生物基原料的直接水相重整的制作方法

文档序号:5109158阅读:370来源:国知局
专利名称:生物基原料的直接水相重整的制作方法
技术领域
目前已经有大量注意力被放在了开发由非化石燃料源提供能量的新技术上。生物质是有希望替代化石燃料的资源。与化石燃料不同,生物质还是可再生的。
背景技术
生物质可以用作可再生燃料源。一类生物质为植物生物质。组成高等植物细胞壁的木质纤维素材料使植物生物质成为世界上最丰富的碳水化合物源。植物细胞壁分为两部分,即初生细胞壁和次生细胞壁。初生细胞壁为膨胀细胞提供结构并由三类主要的多糖(纤维素、胶质和半纤维素)和一类醣蛋白组成。次生细胞壁在细胞停止生产后产生,也包含多糖,和通过共价交联于半纤维素上的聚合木质素强化。半纤维素和胶质通常大量存在,但纤维素为主要的多糖和是最丰富的碳水化合物源。大多数运输车辆需要由内燃机和/或推进式发动机提供的高功率密度。这些发动机需要通常为液态或在较低程度上为压缩气体的清洁燃料。液体燃料由于具有高的能量密度和能够被泵送使得它们更易处理从而更易携带。目前,生物基原料如生物质提供液体运输燃料的唯一可再生替代品。遗憾的是,开发生产液体生物燃料的新技术的进展在开发过程中非常缓慢,特别是适应目前基础建设的液体燃料产物更是如此。虽然由生物质源可以生产多种燃料,如乙醇、甲醇、生物柴油、费-托柴油和气体燃料如氢和甲烷,但这些燃料需要适合于它们特征的新的分配技术和/或燃烧技术。这些燃料的生产还可能比较昂贵且在它们的净碳节约方面产生问题。碳水化合物是最丰富的天然生物分子。植物物质以糖、淀粉、纤维素、木质纤维素、半纤维素和它们的任意组合来贮存碳水化合物。在一个实施方案中,碳水化合物包括单糖、多糖或单糖和多糖的混合物。正如这里所应用的,术语“单糖”指不能水解为更小单元的羟 基醛或羟基酮。单糖的例子包括右旋糖、葡萄糖、果糖和半乳糖,但不限于此。正如这里所应用的,术语“多糖”指包含两个或更多个单糖单元的糖。多糖的例子包括纤维素、蔗糖、麦芽糖、纤维二糖和乳糖,但不限于此。碳水化合物在光合作用中产生,所述光合作用为二氧化碳转化为有机化合物作为贮能方式的方法。碳水化合物是高反应性化合物,其可以很容易地氧化产生能量、二氧化碳和水。碳水化合物分子结构中氧的存在对化合物的反应性有贡献。水溶性碳水化合物在催化剂作用下通过加氢、氢解或这两者与氢反应产生多元醇和糖醇。Cortright等人的美国出版公开US 20080216391描述了一种方法,该方法通过使碳水化合物经过加氢反应和随后经水相重整(“APR”)方法而将碳水化合物转化为高级烃。加氢反应产生能够承受APR反应中存在的条件的多元醇。在APR反应和缩合反应中进一步处理可以产生用作燃料的高级烃。目前APR局限于包括糖或淀粉的原料,这与应用这些物质制作食物形成竞争,因而供应量受限。因此需要直接处理包括“生物质”的生物基原料或木质纤维素原料成为液体燃料。

发明内容
本发明的一个实施方案包括提供生物基原料;在水解反应中使生物基原料与溶剂接触以形成包含碳水化合物的中间产物物流;使所述中间产物物流与APR催化剂接触以形成多种含氧的中间产物,其中循环第一部分含氧的中间产物以形成溶剂;和处理至少第二部分含氧的中间产物以形成燃料共混物。本发明的另一个实施方案包括一种方法,所述方法包括提供生物基原料;使生物基原料与水解催化剂和溶剂接触以形成包含碳水化合物的中间产物物流;在第一氢源存在下使至少一部分中间产物物流与氢解催化剂接触以形成至少一些氢解反应产物;在第二氢源存在下使至少一部分中间产物物流与加氢催化剂接触以形成至少一些加氢反应产物;使至少一部分中间产物物流与APR催化剂接触以形成APR反应产物;其中将至少一部分氢解反应产物、至少一部分加氢反应产物和至少一部分APR反应产物组合以形成多种含氧的中间产物,其中第一部分含氧的中间产物循环以形成溶剂;和处理至少第二部分含氧的中间产物以形成燃料共混物。 本发明的另一个实施方案包括一个系统,所述系统包括在水解条件下操作的水解反应器,用来接收生物基原料和溶剂及排放包含碳水化合物的中间产物物流;包含APR催化剂的APR反应器,用来接收中间产物物流和排放含氧的中间产物物流,其中第一部分含氧的中间产物作为溶剂循环回水解反应器;和燃料处理反应器,用来接收第二部分含氧的中间产物物流和排放燃料共混物。本发明的特征和优点对本领域的熟练技术人员来说很明显。虽然本领域的熟练技术人员可以进行多种改变,但这些改变在本发明的实质范围之内。


