用于有效去除水和废水中的有机化合物的可漂浮多功能复合材料的制作方法

文档序号:5045446阅读:317来源:国知局
专利名称:用于有效去除水和废水中的有机化合物的可漂浮多功能复合材料的制作方法
用于有效去除水和废水中的有机化合物的可漂浮多功能复合材料相关申请本申请要求于2010年2月2日提交的美国临时申请No. 61/300,514的权益。上述申请的全部教导通过引用并入本文。
背景技术
传统上,废水中的大量有机化合物通常通过各种生物处理来去除。对于用于回收的来自废水处理厂的流出水中或者用于供水系统的未经净化水中的相对低水平的有机化合物,在通常的工业实践中通常使用吸附作为去除方法。但是,工业流出水中的许多有机化合物如染料、酚类物质和合成物质,或者天然水中的许多有机化合物如腐殖质实际不能生物降解。因此,传统的生物处理通常不能实现期望的处理目标。另一方面,通过吸附进行的对有机化合物的去除在很大程度上依赖于所使用的吸附剂的能力和性质。通常需要频繁再 生吸附剂,以恢复其功能,这在很多情况下很难(甚至不可能)实现。此外,频繁再生导致高的资金和运行成本。近年来,对于水和废水的净化,能够将有机化合物(包括有毒的有机化合物)最终降解成无机物质(例如二氧化碳和水)的高级氧化过程(advanced oxidation processes,A0P),如臭氧氧化、Fenton反应或光催化作用,吸引了越来越多的兴趣。在这些方法中,光催化作用是焦点领域,因为在处理反应中不需要额外的化学物质。在光催化方法中,光催化剂在光的照射下产生活性自由基,这些活性自由基能够攻击水或废水中的有机化合物并将它们降解成更简单的或无毒的化合物。但是,这些基团通过与有机污染物反应或与其他基团或载体再结合,可能很容易地在少于10_5秒的时间内失去活性。当目标有机污染物以低浓度存在或者当有机污染物从水中向光催化剂的传质是限制因素时,大多数自由基在有机会遇到污染化合物并参与降解反应前可能已经快速失去了活性。为了克服这个问题,一些研究通过将光催化剂颗粒固定在吸附剂粉上或将吸附剂粉和光催化剂颗粒混合,将吸附剂与光催化剂组合。Y. Li 等,Water Res. 40(2006) 1119-1125 ;X. Wang 等,J. Hazard.Mater. 169(2009) 1061-1067。现有的研究发现这些方法改善了去除污染物的动力学,即相比于单独的光催化剂系统,在吸附剂和光催化剂的组合系统中,污染物更快速地被光分解。反应速率加快可以解释为由以下情况引起污染物吸附在吸附剂上,之后污染物快速地移动到催化剂表面。但是,这里依然有许多问题需要解决。首先,光催化剂和吸附剂二者都是尺寸非常小的粉末(通常在纳米或微米范围内),因此将其和处理过的水分离很困难并且成本很高。其次,粉末或小颗粒形式的光催化剂通常以浆料的方式应用于待处理的水中。由安装在水中或水面上方的紫外灯或天然日光提供的光必须穿过水才能到达催化剂颗粒的表面。不幸的是,与光随着通过空气的距离的削弱相比,光随着在水中的距离的削弱更加明显。因此,在这些传统的光催化方法中,所提供的光通常具有非常低的利用率。第三,在组合的吸附剂/催化剂系统中所使用的多孔吸附剂被孔中的催化剂颗粒堵塞,极大地降低了吸附剂和光催化剂二者的性能。因此,需要实现吸附、光催化和光利用效率的协同效应的材料和方法,以有效和低成本地去除水和废水中的有机化合物并使其无机物质化。此外,还需要解决这种处理系统对特定有机污染物的选择性。

发明内容
在本发明中,在受控温度下通过熔融-结合方法将二至三种具有不同功能的组分材料固定在热塑性基材上,从而得到可漂浮多功能复合材料。组分材料包括光催化剂、吸附剂和协同增强剂。选择基材,使其不仅作为组分材料的载体,还为最终产品的漂浮提供体积
