由合成气制备二氧化碳和氢气的方法

文档序号:5027852阅读:393来源:国知局

专利名称::由合成气制备二氧化碳和氢气的方法
技术领域
:本发明涉及从在氢气设备中形成的合成气物流中生产二氧化碳产物物流的方法,所述氢气设备具有合成气反应器、水煤气变换反应器以形成所述合成气流、以及氢气变压吸附单元以形成氢气产物。更具体地,本发明涉及从合成气物流中回收二氧化碳的方法,其中所述回收通过序贯地真空变压吸附过程和低于环境温度(sub-ambient)的蒸馏过程从合成气流中分离二氧化碳而进行。更具体地,本发明涉及具有如下应用的方法将所述二氧化碳产物物流用于强化采油或封存。
背景技术
:含一氧化碳和氬气的合成气可进一步纯化以生产氢气和一氧化碳产物,或者可在这种下游化学过程(例如,包括生产曱醇)或者通过费-托方法用于合成燃料的公知气-液体方法中进一步反应。通过向位于蒸汽甲烷重整器的辐射段内的蒸汽曱烷重整器管中弓I入含碳氢化合物的进料(典型地是天然气),在蒸汽曱烷重整器内产生合成气。所述重整器管填充有用于促进蒸汽甲烷重整反应的催化剂。蒸汽曱烷重整反应是吸热的,因此通过供热入蒸汽曱烷重整器的辐射段的燃烧器来向重整器管供热,以支持所述反应。还可以通过在部分氧化反应器中通过碳氢化合物与氧化剂(如氧气)之间的反应,或者在自热重整器中通过碳氢化合物、氧化剂和蒸汽之间的反应来产生合成气。当合成气物流冷却后,合成气的蒸汽和一氧化碳组分可在水煤气变换反应器中进一步反应,以提高合成气的氢气含量。集成的蒸汽发生系统位于所述合成气设备内,以产生用于蒸汽曱烷重整反应、用于水煤气变换反应以及用于输出的蒸汽。输出的蒸汽本身可构成有用的产物,该产物可影响氲气设备的经济生存能力。蒸汽甲烷重整器通常具有与辐射段连接的对流热交换段。为了上述目的,给辐射段供热的燃烧器产生的热烟道气通过所述对流段,以产生蒸汽以及使蒸汽过热。所述蒸汽发生系统还利用水煤气变换反应器上游和下游的5热交换器。在这方面,蒸汽曱烷重整器中产生的合成气物流必须降温至适于水煤气变换反应器的水平,因此位于水煤气变换反应器上游的热交换器既冷却合成气物流又产生部分蒸汽。由于水煤气变换反应器是放热过程,所以变换后物流中所含的热量通常在位于水煤气变换反应器下游的热交换器中用于产生额外的蒸汽。所有这些蒸汽均导引至蒸汽汇集器,并随后在蒸汽曱烷重整器的对流段进行过热。蒸汽曱烷重整反应产生的合成气具有二氧化碳含量。在水煤气变换反应器后,由于蒸汽与一氧化碳的反应,合成气的二氧化碳含量进一步提高。为了合成气的下游处理例如生产甲醇,通常必须从合成气中分离二氧化碳。此外,二氧化碳本身是有价值的产品。例如,强化采油过程利用二氧化碳,其中在注入井中将二氧化碳注入井下以将油驱入生产井。在强化采油过程中,在储油层中注入二氧化碳降低了油的粘度,使得油更容易流动,从而提高了从储层回收的油量。然而,应当指出,当二氧化碳用于这类用途时,其必须非常纯净,因此并不容易从蒸汽甲烷重整设备获得。此外,源自使用碳氢化合物排放的二氧化碳关系到全球变暖。为了解决这一问题,已经建议从工业来源俘获二氧化碳,并注入地下盐水层(brineaquifer)或深海中,以永久地俘获二氧化碳,从而稳定大气二氧化碳水平。然而,已经将各种二氧化碳去除系统与蒸汽甲烷重整设备集成起来,最低限度用以从合成气分离二氧化碳,并且回收该二氧化碳用于封存(sequestration)目的,或者用作价值增加的产品。U.S.5,000,925描述了从采用蒸汽曱烷重整器的氪气设备回收氢气和二氧化碳的方法。在该方法中,水煤气变换反应器产生的合成气物流被引入氢气变压吸附单元,以产生产物氬气物流和尾气物流。该尾气压缩,并随后用二氧化碳变压吸附单元进行分离,以产生氢气-富集的物流和二氧化碳-富集的物流。将该二氧化碳-富集的物流压缩,并在深冷单元中进一步纯化,以产生液态二氧化碳。所述氢气-富集的物流再循环回蒸汽曱烷重整器。U.S.6,551,380^^开了一种方法,其中在氢气i殳备中的水煤气变换反应器产生的合成气物流常规引入氢气变化吸附单元中,以回收氬气并从而产生尾气物流。将该尾气物流压缩,并随后在吸附单元中处理以回收二氧化碳。来自吸附单元的二氧化碳被送至液化器,以产生纯化的液态二氧化碳产物,来自吸附单元的废气被送至笫二氢气变压吸附单元以产生氢气。