并使用Mexican Mayan粗原料。在测试实验2A中,没有使用添加剂。在测试实验2B-2D中,添加剂是实施例1所述的金属捕集器A和以商品名ConverterTM出售的高活性催化剂Y沸石。在测试实验2B-2C中,添加剂占总催化剂混合物的25%。在测试实验2D中,添加剂占总催化剂混合物的50%。金属捕集器A作为金属捕集材料的其他性能结果示于下表2中。所有数据都是重量百分比。
表2.金属捕集器A的FCC催化剂性能结果

在测试实验3A-3F中,条件是上述测试实验1A-1F的条件,除了添加剂。在测试实验3A中,没有使用添加剂。在测试实验3B-3F中,添加剂是实施例2所述的金属捕集器B和/或以商品名ConverterTM出售的高活性催化剂Y沸石。在测试实验3B-3F中,添加剂占总催化剂混合物的10%。金属捕集器B作为金属捕集材料的性能结果示于下表3中。所有数据都是重量百分比。
表3.金属捕集器B的FCC催化剂性能结果

表1,2,和3中报道结果证实了含有高活性催化剂和金属捕集材料的添加剂的协同作用。单独使用高活性催化剂作为添加剂基本上没有观察到效果,但是在添加剂中高活性催化剂与金属捕集材料混合的效果通常大于单独的金属捕集材料的效果。在添加剂中高活性催化剂与金属捕集材料的混合增大了转化率,增大了LPG产率,增大了汽油产率,降低了LCO产率,降低了塔底产物产率,和降低了焦炭产率,和降低了氢气产率。
实施例5新鲜的催化剂的结晶性首先对实施例4的新鲜的主体催化剂和新鲜的高活性催化剂进行使用Cu Kα射线的粉末x-射线衍射和表面积测量(单点BET)。这些结果示于下表4中。
表4.新鲜的催化剂的结晶性

表4中报道结果证实了本发明的主体催化剂和高活性催化剂之间的差别。XRD图峰面积通常表明催化剂结晶程度的表征。峰面积越大,催化剂结晶度越大。
实施例6主体催化剂结晶度损失的降低为进一步分析本发明的性能,对已经与金属捕集器A混合然后钝化的FCC催化剂进行XRD和表面积测量。
在测试实验1A中,没有使用催化裂化添加剂。测试实验1D使用本发明的催化裂化添加剂金属捕集器A和高活性催化剂。结果示于下表5中。
表5.改进的主体催化剂特性