山/又o最终的可漂浮多功能复合材料可以轻易地悬浮在水中,但是它们将自然地浮至水面。因此,可以将处理过程中的水体分成含有复合材料的顶层和仅有水的底部区域。因此,可以更容易地将复合材料与处理过的水分离。因为复合材料浮在水面,所以基材上的光催化剂可以更高效地利用光(或者来自紫外灯或者来自天然日光),因为相比于光在水中的 传播,在通过空气传播时光不会明显被削弱。当基材上的吸附剂悬浮在水中时,它们可以使来自大量水中的有机化合物快速聚集,并且以提高的传质速率将有机化合物提供给光催化剂用于降解。这就克服了传统光催化降解技术中的问题,即有机化合物从水中向光催化剂的提供经常受到低的传质的限制。基材上的光催化剂可以将有机化合物从吸附剂上降解成简单化合物(最终成为无机物质)并且连续地再生吸附剂。这就消除了额外的再生过程,而这在传统吸附技术中是必需的。可以在组分中加入增强剂并且可以将其固定在基材上,从而为吸附和光催化的组合提供协同效应,并且可以为复合材料增加选择性。例如,增强剂可以作为吸附剂和光催化剂之间的有机化合物的传质的桥梁或通道。又例如,增强剂可以防止在光照射时催化剂所产生的电子和空穴的复合,从而通过增加有机化合物的光催化降解效率来提高光催化剂的活性。所述可漂浮复合材料用比重小于I的热塑性塑料来制备。热塑性塑料起基材的作用,吸附剂、增强剂和光催化剂组分布置于其上。热塑性塑料可为但不限于聚丙烯、聚乙烯、聚苯乙烯、尼龙等、及其共混物或合金。复合材料包含吸附剂和光催化剂,并且从而将吸附和光催化功能组合在一起。吸附剂使水中的有机化合物聚集,并且将有机化合物以较快的传质提供给光催化剂。吸附剂可为但不限于活性炭、沸石、任何合成的或天然的吸附剂及其组合。光催化剂降解来自吸附剂的有机化合物,并且连续再生/恢复吸附剂。光催化剂可为但不限于二氧化钛(TiO2)、氧化锌(ZnO)、硫化镉(CdS)、三氧化钨(VI) (WO3)、碳化硅(SiC)、掺杂有无机元素的金属氧化物或其任何组合。相比于需要额外的处理来频繁再生吸附剂以恢复其性能并且因此非常昂贵的传统吸附技术,本发明不需要再生吸附剂的额外的处理。相比于经常遇到有机化合物从大量水(bulk water)向光催化剂的慢的传质的问题的传统光催化技术,本发明为光催化剂提供了更高的传质速率,这是因为吸附剂可以使来自大量水中的有机化合物快速聚集。复合材料可以包含在吸附剂和光催化剂之间提供协同效应的增强剂,以促进从吸附剂向光催化剂的传质,增加用于分离和降解有机化合物的选择性,或者捕获电子以防止电子与空穴复合,这些可以提高光催化反应的效率。迄今在制备复合材料方面还没有这样的研究进展。复合材料的光催化反应可以发生在水面,并且可以完全利用从空气介质中提供的光。这就解决了通常在水中利用光的传统光催化技术光利用效率低的问题,在水中利用光会导致高的装置成本以及明显削弱所提供的光。可漂浮多功能复合材料可以用在任何需要去除有机化合物的水和废水处理中。所述材料提供了有竞争力的解决方案,尤其在涉及有毒的以及非生物降解性的有机化合物的情况,包括大多数的工业流出水。还具有的优点是提供了可能需要较少资金和运行成本的简单的处理系统。根据本发明,可漂浮多功能复合材料可以通过以下步骤来制备(a)将所选择的具有适当颗粒或分子尺寸和重量或体积比的吸附剂、光催化剂和增强剂混合在一起。这些组分可为颗粒、小管、纤维、粉末等形式,并且应当在高至比基材的熔点高30°C的温度下为化学稳定的。 (b)根据需要用水、醇或其他溶剂洗涤然后干燥所选择的热塑性基材,所述热属性基材的形式为尺寸比(a)中的组分材料大的颗粒、纤维、片或其他形状。(c)在反应器中,根据待制备的复合材料的最终形状,将吸附剂、光催化剂和增强剂的混合物在搅拌下加热至然后维持在比基材的熔点低10°c至高30°C的特定温度。然后将基材添加到混合物中,并且持续混合Imin至15min,直到基材表面完全被组分混合物覆