由于均使用尾气流作为蒸汽甲烷重整器的一部分燃料,实际上采用任一上述专利中所述方法均存在问题。燃料的任何中断导致蒸汽曱烷重整器系统停机,致使需进行高成本的重新启动,其中蒸汽甲烷重整器的主要燃料(通常为天然气)必须用来使重整器返回到其操作温度。使用尾气的另一问题是,在可以在真空变压吸附过程中对粗二氧化碳物流进行分离之前,必须对尾气进行压缩。压缩步骤导致额外的能量消耗和固定投资。如以下将论述的,本发明不从尾气中提取二氧化碳,从而避免了上述问题。此外,本发明通过将二氧化碳回收设置在氬气设备内,相对于现有技术还有其他优点。
发明内容本发明提供了从氢气设备生产二氧化碳产物物流的方法。所述氬气设备采用合成气反应器、位于合成气反应器下游的水煤气变换反应器和氢气变压吸附单元来产生氢气产物。根据所述方法,通过在真空变压吸附过程中从合成气物流的至少一部分中分离二氧化碳来从水煤气变换反应器制备的合成气物流的至少一部分回收二氧化碳。这种分离产生了氢气富集的合成气物流和粗二氧化碳物流。该粗二氧化塔物流通过低于环境温度的蒸馏过程来纯化,从而产生蒸气形式的二氧化塔产物。氢气合成气进料物流至少部分由所述氢气富集的物流形成,并且引入所述氢气变压吸附单元,从而产生氢气产物。如上述描述所证明的,二氧化碳取自所述合成气物流而非尾气物流。此外,由于在氬气变压吸附过程之前去除了二氧化碳,所以有益地改善氢气的回收。优选地,所述低于环境温度的蒸馏过程包括压缩和干燥所述粗二氧化碳物流。随后将该粗二氧化碳物流冷却至所述低于环境温度的温度,并在汽提塔中汽提,以从液体塔底物产生液态二氧化碳产物并产生塔顶馏出物。使液态二氧化碳产物物流在至少一个压力膨胀以致冷,并随后蒸发以产生至少一股二氧化碳产物物流作为所迷二氧化碳产物。7粗二氧化碳物流可以在具有经过变温吸附过程的吸附剂的干燥单元中干燥,其中通过使用热再生气流从吸附剂中解吸水分。所述低于环境温度蒸馏过程还可包括对包含塔顶馏出物的塔顶馏出物物流进行精炼,以产生二氧化碳富集的蒸气物流和二氧化碳消耗的蒸气物流。将所述二氧化碳富集的蒸气物流用作再生气流,并随后再循环回用于压缩所述粗二氧化碳物流的压缩器。所述二氧化碳消耗的蒸气物流再循环至,并与所述合成气物流一起进料给所述真空变压吸附过程。次优选的替代方案是将所述二氧化碳消耗的蒸气物流与所述氬气富集的合成气流合并,以形成氩气合成气进料物流。如即将论述的,干燥器单元不必须按以上所述的方式使用。在这种情况下,所述二氧化碳富集的蒸气物流仍可再循环回用于压缩粗二氧化碳物流的压缩器。在任何实施方案中,可在压缩器之前或之后从粗二氧化碳物流中催化去除氧气。氧气可通过泄漏进真空变压吸附过程的空气的途径进入斗且二氧化7暖物流。在所述真空变压吸附过程的上游的至少部分所述合成气物流可以在具有经过变温吸附过程的吸附剂的干燥单元中干燥,其中通过使用热再生气体物流从吸附剂中解吸水分。在这种情况下,所述低于环境温度蒸馏过程包括对包含塔顶馏出物的塔顶馏出物物流进行精炼,以产生二氧化碳富集的蒸气物流和二氧化碳消耗的蒸气物流。所述二氧化碳富集的蒸气物流再循环回用于压缩所述粗二氧化碳物流的压缩机,而所述二氧化碳消耗的蒸气物流再循环至,并与所述合成气物流的至少一部分一起进料给所述真空变压吸附过程。可对所述氢气富集的物流进行加热,并用于形成所述热再生气体物流。当所述合成气反应器是蒸汽曱烷重整器时,所述进一步加热的再生气体物流由氬气变压吸附过程产生的尾气物流构成。此后,将该尾气物流用作位于蒸汽甲烷重整器的辐射换热段内的燃烧器的燃料的一部分。可选择地,所述进一步加热的再生气体物流可由含碳氢化合物的进料物流构成,其随后在位于蒸汽曱烷重整器的辐射换热段内的催化剂填充反应管内反应。在本发明的另一实施方案中,可以在真空变压吸附过程之前从所述合成气物流的至少一部分中去除水分,并可以从处于低于环境温度蒸馏过程中的粗合成气物流中去除水分。所述水分中的一部分是通过将所述合成气物流的至少一部分冷却以冷凝其中所含的部分水分,并在分离罐中从所述至少部分合成气物流中去除所得冷凝物,而从所述至少部分合成气物流中去除的。在本发明任一实施方案中,可对二氧化碳产物进行压缩。此外,所述合成气物流可具有介于约12%到约25%的二氧化碳含量。