热化学转化具有高分子量的有机废弃物的方法

文档序号:5118166阅读:343来源:国知局
专利名称:热化学转化具有高分子量的有机废弃物的方法
热化学转化具有高分子量的有机废弃物的方法本发明涉及一种将具有高分子量的有机废弃物热化学转化为液体可燃物和燃料的方法。具有高分子量的有机废弃物是由长链或交联的分子构成的固体含烃物或其混合物。这类废弃物质可能是如塑料或橡胶废弃物、矿物油处理中的蒸馏残渣、各种类型的重油、浙青、浙青砂或油页岩。在矿物油处理中催化裂化具有高分子量的烃的传统方法是所谓的FCC方法(流体催化裂化)。其中,反应在循环气体流化床上进行。螺旋上升的催化剂在操作温度接近500°C的裂解反应器和操作温度接近700°C的再生器之间来回移动。在FCC方法中,在螺旋上升的催化剂颗粒上进行裂解反应之前,析出物需要在反应器中完全蒸发。对于具有高分子量的不容易蒸发的固体物质如塑料、浙青砂或油页岩,这是不可能的。如果裂解反应在低于500°C的低温下进行,那么具有高分子量的原始物质不再能完全蒸发,以至于它们主要以液相存在。然而,因为较低的温度,必须使用活性非常高的催化剂来增加反应速度。当在液相反应中使用裂解催化剂如沸石时,关键的问题是它们迅速失去活性,特别是因为碳化反应。这导致高的操作成本。DE 10215679B4描述了将具有高分子量的物质热转化为液体燃料,其中裂解反应在350-500°C的温度下在重油液相中进行。通过使用具有氢化或还原性能的气流,利用重油馏分的自催化作用。然而,使用氢化或还原性气体通常需要增加操作压力至高于5MPa。另夕卜,需要注意的是,当使用DE 10215679B4时,为了防止容器、管线以及加热元件焦化,反应温度需要足够的低。根据具体的物质,临界焦化温度预计高于400-450°C。为避免焦化,反应温度,特别是在加热壁处的反应温度,必须低于各自的临界焦化温度。对于温度稳定的烃如塑料和橡胶废弃物、矿物油处理中的蒸馏残渣、浙青砂或油页岩,依照DE 10215679B4的方法需要更高的反应温度,因此对这些烃,焦化反应将严重破坏技术实施。DE 10215679B4的另一个缺点是需要很快速地加热原材料。因此,过高的壁温导致焦化通常是不可避免的。

上述烃在特定程度上对过高反应温度的需要也适用于热解方法,即纯热分解,因此对于这一过程,严重的问题也是不期望的焦化反应。在DE 19742266A1中,描述了一种方法,其中塑料同生物质一起能被转化为原油在这个方法中,水被用作辅助试剂(水解)。因此,在这个特定过程中,需要接近20MPa的高压。因此需要有一种裂解上述烃类的方法,该方法在大气压下进行,不需要加入任何催化剂,并且能在低于临界焦化温度的反应温度下进行,其中具有高分子量的有机废弃物,也包括非挥发性组分,能够转化为液体可燃物和燃料。这一目的通过权利要求所描述的方法来达到。从属权利要求代表了本发明优选的
实施方案。依照本发明的方法包括以下步骤 将具有高分子量的有机废弃物加热到250°C -500°C,优选280°C -420°C,特别优选300°C -400°C的温度,同时在反应器或者随后转移至反应器的预加热器中避免超过临界焦化温度, 加入生物质, 冷却释放出的气体-蒸汽相,冷凝蒸汽馏分并收集产生的多个冷凝相,籲沉积并分离所产生的多个相。本发明的方法的步骤不需要一步接着一步单独进行。这些步骤可以不同的顺序进行或者特别是以连续操作的模式同时进行。所述具有高分子量的有机废弃物和所述生物质需要以小份进料。或者,如果废弃物是可熔的,可在熔融态下处理。已经证实在转化过程中搅拌或者以不同的方式保持物质移动是有利的。