至Jhl o(d)通过筛使复合材料与剩余组分混合物分离,并且冷却至室温。(e)用水或水/醇混合物洗涤并且干燥所制备的材料,从而得到最终产品。本发明提供很多优点。复合材料可以漂浮并且因此可以在水面使用。因为与水相比光在通过空气传播时不会明显被削弱,所以可以更充分地利用提供给光催化剂的光。此外,可以将天然日光用作光催化处理的光源。复合材料还具有使水或废水中的有机化合物快速聚集的良好的吸附性能,并且因此提高或增强了水中的有机化合物向材料表面的光催化位点的传质速率。复合材料在紫外光、可见光或者二者同时照射下对有机化合物具有良好的光催化降解性能,这不仅能够将材料上的有机化合物降解成无害的物质,还能够同时再生材料并恢复其对水中的有机化合物的吸附性能。材料可以包含一种或更多种增强剂,该增强剂增强吸附和光催化之间的协同效应,并且增加或提高材料对特定有机化合物的选择性或者所制备的复合材料的化学稳定性。因此,本发明提供了成本有效并且可以在一个过程中实现多个功能的简单的解决方案,所述多个功能是传统技术可能无法实现或者需要多个步骤才能实现的。材料的漂浮特征解决了通常使用的光催化剂或吸附剂的浆料系统遇到的分离问题。在传统技术中,经常以纳米或微米颗粒的形式使用光催化剂和吸附剂。传统技术在水处理后的分离方面面临重大问题,分离通常导致非常高的操作成本。可漂浮材料能够浮至表面,因此可以在需要时简单地处理和分离。


如附图所示(其中不同图中相同的附图标记指代相同的部分),以上内容在以下对本发明的作为例子的实施方案的更详细的描述中将会明显。附图未必是按比例的,重点在于描述本发明的实施方案。图I是本发明所描述的多功能复合材料的结构示意图。固定在较大的基材上的小尺寸组分包括吸附剂、光催化剂和增强剂。图2是机理示意图,通过该机理,增强剂可以提高吸附剂和光催化剂之间的协同效应。有机化合物被吸附剂吸附并且转移到光催化剂,在那里产生活性自由基,例如羟基自由基(0H *)。增强剂可以提高复合材料的选择性、光催化剂的活性或者吸附剂和光催化剂之间的传质。图3是以简单和成本有效的方式使用复合材料的水处理系统的示意图。光源可为天然日光或安装在水面上方的紫外灯。复合材料与待处理的水混合并且浮至水面。可无任何实际困难地从反应器底部收集处理过的水。
图4是在氙气灯下于装有水、苯酚和可漂浮多功能组复合材料的烧杯中进行的光催化反应的苯酹浓度(ppm)随时间(小时)变化的曲线图。
具体实施例方式以下是对作为例子的本发明实施方案的说明。本发明涉及可漂浮多功能复合材料、其制备方法及其使用方法。a)光催化剂组分可为任何有活性的光催化剂,通常为TiO2,其形式为粉末、管或纤维,有效尺寸为约Inm至约50,OOOnm,通常为约IOnm至约lOOnm。吸附剂组分可为任何吸附剂,如无机的或有机的,并且可为单一种类的吸附剂或吸附剂的混合物。通常,吸附剂可为粉末或管形式的活性炭或沸石或二者,有效尺寸为约Inm至约100,OOOnm0吸附剂和光催化剂二者在比基材熔点低的温度至比基材熔点高30°C的温度都是稳定的。例如,比熔点低的温度范围的下限包括但不限于0°C。增强剂可为任何能够提高所制备的复合材料的选择性和活性的化合物。通常,增强剂可为碳纳米管、贵金属盐、无机物(例如SiO2)或功能聚合物。可以将吸附剂、光催化剂或者二者用所选择的增强剂预处理。也可以将增强剂直接与吸附剂和光催化剂组分混合。混合物中吸附剂和光催化剂的质量比可以为约0. I至约10,通常为约0. 2至约6。增强剂的质量可以为吸附剂质量、光催化剂质量或者吸附剂和光催化剂的合并质量的约0. 001%至约5%,通常为吸附剂质量、光催化剂质量或者吸附剂和光催化剂的合并质量的约0. 01%至约0. 2%。基材可为任何比重为约0. 8至约I、通常为约0. 