一种原子级分散金属Ni配位富氮碳基骨架及其制备方法和应用

文档序号:30421967发布日期:2022-06-15 13:33阅读:135来源:国知局
一种原子级分散金属Ni配位富氮碳基骨架及其制备方法和应用
一种原子级分散金属ni配位富氮碳基骨架及其制备方法和应用
技术领域
1.本发明属于材料制备领域,尤其涉及一种原子级分散金属ni配位富氮碳基骨架及其制备方法和应用。


背景技术:

2.近年来,光催化降解技术作为一种新兴的高级氧化技术,因其在降解和矿化例如有机染料、酚类及农药等难降解有机化合物方面的有效性以及利用太阳紫外和可见光的可能性而受到广泛关注。富氮碳基骨架(ctfs)对可见光具有优异的吸收能力,同时具有较好的化学稳定性,这些性质赋予ctfs在分离和储存、储能、光催化和多相催化等各种应用中具有许多独特的优势。然而,ctfs材料仍存在众多局限性,比如吸附能力有限,缺乏光催化活性位点,不利于难降解有机物的去除。通过加载金属至ctfs材料以提高材料的吸附及光催化性能颇具发展潜力。最近,单原子催化剂(sac)的设计理念逐渐成为催化材料领域的研究前沿,与传统金属纳米团簇不同,sac中的金属以原子分散的形式支撑在材料表面,单个金属原子与载流子之间形成特定的配位关系,呈现出独特的电子结构。通过配位,ctfs特定的物化性质和电子结构可以调节锚定金属的催化活性,同时金属也反过来影响ctfs固有的光催化活性。
3.中国专利cn111569942a公开了一种表面限域单分散pt纳米颗粒的共价三嗪有机骨架复合光催化剂及其制备方法和应用,但其选用贵金属pt作为锚定金属,经济成本较高,且制备过程煅烧温度达到400℃。


技术实现要素:

4.本发明的目的在于提供一种原子级分散金属ni配位富氮碳基骨架及其制备方法和应用,通过在ctfs上锚定原子级分散ni实现材料优化,通过形成稳定的配位结构,提高该材料的可见光吸收能力,同时单原子ni作为光催化反应的活性中心有助于增强ctfs的吸附性能和光催化性能,使其能够被应用于水体中的各类污染物的净化
5.为使单原子ni均匀分散在在ctfs上,本发明采用一种新思路:首先利用超声提高ni-ctfs的分散程度,一定程度上减小ctfs粒径;再连续搅拌溶液,使得 ctfs充分浸渍于氯化镍溶液中,进一步提高分散程度,并产生金属-配体间配位,再用水浴蒸干后经管式炉高温煅烧,活化金属ni,使其成为光催化活性中心。
6.一种原子级分散金属ni配位富氮碳基骨架,由富氮碳基骨架ctfs作为基底,原子级分散金属ni作为光催化反应活性中心锚定在ctfs上,ctfs的尺寸为1~5μm,ctfs与金属镍的质量比为1~10:1。
7.一种原子级分散金属ni配位富氮碳基骨架的制备方法,将ctfs分散于镍源中,连续搅拌得到ni-ctfs混合溶液,再经水浴搅拌蒸干,最后退火处理制得所述的原子级分散金属ni配位富氮碳基骨架。
8.进一步地,所述镍源为氯化镍,由于氯化镍是路易斯酸,在部分情况下有催化作用。
9.进一步地,连续搅拌过程在超声且常温常压下完成,目的是提高ni-ctfs 的分散程度,增加ni负载的均匀度。
10.进一步地,氯化镍水溶液的浓度控制在1~5mg/ml,优选为2.5mg/ml,混合后ctfs浓度控制在4~6mg/ml,优选为5mg/ml。
11.进一步地,水浴搅拌蒸干的温度为60~90℃,优选为80℃;退火处理在氩气气氛保护下进行,温度为150~250℃,优选为180℃,退火时间为1~3h,优选为2h。