所述粗二氧化碳物流可以具有介于约70%到约98%之间的二氧化碳含量以及介于0-5000ppm之间的氧气含量。所述二氧化碳产物的纯度可以为约98%到99.9999%的二氧化碳和^氐于100ppm的氧气。所述二氧化石友产物可压缩至介于约1200psia和约2500psia之间的压力,并随后引入强化采油过程中,或引入二氧化碳储存点用于封存(s叫uestration)。虽然申请文件通过权利要求书明确指出了申请人视为其发明的主题,但是申请人相信当结合附图时可以更好地理解所述发明,其中图1是用于实施本发明方法的蒸汽曱烷重整器和二氧化碳回收系统(虚线内显示的)的方法流程图的示意图;图2是与图1中采用的二氧化碳回收系统结合使用的真空变压吸附过程的示意图;图3是用于实施图2所示方法的真空变压吸附单元的示意图;图4是图3所示单元的阀开启图;图5是用于实施图l所示二氧化碳回收系统中使用的低于环境温度蒸馏过程的设备的示意图;图6是与图5所示的低于环境温度蒸馏过程结合使用的干燥器单元的示意图;图7是图1的替代性实施方案;图8是图1的替代性实施方案;图9是图1的替代性实施方案;图10是图1的替代性实施方案;图11是图1的替代性实施方案;以及图12是图1的替代性实施方案。为了避免在附图解释中的重复,在各附图中,相同的附图标记用于在图中具有共同描述的部件。具体实施例方式参见图1,显示了氬气设备l,其具有用于产生粗合成气物流12的蒸汽曱烷重整器10、下游水煤气变换反应器14、以及用于从合成气物流18中回收二氧化碳的二氧化碳回收系统16,所述合成气物流中的氢气含量已经通过水煤气变换反应器14提高了。在氢气设备1中,提供了变压吸附单元20来以公知方式将所述氢气纯化为氢气产物物流22。例如,氢气吸附单元20可具有多个异相操作的吸附剂床,从而当一个床吸附非氬气组分并产生纯化的氢气产物作为塔顶馏出物(overhead)时,另一床在比当前在线用以产生氢气产物的床更低的压力下再生。用于这种目的的吸附剂的例子包括氧化铝活化的碳和沸石化合物的层。合成气物流18在变压吸附单元20内的纯化产生了尾气物流24,其含有氢气、二氧化碳、一氧化碳、氮气、甲烷和其他碳氬化合物。尾气物流24可与天然气物流30或其他含碳氢化合物的燃料合并,以形成燃料物流32。将燃料物流32与含氧气的物流36(如空气)一起引入位于蒸汽曱烷重整器10的辐射换热段34内的燃烧器内,以支持燃料物流32的燃烧。含碳氢化合物的物流38也可以是天然气,将其与过热的蒸汽物流40合并以产生反应物流42,并引入诸如位于蒸汽曱烷重整器10的辐射段34内的重整器管44的重整器管内。在蒸汽曱烷重整器10中,碳氢化合物与蒸汽在公知的蒸汽曱烷重整反应中反应,该反应的本质为吸热的。通过燃料物流32的燃烧来供应热量,以支持这类蒸汽曱烷重整器。这种燃烧产生的烟道气通过具有过程气体换热器48以及构成蒸汽再生系统一部分的蒸汽过热器50的蒸汽甲烷重整器10的对流段46。烟道气从烟囱作为烟道气排放成为烟道气物流52。在过程气体沸腾器(boiler)54中对粗合成气物流12进行冷却,所述沸腾器与蒸汽过热器50—起形成了蒸汽再生系统的一部分。过程气体沸腾器54用以将粗合成气物流12冷却至适合于水煤气变换反应器14内的水煤气变换反应的温度,在水煤气变换反应器中通过将粗合成气物流12中的蒸汽组分与一氧化碳反应来上调氢气含量。所得合成气物流18(本领域也称为变换的物流)可通过进料加热器(未示出,但本领域也公知该加热器用于加热含碳氬化合物的进料38)。在加热后,含碳氬化合物的进料38通过加氢处理器,其将硫物种转化为硫化氬,并随后进入基于锌的吸附剂床,以从进料中去除硫化氢。所述加氢处理器和吸附剂床并未示出,不过是本领域公知地。合成气物流18通过沸腾进料水加热器56,其同样构成所述蒸汽发生系统的一部分。在沸腾进料水加热器56中产生的蒸汽和过程气体沸腾器54中得到蒸汽物流一起引入蒸汽汇集器。从蒸汽汇集器取出蒸汽作为蒸气物流58,并部分形成在形成反应物流42时所用的蒸汽物流40。过热的蒸汽物流58的另一部分用于形成输出蒸汽物流60。随后合成气物流18通过翅扇式冷却器66,并随后在进入变压吸附系统20之前通过水冷式冷却器68。合成气物流18具有介于约200psia到约500psia之间的压力,介于约60°F到约'150°F之间,优选介于约90。