9至约0. 95的热塑性塑料或者其共混物或合金。b)将吸附剂、光催化剂和增强剂的混合物充分混合,之后预热至并维持在比基材熔点低10°C至高30°C的温度范围。然后,通过约0. 5分钟至约30分钟、通常为约2分钟至约10分钟的搅拌(直到所有的基材表面熔融-结合并且完全被光催化剂/吸附剂/增强剂的混合物覆盖),将体积为混合物体积的约10%至约60%、通常为约30%至50%的基材加入所述预热的混合物中。之后利用筛将所制备的复合材料与所述混合物分离。热塑性基材的熔点可能为约80°C至约300°C,通常为100°C至约180°C。所制备的复合材料可以为但不限于纤维、织物、片或颗粒形状。在一个替代方案中,将基材加热至比其熔点高约10°C至约25°C。之后将液态基材通过模型挤出并且切成颗粒、管、纤维等,并且与吸附剂、光催化剂和增强剂的混合物混合。冷却之后,用筛将所制备的复合材料与所述混合物分离。c)所制备的多功能复合材料可用于以紫外灯或日光作为光源的水或废水处理反应器中。所述多功能复合材料可以刚好覆盖水面的最小量,或填充多至反应器体积的70%的最大量放在反应器中。光源设计成从反应器的上方提供,其波长由光催化剂的光敏感性确定,光强度至少为30W/m2。可通过搅拌,例如但不限于通过气泡或机械混合来搅拌,来增强水中的有机化合物的传质。实施例I将5克量的25nm尺寸的TiO2颗粒在2g/L水杨酸溶液中处理30分钟,并在烘箱中于100°C干燥2小时。然后,将处理过的TiO2颗粒与0.05克的多壁碳纳米管(直径110 170nm,长度5 9iim)混合,并且在烘箱中在200°C下加热2小时。然后,将10克量的100目活性炭颗粒与TiO2和碳纳米管的混合物混合,然后将所有的组分装在250mL的反应器 中。将反应容器中的混合物用电热板加热器预热至并维持在200°C,并且用机械式混合器搅拌。然后,向反应器中加入30克量的直径约4_的聚丙烯(PP)。进一步在搅拌的情况下加热反应器中的混合物,使温度增加至并且维持在160°C。该过程再持续3分钟。然后,将PP颗粒与小尺寸的粉末混合物充分固定,通过筛将PP颗粒与剩余的粉末分离,并且将PP颗粒冷却至室温以获得待制备的复合材料。为了证实应用,在空气鼓泡下将3克量的可漂浮多功能复合材料加入到装有50mL 50ppm的苯酚溶液的烧杯中。将烧杯中的内容物放置在具有48W/m2功率的紫外光的氣气灯(Newport)下。发现在4小时内溶液中的苯酹被完全去除。实施例2将50 克 P25Ti02(AER0XIDE,Degussa)与 50 克 100 目活性炭颗粒在 800mL 反应器中混合来制备多功能可漂浮光催化剂。将混合物用电热板加热器预热至并且维持在185°C,并且用机械式混合器搅拌。接下来,向反应器中加入直径约4mm的50聚丙烯(PP)颗粒。进一步在搅拌的情况下加热混合物10分钟。使PP颗粒被TiO2和活性炭颗粒覆盖。然后收集处理过的PP颗粒并且用乙醇和水洗涤。将洗涤过的颗粒与300mL IOppm的苯酚溶液一起加入到300mL玻璃烧杯中。将玻璃烧杯用具有3”光束直径的150W氙气灯照射。利用空气扩散器向苯酚溶液中每分钟导入I. 5升的空气。利用具有C18柱的HPLC仪分析苯酚浓度。如图4所示,5小时后苯酹浓度达到Oppm。虽然通过引用作为实例的本发明的实施方案对本发明进行了详细的示出和描述,但是本领域技术人员应当理解,可以在不脱离通过所附的权利要求所包含的本发明的范围的情况下在形式和细节上对本文进行各种变化。
权利要求
1.一种复合材料,包括 具有浮性的基材; 用于吸附有机化合物的吸附剂; 用于降解有机化合物的光催化剂;以及 增强剂,用于促进所述吸附剂和所述光催化剂之间的传质、增加所述复合材料的选择性、增加所述复合材料的化学稳定性、和/或提高光催化效率, 其中,所述吸附剂、所述光催化剂和所述增强剂固定在所述基材上。
