隔热涂敷材料和燃气轮机构件以及燃气轮机的制作方法

文档序号:5169134阅读:269来源:国知局
专利名称:隔热涂敷材料和燃气轮机构件以及燃气轮机的制作方法
技术领域
本发明涉及耐久性良好的隔热涂敷材料和燃气轮机构件以及燃气轮机,特别是涉及被用作隔热涂敷材料的外涂层的陶瓷层的构成。
背景技术
近年来,作为一种节省能源地对策,一直在研究提高火力发电的热效率。为了提高发电用燃气轮机的发电效率,提高气体入口温度较为有效,其温度有时会达到1500℃左右。因此,为了这样实现发电装置的高温化,需要将构成燃气轮机的静叶片和动叶片、或者燃烧器的器壁材料等用耐热构件构成。然而,虽然涡轮机叶片的材料为耐热金属,但是即便如此也不能承受这样的高温,所以在该耐热金属的基体材料上通过金属结合层、利用喷镀等成膜方法形成将由氧化物陶瓷构成的陶瓷层叠层的隔热涂敷材料(Thermal Barrier Coating、TBC)以保护其免受高温,作为该陶瓷层,ZrO2类的材料、特别是用Y2O3部分稳定化或者完全稳定化的ZrO2的YSZ(氧化钇稳定化氧化锆),由于在陶瓷材料中具有较低的传热率和较高的热膨胀率而被广泛使用。
但是,在利用具有由上述YSZ构成的陶瓷层的隔热涂敷材料被覆燃气轮机的动叶片和静叶片等的情况下,虽然根据燃气轮机的种类、有时燃气轮机的入口温度会上升到超过1500℃的温度,但是在这样的高温下运转时,可能在过于严酷的运转条件下,在燃气轮机运转过程中、上述陶瓷层的一部分剥落、耐热性受损。而且,由于近年来环境措施的关系,一直在推进可回收二氧化碳的封闭型燃气轮机的开发,但是可以预料在这种燃气轮机中涡轮机的入口温度甚至可以达到1700℃,涡轮机叶片的表面温度为1300℃的高温。因此,要求涡轮机叶片的隔热涂层具有更高的耐热性。

发明内容
本发明为鉴于上述情况,其目的之一在于提供一种能够控制在高温下使用时的剥离、且具有很高的热遮蔽效果的隔热涂敷材料。
而且本发明的目的之一还在于提供一种由上述隔热涂敷材料被覆的涡轮机构件以及燃气轮机。
由上述YSZ构成的陶瓷层的剥离的问题,是由于YSZ在高温环境下的结晶稳定性不充分、或者对于较大的热应力不具有充分的耐久性造成的。因此本发明者为了实现上述目的,反复地专心研究了用于提高隔热涂敷材料的陶瓷层在高温下的结晶稳定性和热循环耐久性的隔热涂敷材料的构成,发现了通过由用Er2O3稳定化的ZrO2构成陶瓷层,能够提高隔热涂敷材料的耐久性,完成了本发明。
也就是说,本发明的隔热涂敷材料,是为提高高温用耐热合金基体材料的耐热性,而包含有形成在所述基体材料上的陶瓷层的隔热涂敷材料,其特征在于,所述陶瓷层由加入Er2O3作为稳定剂的ZrO2构成。根据这种结构的隔热涂敷材料,与以往的由YSZ构成的陶瓷层相比较,能够得到在高温下的良好的结晶稳定性,通过这样能够得到良好的热循环耐久性。
以前,在涡轮机构件等高温零件中采用具有由YSZ构成的陶瓷层的隔热涂敷材料的情况下,由于长时间暴露在高温下,所以YSZ内部产生相变,隔热特性降低,或由于该相变引起的体积变化而在陶瓷层中产生应力,从而发生龟裂。这是由于虽然在涡轮机构件的表面等用喷镀法形成的YSZ层、为从熔融或半熔融的状态急冷形成的亚稳定正方晶相(t′相),但是该t′相的YSZ长时间暴露在高温环境下,则在YSZ层内部产生从亚稳定的t′相向t相(正方晶相)相变,由于该t相为高温相,所以例如通过使涡轮机停止运转降低YSZ层的温度,则变成m相(单斜晶相)而发生体积变化。由于该从t相向m相的变化伴随着很大的体积变化,所以在YSZ层上作用很大的应力,产生龟裂。随着该龟裂的进展YSZ层的一部分剥离,成为隔热涂敷材料的隔热特性降低的原因。