F到约110。F之间的温度,以及介于约60摩尔%到约80摩尔%之间的氢气、约12摩尔%到约25摩尔%之间的二氧化碳、约0.1摩尔%到约5摩尔%之间的一氧化碳、约3摩尔%到约7摩尔%之间的曱烷、至多约5摩尔%的氮气的组成并被水饱和。通过控制阀70、72和74来控制合成气物流18相对于二氧化碳去除系统16的流动。当控制阀72和74处于关闭位置时,控制阀70处于开启位置。如上所述,完全由合成气物流18形成的氢气合成气进料物流78通过变压吸附单元20。当控制阀70处于关闭位置,而控制阀72和74设定为开启位置时,合成气物流18作为物流18a通过二氧化碳回收系统16,随后返回作为氬气富集的气体物流76,其由已经去除二氧化碳从而相比合成气物流18具有更低二氧化碳含量的合成气物流18构成。在这种情况下,完全由氢气富集气体物流76构成的氢气合成气进料物流78,其被引导至变压吸附系统20用于生产氩气。如本领域技术人员可以理解的,控制阀72和74处于关闭位置的设定使得能够在包含于二氧化碳分离系统16内的设备上进行维护活动。阀70和72的部分开启能够使得可从合成气物流18的一部分中回收二氧化碳,并且这样物流18a由一部分合成气物流18构成。氬气富集的气体物流76通过阀74返回,并与合成气物流18的剩余部分混合形成氢气合成气进料物流78,其继续流动至氬气变压吸附单元20。由于从合成气物流18中去除了二氧化碳,因而减少了氢气变压吸附单元20上的负荷。氢气回收率可以提高多至0.5%。为了在二氧化碳回收单元16内回收二氧化石灰,将物流18a引ii入单元80内进行的真空变压吸附过程中。这产生了氢气富集的合成气物流76和粗二氧化碳物流82。在待论述的^氐于环境的蒸馏过程中对粗二氧化碳物流82进行进一步纯化。参见图2,单元80可结合包括十个步骤的过程,以及包括6个床(A1-A6)的设备(如图3所示)。所述6个床(A1-A6)中每一个都含有吸附水分的氧化铝吸附剂层和吸附二氧化碳的硅胶吸附剂。设备10中用以实现图2所述方法的阀位置如图4所示。为了本领域公知的目的,应用采用阀定位器(valvepositioner)的阀来控制流动。应当理解,所示的压力和步骤持续时间仅用于说明目的。过程步骤通常包括1.进料步骤:处于高压(如约375psia)并由水煤气变换反应器14产生的物流18a转移至单元80。在氬气变压吸附单元20中,对单独的氢气富集气体物流76或其与剩余合成气物流18的结合做进一步处理。在预定时间后或在二氧化碳突破(breakthrough)处于物流18a的床后,进料步骤终止。2.并流(CoO减压1(DPI):将现在处于高进料压力(如lOO^OOpsia)的已完成进料步骤的二氧化碳真空变压吸附("VPSA")床沿与进料物流相同(如图2所示)或相反(图2中未显示)的方向减压至中等压力(如80-400psia)。3.并流(CoC)减压2(DP2):将现在处于中等压力(如80-400psia)的二氧化碳VPSA床沿与进料物流相同(如图2所示)或相反(图2中未显示)的方向进一步减压至更低压力(如60-300psia)。4.并流(CoC)减压3(DP3):将现在处于某中等压力(如60-300psia)的二氧化碳VPSA床沿与进料物流相同(如图2所示)或相反(图2中未显示)的方向进一步减压至更低压力(如50-200psia)。5.最终减压(DPf):将现在处于低于步骤4开始时的压力(约50-200psia)的二氧化碳VPSA床沿与进料物流相同(如图2所示)和/或相反(图2中未显示)的方向进一步减压至接近环境压力的压力(约20psia),以产生图8所示的二氧化碳产物610。该物流可构成粗二氧化碳物流82的一部分。6.通过真空泵609将现在接近环境压力(约20psia)的二氧化碳VPSA床沿与进料物流相同(图2中未显示)或相反(图2中所示)的方向排空至预定的低压,低于环境压力的压力(约1-12psia)。来自处于排空步骤的床的气体(图3中的物流608)构成了粗二氧化碳物流82的一部分。任意地,可在进入产物罐612之前,用鼓风才几(未示出)对物流608进行进一步压缩。7.