这些附图描述了本发明一些实施方案的一些方面,但不用于限制或定义本发明。图I示意性描述了本发明的高级烃制备方法的实施方案的方块流程图。
具体实施例方式本发明涉及由生物基原料如生物质、碳水化合物生产适用于运输燃料和工业化学品的高级烃的方法,其中所述碳水化合物包括糖、糖醇、纤维素、木质纤维素、半纤维素和它们的任意组合。所产生的高级烃可用于形成运输燃料如合成汽油、柴油燃料和喷气燃料以及工业化学品。正如这里所应用的,术语“高级烃”指氧碳比小于生物基原料的至少一种组分的氧碳比的烃。正如这里所应用的,术语“烃”指主要包含氢和碳原子的有机化合物,其也是未取代烃。在某些实施方案中,本发明的烃还包含杂原子(即氧或硫),因此术语“烃”还可以包括取代烃。本发明的方法和系统的优点在于将粗生物基原料通过水解和APR反应转化形成包含多元醇、醇、酮、醛和其它单含氧反应产物的含氧的中间产物物流,所述含氧中间产物物流可以直接进料至缩合反应器形成高级烃,从而使转化率和转化效率升高和使不希望的副产物如聚焦糖的形成最小化。虽然不打算被任何理论所局限,据信通过控制进料至APR过程的碳水化合物浓度,可以最小化在APR条件下碳水化合物的降解。另一个优点是本发明提供的方法减少了不希望的副产物的量,从而提高了相对于从生物基原料提取的碳水化合物来说的产物总收率。本发明同时减小了从生物质中提取碳水化合物时所形成的降解产物和通过随后的APR反应处理减小了形成燃料共混物的处理反应中形成的焦炭量。在一些实施方案中,在APR反应中产生的含氧中间产物在所述方法和系统内循环,以形成用于生物基原料消化过程的原位产生的溶剂。这种循环节省了成本并且可以增加从生物基原料提取的碳水化合物量。另外,通过控制AP R过程中碳水化合物的降解,加氢反应可以在175-275 的温度下与APR反应一起实施。作为结果,可以避免单独的加氢反应,和可以增加进料至所述方法的生物基原料的燃料形成趋势。这里所描述的这种方法和反应方案还可以节省投资成本和方法的操作成本。下面将更为详细地描述特定实施方案的优点。在一些实施方案中,本发明提供一种方法,所述方法包括提供生物基原料;在水解反应中使生物基原料与溶剂接触以形成包含碳水化合物的中间产物物流;使中间产物物流与APR催化剂接触以形成多种含氧的中间产物,其中循环第一部分含氧的中间产物以形成溶剂;和处理至少第二部分含氧的中间产物以形成燃料共混物。图I给出了本发明方法的一个实施方案,其中在水解反应114中发生生物基原料水解以产生包含碳水化合物的中间产物物流116,将中间产物物流116进料至APR反应122,和然后将出口物流124(和任选的128)进料至缩合反应130以生产高级烃。在一些实施方案中,在合适设计的任何系统中实施下述反应,所述合适的设计包括包含连续流动、间歇、半间歇或多体系容器和反应器的系统。在各容器中可以发生一个或多个反应,和所述方法不限于用于每个反应的单独反应容器。在一些实施方案中,本发明的系统应用流化催化床层系统。优选地,本发明应用连续流动系统在稳态平衡下实施。正如这里所应用的,术语“生物基原料”指由植物(如叶子、根、种子和茎)产生的有机材料及微生物和动物的新陈代谢废物。生物基原料可以包括生物质。