针对这种情况,本发明采用的由加入了Er2O3的ZrO2构成的陶瓷层,具有良好的结晶稳定性,所以与采用YSZ的陶瓷层相比较不容易产生上述的相变,因此也能够控制由相变引起的应力的产生。通过这样,本发明的隔热涂敷材料实现了良好的热循环耐久性。
在本发明的隔热涂敷材料中,所述陶瓷层的Er2O3加入量为8%重量以上、27%重量以下较好。
在本发明的隔热涂敷材料中,所述陶瓷层的Er2O3加入量为10%重量以上、25%重量以下更好。
在本发明的隔热涂敷材料中,所述陶瓷层的Er2O3加入量为15%重量以上、20%重量以下更好。
通过使由ErSZ构成的陶瓷层的Er2O3加入量处于上述范围,能够得到具有更好的结晶稳定性和热循环耐久性的隔热涂敷材料。并且本发明者实验验证了上述的Er2O3加入量的范围很适当,其详细内容在实施例中予以说明。
其次,本发明的隔热涂敷材料,其特征在于,在所述陶瓷层上形成有微细的气孔,该气孔相对于所述陶瓷层的占有率为8%以上、15%以下。也就是说,在本发明的隔热涂敷材料中,如果将包含在陶瓷层中的气孔的占有率(在本说明书中将其定义为气孔率)控制在上述范围内,那么能够通过上述气孔提高陶瓷层的隔热特性,并且即使在随着热循环而对陶瓷层作用较高的热应力的情况下也能够缓和该应力,所以能够得到热循环性、耐久性良好的隔热涂敷材料。
其次,在本发明的隔热涂敷材料中,最好在所述基体材料和所述陶瓷层之间具有耐氧化性良好的金属结合层。如果为这样的结构,那么由于一般情况下能够通过该金属结合层缓和由于金属材料构成的基体材料和陶瓷层的热膨胀系数的差引起的应力,所以能够得到更好的热循环耐久性。而且该金属结合层,使基体材料和陶瓷层更加牢固地接合,有助于隔热涂敷材料的强度的提高。
其次,本发明为了解决上述问题,提供一种以由前面任意一项所述的隔热涂敷材料进行被覆为特征的燃气轮机构件以及配置有该构件的燃气轮机。根据这种结构的燃气轮机构件,能够得到具有良好的耐热性和热循环耐久性的燃气轮机构件,能够构成可靠性更好的燃气轮机。


图1为本发明的隔热涂敷膜的示意剖视图。
图2为本发明的实施例中采用的激光式热循环试验装置的示意剖视图。
图3(a)为表示利用图2所示的热循环试验装置进行热循环试验时的试样的温度记录的曲线图,图3(b)为表示与图3(a)的各曲线对应的试样上的测试点的说明图。
图4为表示本发明的涡轮机构件的一例的动叶片的立体图。
图5为表示本发明的涡轮机构件的一例的静叶片的立体图。
图6为表示具有图4和图5所示的燃气轮机构件的燃气轮机的一例的部分剖视图。
图中21-基体材料,22-粘合层(金属结合层),23-陶瓷层,4-动叶片(涡轮机构件),5-静叶片(涡轮机构件),6-燃气轮机,61-压缩机,62-涡轮机,63-燃烧器。
具体实施例方式
下面参照

本发明的实施方式。
图1为示意地表示应用了本发明的隔热涂敷材料的隔热涂敷膜的剖面构造的图。该隔热涂敷膜,由在动叶片等高温用耐热合金基体材料21上,作为耐腐蚀性和耐氧化性良好的金属结合层,将由MCrAlY合金等构成的粘合层22叠层,并且在其上面作为外涂层、将由用Er2O3部分稳定化的ZrO2(下面称为ErSZ)构成的陶瓷层23叠层而构成。这里构成上述粘合层22的MCrAlY合金的“M”表示金属元素,例如表示Ni或Co、Fe等单独的金属元素或者其中2种以上的组合。
粘合层22具有减小基体材料21和陶瓷层23的热膨胀系数差、缓和热应力的作用,防止陶瓷层23从粘合层22剥离。该粘合层22可以通过低压等离子喷镀法、电子束物理蒸镀法等形成。
在由ErSZ构成的陶瓷层23中,作为稳定剂的Er2O3的加入比例为8%重量以上、27%重量以下。通过使Er2O3的加入量处于这样的范围内,本实施方式的隔热涂敷材料能够发挥良好的热循环耐久性。在Er2O3的加入量偏离上述范围的情况下,热循环耐久性显著降低。这是因为在上述的加入量不足8%重量的情况下,由于在陶瓷层23中残留单斜晶相(m相),故耐久性降低,在超过25%重量的情况下,陶瓷层23为正方晶格,耐久性良好的t′相的比例降低,故耐久性差。