表5报道的结果表明,本发明提高了在约6.3度2-θ的XRD图峰面积。通常,XRD图峰面积是主体催化剂结晶程度的表征。峰面积越大,催化剂结晶度越大。实际的x-射线衍射图示于图3中。在图3中,下迹线表明新鲜的未钝化的主体催化剂的衍射图。在钝化后,如中央迹线所示(测试实验1A),观察到结晶度的严重损失。经与本发明的催化裂化添加剂反应(测试实验1D),如上迹线所示,保留了大部分的结晶度。
催化剂的表面积是结晶度的另一个指示。结果也表明,本发明的催化裂化添加剂降低了主体催化剂的表面积减小。
实施例7金属捕集对上述实施例4中使用的催化裂化添加剂进行利用能量色散光谱的扫描电子显微镜(SEM/EDS)。
通过按实施例4所述进行金属化和蒸汽化使FCC催化剂/催化裂化添加剂混合物钝化。发现添加剂颗粒含有以下元素中的一种或多种钒,硫,硅,铈。
除了所述的那些实施方案外,本领域所属技术人员可以根据上述说明书对本发明做出各种修改。这种修改应被理解成落在所附的权利要求范围之内。
权利要求
1.一种催化裂化添加剂,其包括a)金属捕集材料;和b)高活性催化剂。
2.如权利要求1所述的催化裂化添加剂,其中所述金属捕集材料占所述添加剂重量的约2%~约98%。
3.如权利要求1所述的催化裂化添加剂,其中所述金属捕集材料占所述添加剂重量的约30%~约95%。
4.如权利要求1所述的催化裂化添加剂,其中所述金属捕集材料占所述添加剂重量的约70%~约90%。
5.如权利要求1所述的催化裂化添加剂,其中所述高活性催化剂占所述添加剂重量的约5%~约60%。
6.如权利要求1所述的催化裂化添加剂,其中所述金属捕集材料和所述高活性催化剂包括分离的颗粒。
7.如权利要求1所述的催化裂化添加剂,其中所述金属捕集材料和所述高活性催化剂在同一颗粒内。
8.如权利要求1所述的催化裂化添加剂,其中所述金属捕集材料包括含钙化合物,含镁化合物,或其组合。
9.如权利要求1所述的催化裂化添加剂,其中所述金属捕集材料包括类水滑石化合物,含二氧化硅和含氧化铝的化合物,混合的金属氧化物,或其组合。
10.如权利要求1所述的催化裂化添加剂,其中所述高活性催化剂包括沸石。
11.如权利要求1所述的催化裂化添加剂,其中所述高活性催化剂包括原位合成的沸石。
12.如权利要求10所述的催化裂化添加剂,其中所述沸石是沸石X,Y沸石,沸石A,沸石L,沸石ZK-4,β沸石,八面沸石,或其组合。
13.如权利要求10所述的催化裂化添加剂,其中所述沸石是Y沸石,β沸石,八面沸石,或其组合。
14.如权利要求1所述的催化裂化添加剂,其中所述金属捕集材料是钒捕集材料。
15.一种在流体催化裂化方法中催化剂颗粒的循环装载,其中约2%~约80wt%的所述循环装载包括权利要求1所述的催化裂化添加剂。
16.一种催化裂化原料的方法,包括在催化裂化条件下使所述原料与包括主体催化剂和催化裂化添加剂的组合物接触,其中所述催化裂化添加剂包括a)金属捕集材料;和b)高活性催化剂。
17.如权利要求16所述的方法,其中所述催化裂化添加剂占所述组合物重量的约2%~约80%.
18.如权利要求16所述的方法,其中所述催化裂化添加剂占所述组合物重量的约20%~约60%。
19.如权利要求16所述的方法,其中所述催化裂化添加剂占所述组合物重量的约5%~约20%。
20.如权利要求16所述的方法,其中所述金属捕集材料占所述添加剂重量的约2%~约98%。
21.如权利要求16所述的方法,其中所述金属捕集材料占所述添加剂重量的约60%~约95%。
22.如权利要求16所述的方法,其中所述金属捕集材料占所述添加剂重量的约70%~约90%。
23.如权利要求16所述的方法,其中所述高活性催化剂占所述添加剂重量的约5%~约40%。
24.如权利要求16所述的方法,其中所述金属捕集材料和所述高活性催化剂包括分离的颗粒。
25.如权利要求16所述的方法,其中所述金属捕集材料和所述高活性催化剂在同一颗粒内。
26.如权利要求16所述的方法,其中所述金属捕集材料包括含钙化合物,含镁化合物,或其组合。
27.如权利要求16所述的方法,其中所述金属捕集材料包括非衍生于类水滑石化合物的非阴离子含镁和含铝的化合物,类水滑石化合物,含二氧化硅和含氧化铝的化合物,或其组合。
28.如权利要求16所述的方法,其中所述高活性催化剂包括沸石。
29.如权利要求16所述的方法,其中所述高活性催化剂包括原位合成的沸石。
30.如权利要求28所述的方法,其中所述沸石是沸石X,Y沸石,沸石A,沸石L,沸石ZK-4,β沸石,ZSM-5沸石,八面沸石,或其组合。
31.如权利要求28所述的方法,其中所述沸石是Y沸石,β沸石,或其组合。
32.如权利要求16所述的方法,其中所述金属捕集材料是钒捕集材料。
33.如权利要求16所述的方法,其中所述主体催化剂是约5%~约40%的沸石。
34.一种在至少一种金属存在下提高主体催化剂性能的方法,包括使原料与催化裂化添加剂接触,所述催化裂化添加剂包括a)金属捕集材料;和b)高活性催化剂。
35.如权利要求34所述的方法,其中所述催化裂化添加剂增大了原料的催化转化率。
36.如权利要求34所述的方法,其中所述催化裂化添加剂增大了从原料的汽油产生。
37.如权利要求34所述的方法,其中所述催化裂化添加剂增大了从原料的LPG产生。
38.如权利要求34所述的方法,其中所述催化裂化添加剂降低了从原料的LCO产生。
39.如权利要求34所述的方法,其中所述催化裂化添加剂降低了从原料的塔底产物产生。
40.如权利要求34所述的方法,其中所述催化裂化添加剂降低了从原料的焦炭产生。
41.如权利要求34所述的方法,其中所述催化裂化添加剂降低了从原料的氢气产生。
42.如权利要求34所述的方法,其中所述催化裂化降低了主体催化剂结晶度的减小。
43.如权利要求34所述的方法,其中所述催化裂化添加剂降低了主体催化剂在6.3度处的2θ峰峰面积的减小。
44.如权利要求34所述的方法,其中所述催化裂化添加剂降低了主体催化剂的表面积减小。
全文摘要
本发明涉及催化裂化添加剂,其包括金属捕集材料;和高活性催化剂。本发明涉及催化裂化原料的方法,包括在催化裂化条件下使所述原料与包括主体催化剂和催化裂化添加剂的组合物接触,其中所述催化裂化添加剂包括金属捕集材料;和高活性催化剂。本发明还涉及在至少一种金属存在下提高主体催化剂性能的方法,包括使原料与催化裂化添加剂接触,所述催化裂化添加剂包括金属捕集材料;和高活性催化剂。
文档编号B01J29/70GK101027128SQ200580030022
公开日2007年8月29日 申请日期2005年9月7日 优先权日2004年9月8日
发明者阿尔伯特·A·菲尔海利希 申请人:英特凯特公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1