其它的方法是例如,如果反应器中的物质是固体混合物,使用惰性流化气体,或者如果反应器中的废弃物是熔融的流动态,使用循环泵。令人惊讶的是,发现如果加入生物质,具有高分子量的有机废弃物,也包含不挥发性组分,可以在不添加催化剂的情况下在常压下在高达500°C但低于焦化温度的温度下即多数情况低于400°C下转化为液体可燃物和燃料。通常,意外地发现在低于350°C的低反应温度下,在不加入生物质的情况下大部分的具有高分子量的有机废弃物根本不会分解。生物质是指生物来源的物质。这些物质可以是包含烃的所有物质,例如纤维素、淀粉和糖,如麦杆、芒属、玉米、绿色废物、木材等,以及污染的木材,以及所有含蛋白质的物质,如干污泥、港口 浮油、肉和骨粉等。总之,原则上几乎所有的植物和动物材料及其加工产物如纸张、硬纸盒、食物残渣或皮革都是合适的。令人吃惊的是,生物质甚至可以被例如重金属、硫或卤素污染。令人吃惊地,已经发现待用作液体可燃物和燃料的冷凝的液态产物烃油基本上不含干扰性的生物分解产物。在如上所述受污染的情况中,令人吃惊的是产物油也不含或几乎不含这些污染物。具有高分子量的有机废弃物可以是包含长链和/或支链烃分子的物质,如塑料或橡胶废物、矿物油处理中的蒸馏残渣、各种类型的重油、浙青、浙青砂或油页岩。本发明的方法在

图1的流程图中进行了详细解释。将具有高分子量的有机废弃物升至250°C -500°C,优选280°C _420°C,特别优选300°C-400°C的温度。这可在反应器进行,或在预加热器中进行,随后再转移到反应器中。为此,可以使用各种类型的加热系统,如通过电阻、感应或高频的电加热,废气炉系统或其它。依照本发明,在加入生物质后,具有高分子量的有机废弃物开始裂解成轻质油和中间馏分油范围的短链液体燃料。它们在反应器中蒸发然后被引导通过气体-蒸汽相并在反应器顶部离开,然后它们的蒸汽馏分通过冷却和冷凝被再次液化。与预料的不同,得到的冷凝的液体产物烃油基本不含干扰性的生物分解产物。生物质本身发生热解反应。从而在反应过程中产生的生物热解产物通常首先是直接离开反应器而不进入到气体-蒸汽相中的固体残渣,接下来是逸出的不冷凝的气体,最后是生物冷凝相。相应的考虑适用于以上提到的生物质的污染物。因此产生了几种不可互溶的冷凝相,它们分别根据其密度产生分层,这样就可以通过简单的方法将它们彼此进行机械分离。这种产物相的简单分离是特别有利的。
依照本发明方法的特别优点是即使不能完全蒸发的并且在室温下为固体的具有高分子量的有机残渣也能被处理。本发明方法的特征在于本方法在大气压下进行。在本方法中,温度通常不超过400°C。不需要催化剂。不需要反应辅助物,如水或气体。所产生的产物冷凝相可通过简单方式彼此机械分离。本发明的方法可分批或连续进行。下面通过实施例对本发明进行详细的说明。将在室温下为固体的由矿物油处理得到的8kg真空蒸馏残渣作为具有高分子量的烃加入到实验室搅拌反应器中。

通过反应器中的电夹套加热,将该物质加热到390°C。接下来,将干燥的碎麦杆作为生物质通过螺旋运输机连续加入到反应器中,同时不停搅拌。在加入麦杆的过程中,产生和释放出的裂解蒸汽产物通过气体-蒸汽相看到。这些裂解产物不断的从反应器顶部排出,并通过冷凝器导出。将冷凝物连续地收集在分液漏斗中。不冷凝的气相通过排气管导出。在分液漏斗中,收集到四种不互溶的彼此分层的液相。按从顶部到底部密度依次增加的顺序排列,首先是深棕色的油相(冷凝相I),其次是深棕色的有机相(冷凝相2),第三是红棕色的水相(冷凝相3),和第四是黑棕色的有机相(冷凝相4)。在2小时内一共加入2kg麦杆。在实验的最后,从反应器中取出4. 21kg残渣。精确分析显示该残渣由0. 72kg碳化残渣和3. 