逆流(CcC)压力补偿3(PE3):排空的床现在沿与进料物流相同(图2中未显示)或相反(图2中所示)的方向压力补偿至步骤4(DP3)产生的气体的压力范围(即至约50-200psia)。该步骤通过将来自步骤4的C02保持在VPSA系统内提高了C02的回收率。这样通过消除将C02送至废物物流的需求而使CO2的损失最小化。10.再加压(TeRP):通过进料气体或者通过处于步骤1的另一床产生的流出物(即进料物流出物)的一部分将压力补偿后的床再次加压至进料压力(100-500psia)。再加压至进料压力后,该床现在准备好返回至步骤1了。如图2中进一步显示的,粗二氧化碳物流82由来自物流608(步骤7)和610(步骤6)的二氧化碳构成,并由产物罐612排放。预期粗二氧化碳物流82具有约80摩尔%或更高的二氧化碳纯度水平。所述的十步过程是针对C02VPSA单元中的一个床的一个循环。上述十个步骤是以循环方式进行的,从而步骤1的进料-输入和进料-流出是连续的。此外,排空步骤(序号6)设计为连续的。这确保了真空泵609连续操作,并且对至单元80或至氬气变压吸附单元20的进料-输入没有间断。应当指出,所示的压力和步骤持续时间仅为说明目的,并且本领域技术人员可以理解可采用压力和步骤的其他组合。在所述单元80中,最终减压过程中产生的气体与来自步骤序号6的排空的气体混合。因此,单元8013的氢气损失极小或没有。在单元80之后,粗二氧化-友物流82包含介于约70体积%至约98体积%的二氧化碳。粗二氧化碳物流82的剩余部分为氢气、一氧化碳、曱烷和氮气,如果有的话。在低于环境温度的蒸馏过程中对粗二氧化碳物流82做进一步纯化,该蒸馏过程通过在压缩机700中将粗二氧化碳物流84压缩至介于约100psia到约1000psia之间,更优选介于约300psia到约800psia之间的压力而开始。最佳的压力取决于二氧化碳的收缩(contraction)。例如,当粗二氧化碳物流82中的二氧化碳浓度为约95%时,优选介于约300psia到约500psia之间的压力。在浓度约80%时,优选介于约500psia到约800psia之间的压力。压缩后,在冷却器702中对粗二氧化碳物流82进行冷却以除去压缩热,从而冷凝粗二氧化碳物流82中的水分。通过将二氧化碳物流?1入分离罐704中来去除所得冷凝物,脱离的水分作为水流706排放。随后,在干燥单元708(以下将具体描述)中对粗二氧化碳物流82进行进一步干燥,并随后引入低温箱(coldbox)710。进一步参见图5,在^氐温箱710内,粗二氧化石友物流82^皮引入主换热器720中,在其中其部分冷却并随后引入再沸器722中,该再沸器用以在汽提塔724内部产生煮沸(boilup)或引发上升的蒸气相。随后,再次将粗二氧化碳物流82引入主换热器720内,其中其完全冷却以至少部分液化粗二氧化碳物流82。随后,将粗二氧化"碳物流82引入膨胀阀726进入汽提塔724,以在该塔内引发下降的液相。如本领域公知地,汽提塔724优选具有规整填料以使朝上流过填料的上升蒸气相与液相的降液膜接触。也可使用其他本领域公知的蒸气-液体接触元件,如筛板。作为接触的结果,下降的液相变为越来越富集二氧化碳(挥发性较弱的组分),而上升的蒸气相变为越来越富集杂质,该杂质相比二氧化碳具有更高的挥发性。源自合成气物流18的粗二氧化碳物流82含有二氧化碳和诸如氢气、一氧化碳和曱烷的杂质。由于所有这类杂质相比二氧化碳挥发性更高,其将从降液中汽提出来,以产生二氧化碳消耗的塔顶馏出物,和二氧化碳富集的液体塔底料。可从汽提塔724提取塔顶馏出物物流728,其由二氧化碳消耗的塔顶馏出物构成,并进一步精炼。这可通过将塔顶馏出物物流728引入辅助换热器730从而二氧化碳塔顶馏出物物流728为至少部分液化来实现。随后,将二氧化碳塔顶馏出物物流730引入相分离器732,以产生二氧化碳消耗的蒸气物流734和二氧化碳富集的液体物流736。二氧化碳富集的液体物流736在膨胀阀738中膨胀,并随后与二氧化碳消耗的蒸气物流734—起流入辅助换热器730。膨胀阀738提供了用于二氧化碳塔顶镏出物物流728部分液化的致冷。随后,二氧化碳富集的液体物流736在主换热器720中汽化,以形成二氧化碳富集的蒸气物流737,而二氧化碳消耗的蒸气物流734在主换热器720中进一步升温。