而且,Er2O3的加入量为10%重量以上、25%重量以下则更为理想,在15%重量以上、20%重量以下最为理想。通过将加入量控制在这些范围内,能够得到热耐久性更好的隔热涂敷材料。
而且,上述陶瓷层23的气孔率(在陶瓷层23内形成的气孔相对于陶瓷层23的体积占有率)在8%以上、15%以下较为理想。气孔率不足8%时,由于很致密、故拉伸弹性模量高,在热应力增高的情况下容易产生剥离。而在超过15%的情况下,与粘合层的粘附性不足,耐久性降低,故是不理想的。
上述的陶瓷层23能够使用ZrO2-Er2O3粉末,通过大气压等离子喷镀法或者电子束物理蒸镀法能够进行叠层,在大气压等离子喷镀中所使用的ZrO2-Er2O3粉末,能够通过下面的步骤制造。
首先,准备好ZrO2粉末和规定的加入比例的Er2O3粉末,将这些粉末与适当的粘接剂和分散剂一起在球蘑机中混合、使之成为泥浆状。然后,通过喷雾干燥器使其形成为粒状干燥后,通过扩散热处理使其固溶化,得到ZrO2-Er2O3复合粉末。
然后,通过将该复合粉末喷镀到粘合层22上、可以得到由ErSZ构成的陶瓷层。而且,在采用电子束物理蒸镀法作为陶瓷层23的成膜方法的情况下,使用将具有规定的组成的原料烧结或者电溶固化得到的锭块。
上述构成的隔热涂敷材料适用于工业用燃气轮机的动叶片和静叶片、或者燃烧器的衬套和尾管等高温零件。而且,不局限于工业用燃气轮机,也能够适用于汽车和喷气式飞机等的发动机的高温零件的隔热涂敷膜。通过在这些构件上被覆本发明的隔热涂敷材料,能够构成热循环耐久性良好的燃气轮机构件和高温零件。
图4和图5为表示可以应用上述的实施方式的隔热涂敷膜的涡轮机叶片(涡轮机构件)的构成例的立体图。
图4所示的燃气轮机动叶片4由固定在圆盘侧的楔形榫41、平台42、叶片部43等构成。另外,图5所示的燃气轮机静叶片5由内壳体51、外壳体52、叶片部53等构成,在叶片部53上形成有密封翅片冷却孔54、微缝55等。
下面,参照图6说明可适用图4、5所示的涡轮机叶片4、5的燃气轮机。图6为示意地表示本发明的燃气轮机的部分剖面结构的图。
该燃气轮机6,具有相互直接连接的压缩机61和涡轮机62。压缩机61例如作为轴流压缩机构成,将大气或者规定的气体作为工作流体从吸入口吸入并升压。在该压缩机61的排出口连接着燃烧器63,从压缩机61排出的工作流体,利用燃烧器63加热到规定的涡轮机入口温度。然后升温至规定温度的工作流体被供给到涡轮机62。如图6所示的那样,在涡轮机62的壳体内部,上述的燃气轮机静叶片4设置有数段(图6中为4段)。而且,上述的燃气轮机动叶片4以与各静叶片5形成一组的段的形式安装在主轴64上。主轴64的一端与压缩机61的旋转轴65连接,在其另一端连接着未图示的发电机的旋转轴。
通过这样的结构,如果从燃烧器63向涡轮机62的壳体内供给高温高压的工作流体,那么通过工作流体在壳体内膨胀,主轴64就旋转,驱动与该燃气轮机6连接的未图示的发电机。也就是说,通过固定在壳体上的各静叶片5降低压力、由此而产生的运动能量经由安装在主轴65上的各动叶片4转换成旋转扭矩。然后产生的旋转扭矩被传递到主轴64,驱动发电机。
一般地,燃气轮机动叶片使用的材料为耐热合金(例如CM247L=Canon Mascegone公司的市场上销售的合金材料),燃气轮机静叶片使用的材料同样为耐热合金(例如IN938=Inco公司的市场上销售的合金材料)。也就是说,构成涡轮机叶片的材料,使用在基于本发明的隔热涂敷材料中可作为基体材料采用的耐热合金。因此,由于如果将基于本发明的隔热涂敷材料被覆在这些涡轮机叶片上,就能够得到隔热效果和耐剥离性良好的涡轮机叶片,所以能够在更高温度的环境下使用,而且能够获得耐久性好、寿命长的涡轮机叶片。而且,可以在更高温度的环境下应用,这意味着能够提高工作流体的温度,通过这样也能够提高燃气轮机的效率。