生物质的常用来源包括农业废物(如玉米秸杆、稻草、种子壳、甘蔗叶、甘蔗渣、坚果壳以及牛、家禽和猪的粪便);木质材料(如木头或树皮、锯屑、木料削片和工厂废料);城市废物(如废纸和园林修剪物);和能源作物(如杨树、柳树、开关草、苜蓿草、草原蓝流、玉米、大豆)。术语“生物质”还指所有上述物质的主要结构单元,包括糖、木质素、纤维素、半纤维素和淀粉,但不限于此。生物基原料可以是碳水化合物的来源。图I给出了本发明的转化生物基原料为燃料产物的一个实施方案。在这个实施方案中,生物基原料112与循环物流118 —起引入水解反应114中。循环物流118可以包含多种组分,包括原位产生的溶剂,该溶剂可用于在水解反应过程中溶解来自生物基原料的糖和木质素。正如这里所应用的,术语“原位”指组分在整个过程内产生;不限于生产或使用的特定反应器,因此与过程中产生的组分同义。原位产生的溶剂可以包括含氧的中间产物。水解反应可以包含辅助水解反应的水解催化剂(如金属或酸催化剂)。水解反应中的反应条件可以在反应介质内变化,从而在反应介质内存在温度梯度,使得半纤维素在比纤维素在更低的温度下被提取。例如,反应介质可以包括从生物基原料112开始逐渐升高的温度梯度。不可提取的固体可以作为出口物流120从反应中脱除。中间产物碳水化合物物流116为中间产物物流,该物流可以包含碳水化合物形式的水解生物质。中间产物碳水化合物物流116的组成可以改变和可以包含多种不同的化合物。碳水化合物优选具有2-12个碳原子,和甚至更优选为2-6个碳原子。碳水化合物还可以具有O. 5:1-1:1.2的氧碳比。多种因素影响水解反应中生物基原料的转化。在一些实施方案中,可以在含水流体内从生物基原料中提取半纤维素,并在低于160°C的温度下水解以产生C5碳水化合物馏分。温度升高时,该C5馏分可能会热降解。因此有利的是将C5、C6或其它糖类中间产物直接转化为更稳定的中间产物如糖醇。甚至这些中间产物可以进一步降解,从而运行APR反应以将它们转化为多元醇如甘油、乙二醇、丙二醇,而为了增加过程的收率,单含氧化合物是优选的。通过由APR反应再循环含氧的中间产物并利用该循环液体实施附加的生物质水解,活性含氧的中间产物的浓度可以增加至不需要水稀释的工业可用浓度。通常,有机中间产物在水中浓度为至少2%或5%或优选大于8%可能适合于可用方法。这可以通过在水解反应出口处对中间产物物流取样并应用合适的技术如色谱法确定总有机物的浓度来确定。含氧中间产物物流具有如下所述的燃料形成趋势。纤维素提取在高于160°C下开始,在由碳水化合物组分部分降解形成的有机酸(如羧酸类)的辅助下,在约190°C的温度下完全溶解和水解。一些木质素可以在纤维素之前溶解,而其它木质素可能会坚持到更高的温度。原位产生的有机溶剂可以包括一部分含 氧的中间产物,其中包括但不限于低级醇和多元醇,它们可以辅助溶解和提取木质素和其它组分。在温度为约125-275 下,碳水化合物可以通过一系列复杂的自缩合反应降解形成聚焦糖,而这些聚焦糖被认为是难以转化为燃料产物的降解产物。通常,假定水不会完全抑制低聚反应和聚合反应时,可以预期在应用温度时利用含水反应条件进行一些降解反应。在本发明的一些实施方案中,生物基原料在液体介质如含水溶液中水解,从而获得用于所述方法的中间产物碳水化合物物流。有多种合适的生物基原料水解反应方法,包括酸水解、碱水解、酶水解、催化水解和应用热压水的水解,但不限于此。在某些实施方案中,所述水解反应可以在100-250°C的温度和I-IOOatm的压力下实施。在包括强酸和酶水解的实施方案中,水解反应可以在低至环境温度的温度和I-IOOatm的压力下实施。在一些实施方案中,水解反应可以包括水解催化剂(如金属或酸催化剂)以辅助水解反应。催化剂可以是能够实施水解反应的任何催化剂。例如,合适的催化剂可以包括酸催化剂、碱催化齐U、金属催化剂和它们的任意组合,但不限于此。酸催化剂可以包括有机酸如乙酸、甲酸、乙酰丙酸和它们的任意组合。