将二氧化碳富集的蒸气物流737用于再生换热器单元708,并随后再循环至压缩机700的压缩的适当阶段,使得该物流可含有约98体积%的二氧化碳。在这方面,二氧化碳富集的蒸气物流737可具有介于约50psia到约150psia之间的压力,并且可含有粗二氧化碳物流82中的二氧化碳的约10%到约15%。根据计算,这种物流的再循环能将从粗二氧化碳物流的二氧化碳回收率提高至高于约99%。优选将二氧化碳消耗的蒸气物流734再循环回单元80,因为其二氧化碳浓度高于合成气物流18并可以含有介于约20摩尔%到约30摩尔%之间的二氧化碳。可从汽提塔724中以液体形式提取二氧化石友产物物流742,其由二氧化碳富集的液体塔底料构成。为了产生致冷,二氧化碳产物物流742可划分成辅助物流746和748,且通过使用膨胀750将辅助物流746膨胀至更低的压力,并通过使用膨胀阀752将辅助物流748膨胀至更高的压力。随后,将辅助物流746和748在主换热器720中气化。将所得更低压的辅助物流746引入产物压缩机754的入口。将更高压的辅助物流748引入产物压缩机754的中间段。如可以理解地,可在单一压力对二氧化碳产物物流742进行膨胀。然而,如可以理解地,这不会具有象所述实施方案一样的能量效率。所得压缩产物物流756可引入管线中,以将其输送至油田用于强化采油过程,其中将压缩产物物流引入注入井以将油田内的油驱动至生产井。可选择地,可将二氧化碳送至封存地点,用于永久贮存所述二氧化碳。这类过程通常需要压力介于约1200psia到约2500psia之间的二氧化碳。在这方面,通常合成气物流18具有介于约12%到约25%之间的二氧化碳含量。上述发明能够经操作以使粗二氧化碳物流具有介于约70%到约98%之间的二氧化碳含量,介于0-5000ppm的氧气含量。此外,尤其在强化采油的情况下,二氧化碳产物应当具有介于约98%到1599.9999%之间的二氧化碳纯度,和低于100ppm的氧气,优选低于10ppm的氧气。参见图6,显示了干燥器单元708的实施方案。干燥器单元708具有两个含有氧化铝吸附剂的床800和802。当床800在线从粗二氧化石友物流82吸附水分时,阀806和808开启。阀810和812关闭。在这时,对床802进行再生,为了该目的,对床802进行减压、加热以解吸之前吸附的水分,冷却并随后再加压以使床802返回线上和吸附。在减压过程中,将干燥器旁通阀814设为开启位置,用于再生的二氧化碳富集的蒸气物流737绕过床802,并在冷却器819中冷却后流至压缩机700。阀816设为开启位置使得床802能减压。在床802减压后,阀814关闭而阀816、817和818开启,使得二氧化石友富集的蒸气物流737能通过加热器820,以将二氧化碳富集的蒸气物流737加热至介于约300°F到600°F的温度,通过床802并通过冷却器819后排放到压缩机700。这使得水分从床802内的吸附剂解吸。随后,通过开启加热器旁通阀826并关闭再生阀818对床802进行冷却。冷却后,加热器旁通阀826和阀816及817关闭,而干燥器旁通阀814开启。此时,阀828裂开,使粗二氧化碳物流82中所含的部分粗二氧化碳进入床802用于再加压目的。一旦再加压,将阀806和808设定在关闭位置,而阀828和830设定在开i文位置,〗吏得床802可以回到线上,而床800以与床802相同的方式并使用阀810和812进行再生。该过程为连续的,从而允if连续流动。应当指出,虽然上述低于环境温度蒸馏过程是优选的,本领域公知的其他类型的蒸馏过程也是可能的。例如,使用多个连续塔来进一步精炼塔顶馏出物物流728。同样,尽管干燥器单元708是优选地,如本领域公知的,在本发明范围内其他类型的干燥器单元也是可能的。实际上,可使用公知的逆流换热器,尽管消耗更高而效率更低。参见图7,显示了图1的替代实施方案,其中二氧化碳消耗的蒸气物流734与氢气富集的合成气物流76合并,以形成氢气进料物流78。参见图8,显示了图1的替代实施方案,其中通过含有公知催化床的类型的脱氧单元758来去除粗二氧化碳物流84中的氧气。虽然,所示脱氧单元758直4妻位于压缩一几700的下游,其也可位于压缩枳j700的上游。脱氧单元758也可位于j氐温箱710的下游,以从二氧化碳消耗的蒸气物流734中去除氧气。