2.根据权利要求I所述的复合材料,其中,所述基材为比重小于I的热塑性塑料。
3.根据权利要求2所述的复合材料,其中,所述热塑性塑料为聚丙烯、聚乙烯、聚苯乙烯、尼龙、或者其共混物或合金。
4.根据权利要求2所述的复合材料,其中,所述基材为尺寸比组分材料大的颗粒、纤维、片和其他形状的形式。
5.根据权利要求I所述的复合材料,其中,所述吸附剂使有机化合物聚集,并且促进被吸附的所述有机化合物向所述光催化剂的传质。
6.根据权利要求5所述的复合材料,其中,所述吸附剂在从比所述基材的熔点低的温度至比所述基材的熔点高约30 V的温度范围内为化学稳定的。
7.根据权利要求5所述的复合材料,其中,所述吸附剂为活性炭、沸石、其他任何合成或天然吸附剂、或者其组合。
8.根据权利要求I所述的复合材料,其中,所述光催化剂为二氧化钛(Ti02)、氧化锌(ZnO)、硫化镉(CdS)、三氧化钨(VI) (WO3)、碳化硅(SiC)、掺杂有无机元素的金属氧化物或其任何组合。
9.根据权利要求I所述的复合材料,其中,所述光催化剂的直径为约Inm至约50,OOOnm0
10.根据权利要求9所述的复合材料,其中,所述光催化剂的直径为约IOnm至约IOOnm0
11.根据权利要求I所述的复合材料,其中,所述增强剂提供对于有机化合物的去除和降解的选择性,增加所述复合材料的光催化活性,或增加所述复合材料的化学稳定性。
12.根据权利要求I所述的复合材料,其中,所述吸附剂与所述光催化剂的比率为约O.I至约10。
13.根据权利要求12所述的复合材料,其中,所述吸附剂与所述光催化剂的比率为约O.2至约6。
14.根据权利要求I所述的复合材料,其中,所述增强剂的量为所述吸附剂的量的约O.001%至约5%,以克计。
15.根据权利要求14所述的复合材料,其中,所述增强剂的量为所述吸附剂的量的约O.01%至约O. 2%,以克计。
16.根据权利要求I所述的复合材料,其中,所述增强剂的量为所述光催化剂的量的约O.001%至约5%,以克计。
17.根据权利要求16所述的复合材料,其中,所述增强剂的量为所述光催化剂的量的约O. 01%至约O. 2%,以克计。
18.根据权利要求14所述的复合材料,其中,所述基材为比重为约O.8至约I的热塑性塑料、其合金或共混物。
19.根据权利要求18所述的复合材料,其中,所述基材为比重为约O.9至约O. 95的热塑性塑料、其合金或共混物。
20.一种制备复合材料的方法,所述方法包括 将吸附剂、光催化剂和增强剂混合以形成混合物; 在搅拌下在比基材的熔点低约10°c至比基材的熔点高约30°C的温度下使所述混合物反应; 将所述基材添加至所述混合物; 使所述混合物固定在所述基材上,以形成所述复合材料;以及 将所述复合材料分离于剩余的混合物。
21.根据权利要求21所述的方法,还包括 a)冷却所述复合材料; b)洗漆所述复合材料;或 c)干燥所述复合材料。
22.根据权利要求21所述的方法,其中,熔合在所述基材上的所述混合物完全覆盖所述基材表面。
全文摘要
描述了用于水或废水处理的复合材料。描述了具有可漂浮基材、用于吸附有机化合物的吸附剂、用于降解有机化合物的光催化剂、和增强剂的复合材料,所述增强剂用于促进吸附剂和光催化剂之间的传质、增加复合材料的选择性或提高光催化效率。吸附剂、光催化剂和增强剂固定在基材上。
文档编号B01J37/00GK102762300SQ201180007958
公开日2012年10月31日 申请日期2011年1月28日 优先权日2010年2月2日
发明者白仁碧, 韩慧 申请人:新加坡国立大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1