在一个实施方案中,酸催化剂可以在APR反应中产生和包括含氧中间产物物流的组分。在一些实施方案中,所述含水溶液可以包含原位产生的溶剂。所述原位产生的溶剂通常包括至少一种能够溶解生物基原料的一种或多种水解反应产物或其它组分的醇或多元醇。例如,醇可以用于溶解来自用于过程内的生物质原料的木质素。原位产生的溶剂还可以包括一种或多种有机酸。在一些实施方案中,有机酸可以用作生物基原料水解的催化剂。每种原位产生的溶剂组分可以由外部来源供给或者可以在过程内部产生并循环到水解反应器。例如,一部分在APR反应中产生的含氧中间产物可以在分离器阶段中分离,以在水解反应中用作原位产生的溶剂。在一个实施方案中,原位产生的溶剂可以被分离、贮存和选择性注入循环物流中,从而在循环物流中保持所需的浓度。可以选择水解反应的温度,从而在限制降解产物形成的同时使最大量可提取碳水化合物被水解并作为碳水化合物由生物基原料提取。在一些实施方案中,可以应用多个反应器容器来实施水解反应。这些容器可以具有能够实施水解反应的任何设计。合适的反应器设计可以包括并流、逆流、搅拌釜或流化床反应器,但不限于此。在该实施方案中,生物基原料可以首先引入在约160°C下操作的反应器中。在该温度下,半纤维素可以水解以提取C5碳水化合物和一些木质素而不会使这些产物降解。然后剩余的生物基原料固体可以流出第一反应器容器并被送至第二反应器容器。第二容器可以在160-250°C下操作,以使纤维素进一步水解形成C6碳水化合物。然后剩余的生物基原料固体可以作为废物物流流出第二反应器,而第二反应器的中间产物物流可以被冷却并与来自第一反应器容器的中间产物物流组合。组合后的出口物流然后可以输送到APR反应器。在另一个实施方案中,可以应用具有逐渐升高的温度曲线的一系列反应器,从而在每个容器中提取所需的碳水化合物馏分。然后每个容器的出口物流可以在组合各物流之前冷却,或者可以将所述物流分别进料至APR反应,以将中间产物碳水化合物物流转化为一个或多个含氧的中间产物物流。在另一个实施方案中,图I所示的水解反应可以在单个容器中发生。这个容器可 以具有能够实施水解反应的任何设计。合适的反应器容器设计可以包括并流、逆流、搅拌釜或流化床反应器,但不限于此。在一些实施方案中,应用逆流反应器设计,其中生物质与可能包含原位产生的溶剂的含水物流逆流。在这个实施方案中,在反应器容器内可能存在温度分布曲线,从而在生物基原料入口处或其附近的水解反应介质内的温度为大约160°C,而在生物基原料出口附近的温度为约200-250°C。所述温度分布曲线可以通过在生物基原料出口附近引入高于200°C至250 V的包含原位产生的溶剂的含水流体同时引入160°C或更低的生物基原料获得。含水流体和生物基原料的具体入口温度将基于两股物流间的热量平衡确定。所得温度分布曲线可用于在不明显产生降解产物的条件下水解和提取纤维素、木质素和半纤维素。可以应用其它措施建立水解反应以及与其它组分如木质素一起提取纤维素和半纤维素同时不大量产生降解产物的合适温度分布曲线。例如,可以在一个或多个反应容器内应用内部换热结构来保持水解反应所需要的温度曲线。也可以应用本领域普通技术人员已知的其它结构。本发明的各反应器容器优选包括入口和适合于从所述容器或反应器脱除产物物流的出口。在一些实施方案中,发生水解反应或部分水解反应的容器可以包括附加的出口,以允许脱除部分反应物物流,从而有助于最大化所需产物的形成。合适的反应器设计可以包括但不限于返混反应器(例如搅拌釜、鼓泡塔和/或射流混合反应器),如果所述部分消化的生物基原料和液体反应介质的粘度和特征足以在使生物基原料固体悬浮在过量液相中的状态下操作(与堆置消化器相反),则可以应用返混反应器。本发明方法中中间产物碳水化合物物流中各碳水化合物组分的相对组成将影响APR反应中不希望的副产物如焦炭的形成。具体地,中间产物物流中低的碳水化合物浓度可能影响不希望的副产物的形成。