尽管另一替代方案是将脱氧单元758置于氢气PSA单元20的上游,以从氢气富集的物流78中去除氧气。在排空步骤中,真空变压吸附单元80可将氧气引入所述系统中,所述系统可能具有安全和纯度问题。脱氧单元758通过去除这些氧气緩解了这种问题。参见图9、lO和ll,与干燥器单元708同类型的干燥器760可置于真空变压吸附单元80的上游。在这些图所示的实施方案中,合成气物流18的全部或部分用作待干燥的物流,以替代粗二氧化碳物流82。在图9中,再生物流是氢气富集的气体物流76。在图10中,再生物流是尾气体物流24,且在图10中再生物流是含碳氢化合物的物流36,其在蒸汽曱烷重整器ll中反应。应当想到在干燥器单元708的情况下,再生物流是二氧化碳富集的蒸气物流737。如图12所示,另一选择是在冷却单元762中冷却物流18a,以冷凝其水分。随后,将物流18a引入分离罐764中,以从合成气物流中分离冷凝物。在该实施方案中保留了干燥器单元708。在图9-11所示的实施方案中,完全去除水分防止了二氧化碳和水冷凝物形成腐蚀性的碳酸的任何可能性,从而可在设备中使用更廉价的材料,这类设备如粗二氧化碳压缩机、真空变压单元部件(如容器、阀和二氧化碳鼓风机)和连接这些单元的管路。通常用在多级式粗二氧化爿暖压缩机各级之间的水分离罐也可取消。图12所示的实施方案通过去除足量水分将粗二氧化碳物流82保持在高于露点防止了任何冷凝,从而提供了部分与上述相同的优点。实施例1.以下计算的实施例描述了各种物流的细节。图2所示的实施方案用于报导表1所示的结果。数值基于二氧化碳真空变压吸附单元80和氢气变压吸附单元20的试验数据。基于合成气物流18中二氧化碳量,上述实施例中的总二氧化碳回收率为约85%。如果根据图1所示的实施方案将二氧化碳消耗的蒸气物流734再循环并与合成气物流18混合,那么二氧化碳的总回收率可提高到约95%。表1.<table>tableseeoriginaldocumentpage18</column></row><table>*从主换热器720的的热端排出之后。虽然参照优选实施方案对本发明进行了描述,但本领域技术人员可以理解,在不脱离所附权利要求定义的本发明精神和范围的情况下可传文出各种改变、增加和省略。权利要求1.从氢气设备中形成的合成气物流生产二氧化碳产物物流的方法,所述氢气设备具有合成气反应器、位于合成气反应器下游用以形成合成气物流的水煤气变换反应器、和用以产生从所述合成气物流回收的氢气产物的氢气变压吸附单元,所述方法包括通过在真空变压吸附系统中从所述合成气物流的至少一部分中分离二氧化碳,来从所述合成气物流的所述至少一部分中回收二氧化碳,从而产生氢气富集的合成气物流和粗二氧化碳物流,并通过低于环境温度蒸馏过程对所述粗二氧化碳物流进行纯化,从而产生蒸气形式的二氧化碳产物;以及至少部分由所述氢气富集的物流形成氢气合成气进料物流,并将所述氢气合成气物流引入所述氢气变压吸附单元,从而产生所述氢气产物。2.根据权利要求1所述的方法,其中所述低于环境温度蒸馏过程包括压缩并干燥所述粗二氧化碳物流,将所述粗二氧化碳物流冷却至低于所述环境温度,在汽提塔中对所述粗二氧化碳物流进行汽提,以从液塔底部产生液态二氧化碳产物并产生塔顶馏出物,在至少一个压力对液态二氧化碳产物物流进行膨胀以产生致冷,蒸发所述液体二氧化碳产物物流以产生至少一股二氧化碳产物物流作为所述二氧化碳产物。3.根据权利要求2所述的方法,其中在具有经受了变温吸附过程的吸附剂的干燥单元中对所述粗二氧化碳物流进行干燥,在所述变温吸附过程中用热再生气体物流从所述吸附剂中解吸水分;所述低于环境温度蒸馏过程包括进一步精炼由塔顶馏出物构成的塔顶馏出物物流,以产生二氧化碳富集的蒸气物流和二氧化碳消耗的蒸气物流;所述二氧化碳富集的蒸气物流用作所述再生气体物流,且之后循环回在压缩所述粗二氧化)碳物流中使用的压缩机;和所述二氧化碳消耗的蒸气物流循环回并与所述合成气物流一起进料给所述真空变压吸附过程。4.