49kg重油残渣组成。在冷凝物中收集到4. 14kg相1、0. 24kg相2、0. 58kg相3和0. 09kg相4。确定了 0. 74kg的气体平衡差异。如气体分析所示,该非冷凝气体由大约一半的含氧裂解产物如二氧化碳和一氧化碳,另一半的烃裂解产物如甲烷、乙烷、丙烷和丁烷组成。也发现它们的烯烃,乙烯、丙烯和丁烯。在图2中,显示了依照本发明产物油的冷凝相I的GC-MS分析,以及信号的评估表。可以看出主要产生了饱和无支链烷烃,并能看到在接近每个烷烃峰处在多数情况下分别伴随更小的烯烃峰。基本上没有发现干扰性的生物裂解产物如苯酚衍生物。对于GC-MS分析,采用了 Agilent公司的HP5972A型装置,涂布氰丙基苯酚和聚硅氧烷的分离塔ZB1701型来自于Zebron公司。加热速率是3°C /min。温度程序覆盖范围从45°C到280°C。内标准物是荧蒽(保留时间是70. 05min)。为了证明烃产物油(相I)中不含生物残渣,对其进行C14同位素分析。其结果是产物油中的生物质C含量低于5%。水相(冷凝相3),除水以外,包含醋酸作为主要组分。另外,其中能发现其它水溶性的含氧有机组分如甲酸、乙醛、酮、醇和醋酸盐。其它的两个有机冷凝相,相2和相4,主要由含氧的环状物,如苯酚衍生物组成。其中没有发现纯烷烃如正烷烃。
权利要求
1.一种将具有高分子量的有机废弃物热化学转化为液体可燃物和燃料的方法,所述方法包括以下步骤-将有机废弃物加入到反应器中,-将所述有机废弃物加热到250-500°C的温度,同时避免在反应器中超过临界焦化温度,-将生物质加入到反应器中,-收集和冷凝从所述有机废弃物和生物质的混合物中释放出的气体和蒸汽,-收集冷凝物并形成多个相,-取出一个或多个包含液体可燃物和燃料的相。
2.依照权利要求1的方法,其特征在于,所述有机废弃物由长链和/或支链烃分子组成。
3.依照前述权利要求之一所述的方法,其特征在于,所述有机废弃物由塑料或橡胶废弃物、矿物油处理中的蒸馏残渣、重油、浙青、浙青砂和/或油页岩组成。
4.依照前述权利要求之一所述的方法,其特征在于,所述生物质来自植物和/或动物。
5.依照前述权利要求之一所述的方法,其特征在于,所述生物质是纤维素、淀粉、糖、麦杆、芒属、玉米、绿色废物、木材、蛋白质、污泥、港口浮油、肉和骨粉、纸、硬纸盒、食物残渣和/或皮革。
6.依照前述权利要求之一所述的方法,其特征在于,所述有机废弃物在进料前被处理。
7.依照前述权利要求之一所述的方法,其特征在于,所述方法在大气压下进行。
8.依照前述权利要求之一所述的方法,其特征在于,所述反应器中的温度为280-420 O。
9.依照前述权利要求之一所述的方法,其特征在于,所述反应器中的温度为300-400。。。
10.依照前述权利要求之一所述的方法,其特征在于,所述有机废弃物对生物质的重量比为4:1。
全文摘要
本发明涉及一种将具有高分子量的有机废弃物质热化学转化为液体可燃物和燃料的方法,其包括以下步骤将有机废弃物加入到反应器中,加热有机废弃物到250-500℃的温度,同时避免反应器中温度超过临界焦化温度,将生物质加入到反应器中,收集并冷凝从有机废弃物和生物质的混合物中释放出的气体和蒸汽,收集冷凝物并形成多个相,取出一个或多个包含液体可燃物和燃料的相。
文档编号C10G3/00GK103038317SQ201180023989
公开日2013年4月10日 申请日期2011年3月3日 优先权日2010年4月13日
发明者T·维尔纳 申请人:耐克斯奥尔股份公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1