在优选的实施方案中,希望在中间产物物流中容易降解的碳水化合物或重馏分前体的浓度不超过5%,同时通过应用循环概念保持有机中间产物的总浓度尽可能高,所述有机中间产物包括含氧的中间产物(如单-含氧化合物和/或二醇)。在本发明的一些实施方案中,由水解反应产生的中间产物碳水化合物物流中的碳水化合物通过加氢或进入水解反应器的其它合适催化剂而部分脱氧。APR转化多元醇为醛,醛在催化剂作用下与水反应形成氢、二氧化碳和含氧的中间产物,所述中间产物包括更小的多元醇。多元醇通过一系列脱氧反应进一步反应,以形成更多的可以通过缩合反应生产高级烃的含氧中间产物。再次参考图1,按照一个实施方案,来自水解反应114的中间产物碳水化合物物流116可以输送至APR反应以产生含氧中间产物。中间产物碳水化合物物流116可以包含可在APR反应中反应的C5和C6碳水化合物。对于包括热催化APR的实施方案,可以将含氧的中间产物如糖醇、糖多元醇、羧酸和呋喃转化为燃料。APR反应可以包含APR催化剂以辅助反应发生。APR反应条件可以使得APR反应与加氢反应、氢解反应或者这两者一起发生,因为许多反应条件重叠或互补。各种反应可以形成一个或多个含氧中间产物物流124。正如这里所应用的,“含氧的中间产物”可以包括一种或多种多元醇、醇、酮或具有至少一个氧原子的任何其它烃。
在一些实施方案中,APR催化剂可以为能够催化氢与碳水化合物、含氧中间产物或这两者间反应的非均相催化剂,以脱除一个或多个氧原子产生待进料至缩合反应器的醇和多元醇。八 1 催化剂通常可以包括(11、1^、附46、(0、1 11、?(1、诎、?丨、08、11'和它们的合金或任意组合,这些组分单独应用或者与促进剂如W、Mo、Au、Ag、Cr、Zn、Mn、Sn、B、P、Bi和它们的合金或任意组合一起应用。其它有效的APR催化剂材料包括用铼改性的载带的镍或钌。在一些实施方案中,取决于所要求的催化剂功能,APR催化剂还包括任意一种载体。APR催化剂可以通过本领域普通技术人员已知的方法制备。在一些实施方案中,APR催化剂包括载带的第VIII族金属催化剂和金属海绵材料(如海绵镍催化剂)。Raney镍提供了适用于本发明的活性海绵镍催化剂的一个例子。在一些实施方案中,本发明中的APR反应应用包括镍-铼催化剂或钨改性的镍催化剂的催化剂来实施。用于本发明的APR反应的合适催化剂的一个例子为碳载带的镍-铼催化剂。在一些实施方案中,可以通过用例如含约25wt%氢氧化钠的含水碱性溶液处理大约等重量的镍和铝的合金来制备合适的Raney镍催化剂。铝选择性地被碱性水溶液溶解,形成主要包含镍并含有少量铝的海绵类材料。初始合金包括促进剂金属(即钥或铬),其含量使所形成的海绵镍催化剂中保留l_2wt%。在另一个实施方案中,应用亚硝酰基硝酸钌
(III)、氯化钌(III)在水中的溶液浸溃合适的载体材料而制备APR催化剂。然后干燥所述溶液以形成水含量小于1 〖%的固体。所述固体然后在大气压下在旋转球炉中在300°C (未煅烧)或400°C (煅烧)下在氢气物流中还原4小时。在冷却并用氮气赋予催化剂惰性后,使含5vol%氧的氮气流过催化剂2小时。在某些实施方案中,APR催化剂可以包括催化剂载体。催化剂载体稳定和支撑所述催化剂。所应用的催化剂载体的类型取决于所选择的催化剂和反应条件。本发明的合适载体包括但不限于碳、二氧化硅、二氧化硅-氧化铝、氧化锆、二氧化钛、二氧化铈、氧化钒、氮化物、氮化硼、杂多酸、羟基磷灰石、氧化锌、氧化铬、沸石、含碳钠米管、碳富勒烯和它们的任意组合。实施APR反应的条件将依据原始物料的种类和所需的产物而变化。通常,APR反应在80-300°C的温度下实施,优选为120-300°C,和最优选为200-280°C。在一些实施方案中,APR反应在500-14000kPa的压力下实施。APR产物物流124可以包括包含含氧的中间产物的APR产物。