根据权利要求2所述的方法,其中在具有经受了变温吸附过程的吸附剂的干燥单元中对所述粗二氧化碳物流进行干燥,在所述变温吸附过程中用热再生气体物流从所述吸附剂中解吸水分;所述低于环境温度蒸馏过程包括进一步精炼由塔顶馏出物构成的塔顶馏出物物流,以产生二氧化碳富集的蒸气物流和二氧化碳消耗的蒸气物流;所述二氧化碳富集的蒸气物流用作所述再生气体物流,且之后循环回在压缩所述粗二氧化碳物流中使用的压缩机;所述二氧化碳消耗的蒸气物流与所述氢气富集的合成气物流合并,以形成所述氩气合成气进料物流。5.根据权利要求3或4所述的方法,还包括在所述压缩机之前或之后,从所述粗二氧化碳物流中催化去除氧气。6.根据权利要求2所述的方法,其中所述低于环境温度蒸镏过程包括进一步精炼由塔顶馏出物构成的塔顶馏出物物流,以产生二氧化碳富集的蒸气物流和二氧化碳消耗的蒸气物流;所述二氧化碳富集的蒸气物流循环回在压缩所述粗二氧化碳物流中使用的压缩机;以及所述二氧化碳消耗的蒸气物流循环回并与所述合成气物流的至少一部分一起进料给所述真空变压吸附过程。7.根据权利要求6的方法,其中将在所述真空变压吸附过程的上游的所述合成气物流的所述至少一部分在具有经过变温吸附过程的吸附剂的干燥单元中干燥,其中在所述变温吸附过程中使用热再生气体物流从所述吸附剂中解吸水分;以及加热所述氢气富集的物流并用于形成所述热再生气体物流。8.根据权利要求6所述的方法,其中所述合成气反应器是蒸汽甲烷重整器;以及将在所述真空变压吸附过程的上游的所述合成气物流的所述至少一部分在具有经过变温吸附过程的吸附剂的干燥单元中干燥,其中在所述变温吸附过程中使用热再生气体物流从所述吸附剂中解吸水分;以及所述进一步加热的再生气体物流由所述氬气变压吸附过程产生的尾气物流构成,之后所述尾气物流用作燃烧器燃料的一部分,该燃烧器位于所述蒸汽甲烷重整器的辐射换热段中。9.根据权利要求6所述的方法,其中所述合成气反应器是蒸汽曱烷重整器;以及将在所述真空变压吸附过程的上游的所述合成气物流的所述至少一部分在具有经过变温吸附过程的吸附剂的干燥单元中干燥,其中在所述变温吸附过程中使用热再生气体物流从所述吸附剂中解吸水分;以及所述进一步加热的再生气体物流由所述含碳氬化合物的进料物流构成,之后该含碳氢化合物的进料物流在催化剂填充的反应管内反应,该反应管位于所述蒸汽甲烷重整器的辐射换热段中。10.根据权利要求3或4所述的方法,其中在所述真空变压吸附过程之前从所述合成气物流的所述至少一部分中去除水分,并在所述低于环境温度蒸馏过程中从所述粗合成气物流中去除水分;以及通过将所述合成气物流的所述至少一部分冷却以冷凝其中所含水分的至少一部分,并在分离罐中从所述合成气物流的所述至少一部分中去除所得冷凝物,以从所述合成气体物流的所述至少一部分中去除所述部分的水分。11.根据权利要求1所述的方法,还包括压缩所述二氧化碳产物。12.根据权利要求11所述的方法,还包括所述合成气物流的二氧化碳含量介于约12%到约25%之间;所述粗二氧化碳物流具有约70%到约98%之间的二氧化碳含量,和介于0-5000ppm之间的氧气含量;所述二氧化碳产物的纯度为约98-99.9999%的二氧化碳,和低于100ppm的氧气;所迷二氧化碳产物压缩至约1200psia到约2500psia之间的压力;以及将所述至少一股二氧化碳物流引入强化采油过程,或者引入二氧化碳贮存点用于封存。全文摘要本发明涉及从氢气设备(1)中形成的合成气物流(18)生产二氧化碳产物物流(756)的方法,所述氢气设备(1)具有合成气反应器(10)、位于合成气反应器下游用以形成合成气物流(12)的水煤气变换反应器(14),和用以产生从所述合成气物流回收的氢气产物(22)的氢气变压吸附单元(20)。根据本发明,在真空变压吸附系统(80)中从所述合成气物流中分离二氧化碳,以产生氢气富集的合成气物流(76)和粗二氧化碳物流(82),并随后通过低于环境温度蒸馏过程纯化所述粗二氧化碳物流,从而产生二氧化碳产物(756)。对氢气变压吸附单元的氢气合成气进料物流(78)至少部分由所述氢气富集的物流形成。文档编号B01D53/047GK101460233SQ200780020668公开日2009年6月17日申请日期2007年3月28日优先权日2006年4月3日发明者B·T·诺伊,D·P·博纳奎斯特,H·E·霍沃德,J·F·比林厄姆,M·M·沙,R·库马申请人:普莱克斯技术有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1