12.进一步地,所述ctfs由对苯二甲腈和吡啶二甲腈以摩尔比1:1聚合而成,具体过程如下:于ar气氛保护下且0℃条件下,向摩尔比为1:1的对苯二甲腈和吡啶二甲腈的混合物中加入三氟甲磺酸并搅拌1.5h,再于90~120℃恒温保持20 min,得到暗红色固态物质;用研钵研磨固态物质后,分别经乙醇和水洗涤3次, 60~80℃烘干,即得到所述富氮碳基骨架ctfs。
13.一种原子级分散金属ni配位富氮碳基骨架在吸附-光催化降解污染物中的应用,污染物包括染料、酚类、二苯甲酮类紫外线吸收剂或药物。
14.本发明提供一种将原子ni均一分散于ctfs上的方式,作为既能优化吸附又能提升光催化性能的新型材料,实施使用中该复合材料具有以下优势:
15.1)与传统的光催化剂相比,本发明的原子级分散金属ni配位富氮碳基骨架制备过程相对简单,同时通过调节ctfs在氯化镍中的浸渍浓度,材料的催化速率得以被调控;
16.2)与传统的光催化剂相比,本发明的原子级分散金属ni配位富氮碳基骨架将金属ni锚定控制在原子级,最大化原子利用效率,避免只有表面纳米颗粒参与光催化过程,并占据原ctfs比表面积,使得光催化活性进一步提升;
17.3)与传统光催化剂相比,该材料对水体中难降解有机污染物的普适性强,对染料、酚类、二苯甲酮类紫外吸收剂以及药物类均有可观的吸附和光催化降解优势,研究发现,该吸原子级分散金属ni配位富氮碳基骨架能以较高速率吸附并光催化降解各类污染物;
18.3)由于本发明的原子级分散金属ni配位富氮碳基骨架具备同时优化吸附和光催化的优异性能,对污染物处理效率高,对化学催化和环境修复等领域的应用有一定潜力。
附图说明
19.图1为实施例2制得的复合材料的电镜扫描图;
20.图2为实施例4制得的复合材料的电镜扫描图。
具体实施方式
21.下面结合附图和实施例对本发明做进一步阐述。除特殊说明,本发明中试剂或原料,均为市售产品。
22.以下实施例中,氯化镍溶液的制备方法均为:将氯化镍六水合物(nicl2·
6h2o) 分散于水中,配制不同浓度的氯化镍的水溶液。
23.当然,该氯化镍溶液和ctfs的制备方法只是本发明的优选方式,且各参数可以根据实际需要进行调整。氯化镍溶液也可以采用现有技术中的其他镍源溶液。
24.本发明的原子级分散ni锚定ctfs是通过超声分散,连续搅拌和水浴蒸干后高温退火制得。ctfs在氯化镍溶液中均匀分散后,ni
2+
和ctfs上的不饱和位点形成配位,使ni原子锚定在ctfs上。具体实施例如下:
25.实施例1
26.本实施例中,制备原子级分散金属ni配位富氮碳基骨架的具体步骤如下:
27.(1)分别将4mmol对苯二甲腈和4mmol吡啶二甲腈加入石英瓶,在ar气氛保护下,0℃冰水浴中,将5ml三氟甲磺酸缓慢加入石英瓶,并保持连续搅拌1.5h,得到均一黄色粘稠溶液;
28.(2)搅拌结束,将石英瓶快速转移至烘箱,100℃保持20min,得到暗红色固态物质,将该固态物质研磨后,分别用乙醇和水洗涤各三次;
29.(3)然后将洗涤后的材料转移至烘箱,60℃烘干1d得到棕黄色粉末,再次用研钵研磨,得到富氮碳基骨架(ctfs);
30.(4)将100ml5mg/ml氯化镍溶液与500mg ctfs混合,超声120min,常温常压下连续搅拌1d使ctfs均匀分散在氯化镍溶液中;
31.(5)将步骤(4)中获得的氯化镍浸渍的ctfs混合液在水浴中80℃蒸干,再在氩气保护下,经管式炉180℃下退火2h后形成原子级分散金属ni配位富氮碳基骨架。
32.实施例2
33.本实施例中,制备原子级分散金属ni配位富氮碳基骨架的具体步骤如下:
34.(1)分别将4mmol对苯二甲腈和4mmol吡啶二甲腈加入石英瓶,在ar气氛保护下,0℃冰水浴中,将5ml三氟甲磺酸缓慢加入石英瓶,并保持连续搅拌1.5h,得到均一黄色粘稠溶液;
35.(2)搅拌结束,将石英瓶快速转移至烘箱,100℃保持20min,得到暗红色固态物质。将该固态物质研磨后,分别用乙醇和水洗涤各三次;
36.(3)然后将洗涤后的材料转移至烘箱,60℃烘干1d得到棕黄色粉末,再次用研钵研磨,得到富氮碳基骨架(ctfs);
37.(4)将100ml 2.5mg/ml氯化镍溶液与500mg ctfs混合,超声120min,常温常压下连续搅拌1d使ctfs均匀分散在氯化镍溶液;
38.(5)将步骤(4)中获得的氯化镍浸渍的ctfs混合液在水浴中80℃蒸干,再在氩气保护下,经管式炉180℃下退火2h后形成原子级分散金属ni配位富氮碳基骨架。
39.实施例3
40.本实施例中,制备原子级分散金属ni配位富氮碳基骨架的具体步骤如下:
41.(1)分别将4mmol对苯二甲腈和4mmol吡啶二甲腈加入石英瓶,在ar气氛保护下,0℃冰水浴中,将5ml三氟甲磺酸缓慢加入石英瓶,并保持连续搅拌1.5h,得到均一黄色粘稠溶液;
42.(2)搅拌结束,将石英瓶快速转移至烘箱,100℃保持20min,得到暗红色固态物质。将该固态物质研磨后,分别用乙醇和水洗涤各三次;
43.(3)然后将洗涤后的材料转移至烘箱,60℃烘干1d得到棕黄色粉末,再次用研钵研磨,得到富氮碳基骨架(ctfs);
44.(4)将100ml 1mg/ml氯化镍溶液与500mg ctfs混合,超声120min,常温常压下连续
搅拌1d使ctfs均匀分散在氯化镍溶液。
45.(5)将步骤(4)中获得的氯化镍浸渍的ctfs混合液在水浴中80℃蒸干,再在氩气保护下,经管式炉180℃下退火2h后形成原子级分散金属ni配位富氮碳基骨架。
46.实施例4
47.本实施例中,制备纯富氮碳基骨架的具体步骤如下:
48.(1)分别将4mmol对苯二甲腈和4mmol吡啶二甲腈加入石英瓶,在ar气氛保护下,0℃冰水浴中,将5ml三氟甲磺酸缓慢加入石英瓶,并保持连续搅拌1.5h,得到均一黄色粘稠溶液;
49.(2)搅拌结束,将石英瓶快速转移至烘箱,100℃保持20min,得到暗红色固态物质。将该固态物质研磨后,分别用乙醇和水洗涤各三次;
50.(3)然后将洗涤后的材料转移至烘箱,60℃烘干1d得到棕黄色粉末,再次用研钵研磨,得到富氮碳基骨架(ctfs)。
51.如图1所示为产物的电镜扫描图,ctfs的尺寸为1~5μm,同图2所示的纯ctfs 相比几乎无差别,仍然保留ctfs的片层结构,且在表面并没有可见的镍颗粒。
52.应用实例1
53.利用实施例1~4所得的产物在金卤灯照射可见光条件下分别对典型染料罗丹明b(rhb)进行吸附光催化试验。
54.实验条件为:每组实验分别量取100ml浓度为5ppm/l的rhb溶液于光反应器中,然后分别加入20mg通过实施例1-4制备得到的产物,黑暗环境下磁力搅拌30min达到吸附-脱附平衡,在金卤灯照射下进行光催化降解反应,定时取样并用紫外分光光度计检测溶液中的rhb浓度。
55.应用实例2
56.利用实施例1~4所得的产物在金卤灯照射可见光条件下分别对典型酚类双酚a(bpa)进行吸附光催化试验。
57.实验条件为:每组实验分别量取100ml浓度为5ppm/l的bpa溶液于光反应器中,然后分别加入20mg通过实施例1-4制备得到的产物,黑暗环境下磁力搅拌30min达到吸附-脱附平衡,在金卤灯照射下进行光催化降解反应,定时取样并用高效液相色谱检测溶液中的bpa浓度。