正如这里所应用的,“含氧的中间产物”通常指具有I个或多个碳原子和1-3个氧原子的碳氢化合物(在这里也称为CJCV3烃),如醇、酮、醛、呋喃、羟基羧酸、羧酸、二醇和三醇。所述含氧的中间产物优选具有1-6个碳原子,或2-6个碳原子,或3-6个碳原子。醇可以包括伯、仲、直链、支链或环状的C1+醇,如甲醇、乙醇、正丙醇、异丙醇、丁醇、异丁醇、丁醇、戊醇、环戊醇、己醇、环己醇、2-甲基-环戊醇、庚醇、辛醇、壬醇、癸醇、十一烷醇、十二烷醇和它们的异构体,但不限于此。酮可以包括羟基酮、环状酮、二酮、丙酮、丙酮、2-氧代丙醛、丁酮、丁烷_2,3- 二酮、
3-羟基丁烷-2-酮、戊酮、环戊酮、戊烷_2,3- 二酮、戊烷-2,4- 二酮、己酮、环己酮、2-甲基-环戊酮、庚酮、辛酮、壬酮、癸酮、十一烷酮、十二烷酮、甲基乙二醛、丁二酮、戊二酮、二酮己烷和它们的异构体,但不限于此。所述醛可以包括羟基醛、乙醛、丙醛、丁醛、戊醛、己醛、庚醛、辛醛、壬醛、癸醛、十一烷醛、十二烷醛和它们的异构体,但不限于此。所述羧酸可以包括甲酸、乙酸、丙酸、丁酸、戊酸、己酸、庚酸、它们的异构体和衍生物,包括羟基化衍生物,如2-羟基丁酸和乳酸,但不限于此。所述二醇可以包括乙二醇、丙二醇、1,3-丙二醇、丁二醇、戊二醇、己二醇、庚二醇、辛二醇、壬二醇、癸二醇、i^一烷二醇、十二烷二醇和它们的异构体,但不限于此。所述三醇可以包括甘油、1,1,I-三(羟甲基)-乙烷(三羟甲基乙烷)、三羟甲基丙烷、己三醇和它们的异构体,但不限于此。呋喃和糠醛包括呋喃、四氢呋喃、二氢呋喃、2-呋喃甲醇、2-甲基-四氢呋喃、2,5-二甲基-四氢呋喃、2-甲基呋喃、2-乙基-四 氢呋喃、2-乙基呋喃、羟基甲基糠醛、3-羟基四氢呋喃、3-羟基四氢呋喃、2,5-二甲基呋喃、5-轻甲基-2 (5H)-呋喃酮、二氢-5-(轻甲基)-2 (3H)-呋喃酮、四氢-2-糠酸、二氢-5-(轻甲基)-2(3H)_呋喃酮、四氢糠醇、1-(2-呋喃基)乙醇、羟基甲基四氢糠醛和它们的异构体,但不限于此。所述含氧的中间产物物流通常可以表征为包含对应于通式CnOm的组分,其中n=1-6和m=1-6,且m彡n。其它元素如氢也可以在这些分子中存在。可以在APR产物物流中存在的附加组分可能包括氢和其它气体如二氧化碳。这些组分可以与含氧的中间产物分离或者可以将它们进料至缩合反应以在缩合反应后脱除。在一个优选实施方案中,在APR反应器中发生加氢和氢解,这是因为相同的催化剂和条件适用于所有三个反应。加氢和氢解反应将在下文中更为详细地讨论。这些反应可以任选独立于APR或者与APR组合用于本发明方法中。本领域的熟练技术人员在受益于本发明后,将会知道选择何种条件可使加氢、氢解和APR反应的所需产物最大化。相对于其中三个反应在单独容器中实施的方法来说,在单个反应步骤中包括所有三个反应的可能优点是过程强化和成本降低。在具体的实施方案中可能存在附加的工艺设备以在反应器之间运送产物物流。例如,当应用多个容器时,可以应用泵在在反应器容器间运送流体产物物流。在本发明的一些实施方案中,任选希望将来自水解反应和APR反应的碳水化合物和含氧的中间产物转化为更小的分子。这种转化的合适方法通过氢解反应进行。实施氢解的各种方法是已知的。一种合适的方法包括在足以形成包含更小分子或多元醇的反应产物的条件下在氢解反应中使碳水化合物或含氧的中间产物与氢或与合适的气体混合的氢以及氢解催化剂接触。正如这里所应用的,术语“更小的分子或多元醇”包括分子量比初始碳水化合物更小的任何分子,它们可以包含更少的碳原子或氧原子。在一些实施方案中,反应产物包含包括多元醇和醇的更小分子。本领域的普通技术人员能够选择合适的方法来实施氢解反应。在一些实施方案中,5和/或6碳碳水化合物分子可以应用氢解反应在氢解催化剂存在下转化为丙二醇、乙二醇和甘油。所述氢解催化剂可以包括上面相对于APR催化剂讨论的相同催化剂。