根据上述的实施方式,由于外涂层由与YSZ相比结晶稳定性更好、耐热循环耐久性更好的陶瓷层23构成,所以能够得到比以往更高的隔热效果和耐剥离性。因此,能够获得可在比以前更高的温度环境下使用的、耐久性良好的隔热涂敷材料。
而且,通过用本发明的隔热涂敷材料被覆燃气轮机的高温零件等,能够得到即使在比以前温度更高的环境下也具有充分的耐久性的燃气轮机构件等。
(实施例)
下面举出实施例更详细地说明本发明,并且更加明确本发明的效果。
(实施例1)
在本例中,为了验证热循环寿命随Er2O3的加入量的变化,形成具有使ZrO2中的Er2O3的加入量发生各种变化的ErSZ层的试样,进行热循环寿命的测定。在各试样的制作中使用的基体材料为Ni基耐热合金,其合金组成为Ni-16Cr-8.5Co-1.7Mo-2.6W-1.7T-0.9Nb-3.4Al-3.4Ti。在将该基体材料的表面用Al2O3粒进行喷砂处理后,在其上面作为金属结合层利用低压等离子喷镀法形成通过由Co-32Ni-21Cr-8Al-0.5Y组成的CoNiCrAlY合金构成的粘合层,在该CoNiCrAlY的粘合层上,利用大气压等离子喷镀法将陶瓷层(ErSZ层)叠层、形成隔热涂敷膜。各试样的陶瓷层中的Er2O3的加入量如表1所示。(试样No.1~12)。
并且,在各试样中,粘合层(CoNiCrAlY)的厚度均为0.1mm,陶瓷层(ErSZ)的厚度均为0.5mm。
然后,作为比较试样,制作了在陶瓷层中使用YSZ的试样。该由YSZ构成的陶瓷层中的Y2O3的加入量为8%重量,气孔率为10%。(试样No.13)。
并且,形成该由YSZ构成的陶瓷层的试样No.13,为以往在燃气轮机的动叶片和静叶片等上所应用的构造的隔热涂敷膜。
就如上得到的各试样进行了热循环耐久性的评价。图2为在本实施例中用于热循环耐久性的评价的激光式热循环试验装置的示意剖面图。该图所示的激光式热循环试验装置,在设置在本体部33上的试样支架32上,将在基体材料31A上形成有隔热涂敷膜31B的试样31、以隔热涂敷膜31B处于外侧的形式配置,通过从CO2激光装置30发出的激光L照射该试样31,从隔热涂敷膜31B一侧加热试样31。而且,通过激光装置30加热的同时,利用从贯通本体部33、设置在本体部33内部的与试样31的背面一侧相对向的位置处的冷却气体喷嘴34的前端、排出的气体流F而从试样31的背面一侧冷却试样31。
根据上述构造的激光式热循环试验装置,能够容易地在试样31内部形成温度梯度,能够进行切合适用燃气轮机构件等高温零件的情况下的使用环境的评价。图3(a)为示意地表示利用图2所示的装置得到的热循环试验中试样的温度变化的曲线图。该图所示的曲线A~C,分别与图3(b)所示的试样31的温度测定点A~C对应。如图3所示的那样,利用图2所示的装置,能够按照试样31的隔热涂敷膜31B表面(A)、隔热涂敷膜31B和基体材料31A的界面(B)、基体材料31A的背面一侧(C)的顺序使温度变低地进行加热。因此,例如通过使隔热涂敷膜31B的表面为1200℃以上的高温,隔热涂敷膜31B和基体材料31A的界面的温度为800~900℃,能够构成与实际的燃气轮机同样的温度条件。并且,由于通过本试验装置得到的加热温度和温度梯度,能够通过激光装置30的输出和调整气体流F,所以能够容易的得到所希望的温度条件。
在本例中,使用图2所示的热循环试验装置,使最高表面温度(隔热涂敷膜表面的最高温度)为1300℃,最高界面温度(隔热涂敷膜和基体材料的界面的最高温度)为950℃,进行反复加热。这时以加热时间3分钟、冷却时间3分钟反复进行。在该热循环试验中将隔热涂敷膜产生剥离时的循环数、作为热循环寿命同时记录在表1中。