58.应用实例3
59.利用实施例1~4所得的产物在金卤灯照射可见光条件下分别对典型二苯甲酮类紫外线吸收剂2,2',4,4'-四羟基二苯甲酮(bp-2)进行吸附光催化试验。
60.实验条件为:每组实验分别量取100ml浓度为5ppm/l的bp-2溶液于光反应器中,然后分别加入20mg通过实施例1-4制备得到的产物,黑暗环境下磁力搅拌30min达到吸附-脱附平衡,在金卤灯照射下进行光催化降解反应,定时取样并用高效液相色谱检测溶液中的bp-2浓度。
61.应用实例4
62.利用实施例1~4所得的产物在金卤灯照射可见光条件下分别对典型药物卡马西平(cbz)进行吸附光催化试验。
63.实验条件为:每组实验分量取100ml浓度为5ppm/l的cbz溶液于光反应器中,,然后
分别加入20mg通过实施例1-4制备得到的产物,黑暗环境下磁力搅拌30min达到吸附-脱附平衡。在金卤灯照射下进行光催化降解反应,定时取样并检测溶液中的cbz浓度。
64.光催化反应180min后结果如表1所示,不同ni锚定量和ctfs配比的原子级分散金属ni配位富氮碳基骨架对罗丹明b(rhb)、双酚a(bpa)、2,2',4,4'
‑ꢀ
四羟基二苯甲酮(bp-2)和卡马西平(cbz)均具有优异的吸附-光催化降解效果,各实施例对rhb具有最快的吸附-光催化降解效率,无金属掺杂的实施例4 的降解效果低于其它实施例的效果,实施例2中,当浸渍氯化镍浓度为2.5mg/ml 时,所合成的原子级分散金属ni配位富氮碳基骨架对rhb、bpa、bp-2和cbz 均达到最高降解率,光辐射180min后,除cbz外,降解率均达100%,其中 rhb仅经50min便降解完全,cbz的降解率达到76.4%。再对实施例2的原子级分散金属ni配位富氮碳基骨架收集回用,进行循环实验,对rhb、bpa、bp-2 和cbz的降解率分别保持在97.6%、90.6%、91.5%和71.4%,仍保持可观的光降解速率。由此可见,此原子级分散金属ni配位富氮碳基骨架的吸附-光催化降解性能非常优异,且可通过调节载入的单原子金属量来调节其吸附和光催化降解速率。本发明的原子级分散金属ni配位富氮碳基骨架可以高效吸附并光催化降解各类难降解有机污染物,这里以罗丹明b(rhb)、双酚a(bpa)、2,2',4,4'
‑ꢀ
四羟基二苯甲酮(bp-2)和卡马西平(cbz)为代表。
65.表1.不同实施例制备的产物对各类污染物光辐射降解率(%)
66.污染物名称实施例1实施例2实施例3实施例4rhb97.810094.383.1bpa96.910076.421.6bp-296.310098.489.6cbz59.676.430.130.8
67.以上所述的实施例只是本发明的一种较佳方案,然其并非用以限制本发明。例如,尽管上述实施例中,制备过程中的原料仅列出对苯二甲腈:吡啶二甲腈1: 1的情况,但并不意味着必须采取这两种物质和此比例配比,经试验只要选择带有苯环且氰基基团的物质,均可以聚合产生富氮碳基骨架,都能实现本发明的效果。再例如,上述实施例的镍源为氯化镍,但不意味只有氯化镍溶液才能使得原子级分散ni成功锚定至ctfs,采用其他镍源如硝酸镍也能实现本发明的效果。
68.本说明书所述的内容仅仅是对发明构思实现形式的列举,本发明的保护范围不应当被视为仅限于实施例所陈述的具体形式。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1