在某些实施方案中,氢解反应中描述的催化剂可以包括上面针对APR催化剂所述的催化剂载体。实施氢解反应的条件将依据原料类型和所需产物而变化。本领域的熟练技术人员在受益于本发明后,将会认识到使用合适的条件来实施所述反应。通常,氢解反应可以在110-300°C的温度下实施,优选为170-220°C,和最优选为200-225°C。在一些实施方案中,氢解反应在碱性条件下实施,优选PH为8-13,和甚至更优选pH为10-12。在一些实施方案中,氢解反应在60-16500kPa的压力下实施,优选为1700_14000kPa,和甚至更优选为4800-1 IOOOkPa0在某些实施方案中,氢解反应中描述的条件与上面针对APR和加氢反应所述的条件相同,因所述反应可以在相同的反应器中发生。碳水化合物、含氧的中间产物、或这两者均可以在加氢反应中存在以饱和一个或多个不饱和键。各种方法适合于加氢碳水化合物、含氧的中间产物或这两者。一种方法包括在足以引发加氢反应的条件下使原料物流与氢或与合适气体混合的氢及催化剂接触,以形成加氢产物。在一些实施方案中,合适的加氢催化剂可以选自上面提供的APR催化剂列 表。实施加氢反应的条件将依据原料类型和所需产物而变化。本领域的熟练技术人员在受益于本发明后将会认识到合适的反应条件。通常,加氢反应可以在80-250°C的温度下实施,优选为90-200°C,和最优选为100-150°C。在一些实施方案中,氢解反应在500-14000kPa的压力下实施。在一些实施方案中,该反应的条件与APR反应的条件相匹配。在本发明的加氢反应中应用的氢可以包括外部氢、循环氢、原位产生的氢和它们的任意组合。正如这里所应用的,术语“外部氢”指所述氢并非源自生物基原料反应本身而是由其它来源添加到系统中。在一些实施方案中,APR、加氢和氢解催化剂是相同的,和可以存在于相同反应器容器内的相同床层中。本发明的各反应器容器优选包括入口和适合于从所述容器或反应器脱除产物物流的出口。在一些实施方案中,容器和反应器包括附加的出口,以允许脱除部分反应物物流从而有助于最大化所需产物形成,并允许收集和循环副产物以用于系统的其它部分。在一些实施方案中,在APR反应中,通过在APR催化剂存在下在重整温度和重整压力下使碳水化合物催化反应以产生氢,和使所产生的氢与部分碳水化合物在脱氧压力和温度下经加氢/氢解催化剂催化反应产生所需的含氧中间产物,从而可以生产含氧中间产物。在某些实施方案中,所应用的氢可以完全由外部来源提供或由外部来源补充。在另一个实施方案中,含氧的中间产物还可以包括循环的含氧中间产物。不希望被任何理论所局限,包括生物基原料通过APR转化的反应可以由下式来表示生物质⑶水解一糖 rs=kQHB(式I)糖降解一重馏分rs=_kdS2(式2)糖⑶加氢一糖醇㈧rs=_kHWHPH2S (式3)糖醇(A)APR—所需产物rA=_kKwKA(式 4)包含糖醇的含氧中间产物被认为在APR反应条件下比碳水化合物如糖更稳定,因而在反应混合物中可以承受更高浓度的含氧中间产物而不会过量形成降解产物。尽管含氧中间产物的稳定性有一些提高,但为了减少降解产物的收率损失,相对于APR催化接触时间在APR温度下液相的停留时间可以最小化。工艺设计中的一个考虑是,一旦碳水化合物由水解反应(式I)形成,则在式2的碳水化合物降解反应可能发生之前,使碳水化合物反应成为所需的含氧中间产物(式3)并继续反应为所需反应产物(式4)。另一种考虑包括所涉及的碳水化合物的反应条件。来自半纤维素的C5碳水化合物在温度约160°C下提取,而C6碳水化合物则在高于160°C的温度下在纤维素水解后提取,这可能导致C5碳水化合物快速降解。针对稳态浓度加和包括碳水化合物S形成和消耗的反应并求解得到S = —ηΒ kdS (式 5)
权利要求