如表1所示的那样,确认了Er2O3的加入量处于8%重量~27%重量范围的No.5~11的试样,与以前结构的No.14的试样相比较,具有良好的热循环耐久性。而且,Er2O3的加入量处于10%重量~25%重量范围的No.6~10的试样为900循环以上的热循环寿命,具有更好的热循环耐久性。并且,Er2O3的加入量处于15%重量~20%重量范围的No.7~9的试样为2000循环以上的寿命,具有极好的耐久性。
表1
(实施例2)
下面,为了验证耐久性的变化是随着ErSZ构成的陶瓷层中的ErSZ的气孔率的变化,将配置有具有表2所示的气孔率的陶瓷层的隔热涂敷膜在基体材料上形成、制作了各种试样。这些试样的陶瓷层的气孔率,可以通过调整喷镀条件中的喷镀电流或喷镀距离得到规定的气孔率。而且,除了上述气孔率的调整和使Er2O3的加入量为18%重量之外,其它条件与上述实施例相同,制作各试样(No.15~23)。
如表2所示的那样,确认了在陶瓷层的气孔率为8~15%的No.18~20的试样中,显示出比表1所示的具有以前的由YSZ构成的陶瓷层的隔热涂敷膜更良好的热循环耐久性。
表2
(发明效果)
如以上详细说明的那样,本发明的隔热涂敷材料,通过将作为外涂层的陶瓷层用比以前的YSZ结晶稳定性更好的ErSZ构成,能够即使在长时间暴露在高温下的情况下也不容易引起相变。通过这样,能够得到即使使用的温度环境比以前温度还高,也具有充分的耐久性的隔热涂敷材料。
而且,本发明的燃气轮机构件,通过将作为外涂层的陶瓷层使用由比以前的YSZ结晶稳定性良好的ErSZ构成的隔热涂敷材料来被覆表面,即使温度环境比以前温度高,也显示出充分的耐久性。
权利要求
1.一种隔热涂敷材料,是为提高高温用耐热合金基体材料的耐热性、而包含有形成在所述基体材料上的陶瓷层的隔热涂敷材料,其特征在于,所述陶瓷层,由加入Er2O3作为稳定剂的ZrO2构成。
2.根据权利要求1所述的隔热涂敷材料,其特征在于,所述陶瓷层的Er2O3加入量,为8%重量以上、27%重量以下。
3.根据权利要求2所述的隔热涂敷材料,其特征在于,所述陶瓷层的Er2O3加入量,为10%重量以上、25%重量以下。
4.根据权利要求3所述的隔热涂敷材料,其特征在于,所述陶瓷层的Er2O3加入量,为15%重量以上、20%重量以下。
5.根据权利要求1至4中任意一项所述的隔热涂敷材料,其特征在于,在所述陶瓷层中形成有微细的气孔,该气孔相对于所述陶瓷层的占有率为8%以上、15%以下。
6.根据权利要求1至5中任意一项所述的隔热涂敷材料,其特征在于,在所述基体材料和所述陶瓷层之间具有金属结合层。
7.一种燃气轮机构件,其特征在于,由权利要求1至6中任意一项所述的隔热涂敷材料被覆。
8.一种燃气轮机,其特征在于,具有权利要求7所述的燃气轮机构件。
全文摘要
本发明提供一种能够控制在高温下使用时的剥离、且具有很高的隔热效果的隔热涂敷材料和由该隔热涂敷材料被覆的蜗轮机构件以及燃气轮机。本发明的隔热涂敷材料是为了提高高温用耐热合金基体材料(21)的耐热性、而包含有形成在所述基体材料(21)上的陶瓷层(23)的隔热涂敷材料,所述陶瓷层(23),由通过作为金属结合层叠层的粘合层(22)进行叠层、加入Er2O3作为稳定剂的ZrO2构成。本发明的蜗轮机构件和燃气轮机,由所述隔热涂敷材料被覆表面构成。
文档编号F02C7/00GK1414216SQ0214700
公开日2003年4月30日 申请日期2002年10月22日 优先权日2001年10月24日
发明者鸟越泰治, 青木素直, 森一刚, 冈田郁生, 高桥孝二 申请人:三菱重工业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1