1.一种方法,包括 提供生物基原料; 在水解反应中使生物基原料与溶剂接触以形成包含碳水化合物的中间产物物流; 使中间产物物流与APR催化剂接触以形成多种含氧的中间产物,其中第一部分含氧的中间产物循环以形成溶剂;和 处理至少第二部分含氧的中间产物以形成燃料共混物。
2.权利要求I的方法,其中所述燃料共混物包括选自如下的至少一种组合物燃料添加剂、汽油燃料、柴油燃油或喷气燃料。
3.权利要求I的方法,其中所述处理至少第二部分含氧的中间产物包括使至少第二部分含氧的中间产物与加氢催化剂接触以形成燃料共混物。
4.前述权利要求任一项的方法,其中所述燃料共混物包括至少一种选自如下的添加剂饱和醇、饱和多元醇和饱和烃。
5.权利要求I的方法,其中所述处理至少第二部分含氧的中间产物包括使至少第二部分含氧的中间产物与缩合催化剂接触以形成燃料共混物,其中所述燃料共混物包括汽油燃料。
6.权利要求I的方法,其中所述处理至少第二部分含氧的中间产物包括使至少第二部分含氧的中间产物与酸催化剂接触以形成至少一些烯烃;和使烯烃与低聚催化剂接触以形成燃料共混物。
7.前述权利要求任一项的方法,其中由生物基原料形成高级烃具有至少70%的相对液体燃料收率。
8.前述权利要求任一项的方法,其中所述中间产物碳水化合物物流在水解反应出口处具有小于5%的碳水化合物含量。
9.前述权利要求任一项的方法,其中所述中间产物物流具有以重量为基准的总有机物含量,和其中所述中间产物物流的总有机物含量大于2%。
10.权利要求I的方法,还包括在水解反应中使生物基原料与水解催化剂接触,其中所述水解催化剂包括至少一种选自如下的催化剂酸催化剂、碱催化剂、金属催化剂、乙酸、甲酸、乙酰丙酸和它们的任意组合。
11.一种方法,包括 提供生物基原料; 使生物基原料与水解催化剂和溶剂接触以形成包含碳水化合物的中间产物物流;在第一氢源存在下使至少一部分中间产物物流与氢解催化剂接触以形成至少一些氢解反应产物; 在第二氢源存在下使至少一部分中间产物物流与加氢催化剂接触以形成至少一些加氢反应产物; 使至少一部分中间产物物流与APR催化剂接触以形成APR反应产物; 其中将至少一部分氢解反应产物、至少一部分加氢反应产物和至少一部分APR反应产物组合以形成多种含氧的中间产物,其中将第一部分含氧的中间产物循环以形成溶剂;和处理至少第二部分含氧的中间产物以形成燃料共混物。
12.权利要求11的方法,其中APR反应产物包括氢,和其中所述氢为第一氢源、第二氢源或者这两者。
13.权利要求11的方法,其中氢解催化剂、加氢催化剂和APR催化剂为相同的催化剂。
14.权利要求11-13任一项的方法,其中所述处理至少第二部分含氧的中间产物包括使至少第二部分含氧的中间产物与加氢催化剂接触以形成燃料共混物,其中所述燃料共混物包括燃料添加剂。
15.权利要求11-13任一项的方法,其中所述处理至少第二部分含氧的中间产物包括使至少第二部分含氧的中间产物与缩合催化剂接触以形成燃料共混物,其中所述燃料共混物包括汽油燃料。
16.权利要求11-13任何一项的方法,其中所述处理至少第二部分含氧的中间产物包括使至少第二部分含氧的中间产物与酸催化剂接触以形成至少一些烯烃;和使烯烃与低聚催化剂接触以形成燃料共混物,其中所述燃料共混物包括至少一种选自如下的燃料柴油燃油、喷气燃料和它们的任意组合。
全文摘要
一种方法,包括提供生物基原料;在水解反应中使生物基原料与溶剂接触以形成包含碳水化合物的中间产物物流;使中间产物物流与APR催化剂接触以形成多种含氧的中间产物,其中第一部分含氧的中间产物循环以形成溶剂;和处理至少第二部分含氧的中间产物以形成燃料共混物。
文档编号C10G3/00GK102712851SQ201080062185
公开日2012年10月3日 申请日期2010年12月20日 优先权日2009年12月31日
发明者J·B·鲍威尔, J·N·切达 申请人:国际壳牌研究有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1