吸热型燃料处理中防焦化的方法

文档序号:5208634阅读:163来源:国知局
专利名称:吸热型燃料处理中防焦化的方法
背景技术
本发明一般涉及用于高速推进系统的冷却系统,尤其涉及含有燃料脱氧器和催化剂的冷却系统,其用以提高能进行吸热反应的碳氢燃料的吸热能力。
在飞行器内的各种系统里通常采用燃料作为冷却介质。发动机工作温度高,则有利于提高循环效率,减少燃料消耗。发动机的工作温度受到燃料可用冷却能力的限制。燃料吸热分解成点火和燃烧性能可能更好的可燃性产物后,其冷却能力可以得到提高。
催化剂用以促进吸热型燃料在吸收反应热后分解成分子量比原先的燃料低的可燃性产物。但是,燃料中的溶解氧引发的热氧化反应会导致焦炭的形成,使催化剂中毒并阻碍优选的催化反应。
在大约250°F~800°F时,燃料中的溶解氧发生反应形成焦炭前体,该前体引发并助长导致形成焦炭沉积物的反应。温度高于约800°F时,焦炭沉积物的形成机制受到热裂化(热裂解)反应的控制,该反应破坏了形成焦炭的化学键。减少燃料的溶解氧含量,就可以减少在温度相对较低时焦炭沉积的速率,并提高燃料的可用冷却能力。
如何用脱氧装置除去燃料中的溶解氧已经众所周知。美国专利6,315,815和申请号为No.10/407,004的美国专利申请中,公开了在燃料系统内采用透气膜去除溶解氧的装置。当燃料从透气膜边经过时,燃料中的氧分子通过透气膜从燃料中扩散出去。去除燃料中的溶解氧,只是有限地提高了可用的冷却能力。飞行器对燃料性能的更高需求,需要进一步提高燃料的可用冷却能力。
因此,需要开发一种能抑制焦炭沉积物形成的吸热型燃料系统,以防在发动机工作温度较高时干扰所需的催化反应。
发明概述本发明是包含燃料脱氧器的燃料输送系统,脱氧装置从燃料中去除溶解氧,以防形成可能阻碍所需催化反应的不溶性材料,从而提高吸热型燃料的可用冷却能力。
燃料输送系统包括用以在燃料进入催化装置之前去除其中的溶解氧的燃料脱氧器。催化装置引发燃料吸热分解为可用热吸收能力更大的有益可燃性产物。
燃料脱氧器包括由多孔基底支撑的渗透膜。渗透膜两侧的氧分压差驱使氧从燃料中向外扩散并通过渗透膜。随后溶解氧从燃料中排除。从燃料中去除溶解氧显著减少了不溶性材料或已知形成温度高于约250°F的焦炭的形成。
避免形成焦炭就防止了催化装置结垢的可能性,催化系统结垢可能阻止吸热分解反应的发生。吸热分解反应发生的温度远高于由于溶解氧而导致的焦炭形成温度。燃料脱氧器防止燃料中的溶解氧形成焦炭沉积物,该沉积物污染并阻止所需的燃料吸热分解反应。而且,燃料脱氧器显著地提高了燃料的可用冷却能力,从而提高了发动机的许可工作温度。
因此,本发明的吸热性燃料输送系统包括燃料脱氧器,该装置通过抑制焦炭沉积物的形成防止对在提高的发动机工作温度下所需的催化反应的干扰。
附图简述从下面本发明优选实施方案的详细描述中,本领域的技术人员能清楚地了解本发明的各个特征和优点。该详细描述所附的图简要介绍如下

图1是根据本发明的推进系统和燃料输送系统的示意图;图2是根据本发明的燃料脱氧器的示意图;图3是根据本发明的另一脱氧装置的示意图;图4是根据本发明的渗透膜的示意图;以及图5是催化剂和燃料脱氧器的示意图。
优选实施方案详述如图1所示,推进系统10包括燃料输送系统20。燃料输送系统20包括燃料脱氧器22和催化剂模块24。燃料系统20也包括直接或间接冷却推进系统组件的热交换器26以及排除燃料中热量的其它系统28。虽然推进系统10优选是燃气涡轮发动机、冲压式喷气发动机或高速飞行器采用的超音速冲压式喷气发动机,但是了解本发明公开文件的技术人员会认识到,本发明可以用在其它已知的能量转换装置上。其它系统28可以包括冷却用以冷却推进系统10的组件的流动气体或其它流体。
催化模块24包括促使燃料吸热分解的催化材料36。催化材料36可以是金属,如铜、铬、铂、铑、铱、钌、钯以及这些材料的任意组合。另外,催化材料36还可以是沸石。阅读了本申请公开文件的技术人员会理解将燃料分解成有益可燃性组分所需的特殊催化剂成份。
沸石是优选的,因为它们比金属的活性高,且生成的不溶性产物少。对吸热性燃料而言,不溶性产物越少,可用的冷却能力越高。特定类型的沸石可以包括八面沸石、菱沸石、丝光沸石、硅质岩或其它任何已知的能催化分解燃料的沸石。
优选的,催化材料36受到位于催化模块24里的蜂房结构38的支撑。但是,该催化材料可以采用粒状、冲压块状、单块状或其它已知的催化剂支撑结构进行支撑。该催化材料要求反应温度为1000~1500°F。温度越低,转化率越低,因而燃料可用的吸热能力降低。
催化模块24紧靠着推进系统10的生热组件。优选的,催化剂模块24置于发动机组件10的的箱室19里。推进系统10生成的热量将催化模块24的温度提高到引发催化反应所需的温度,该催化反应导致燃料吸热分解。
催化模块24的温度还可以被燃料本身的热量所提高。流过催化模块24的燃料用来吸收其它系统的热量。吸收的热量将催化模块24的温度提高到最优化操作所需的温度。另外,用其它方法或装置加热催化模块24也在本发明的保护范围以内。
燃料由于能够吸热,所以很早就用作飞行器的冷却剂。不发生化学反应的吸热能力称作燃料的物理吸热能力。物理吸热能力受到溶解氧和燃料组分在受热时互相反应形成的不溶性材料的限制。
和燃料内溶解氧含量相关的不溶性材料的形成温度低于催化反应所需的温度。不利的是,不溶性材料的形成会导致在催化材料36上生成焦炭沉积层。焦炭沉积层使相当大部分的燃料不能和催化材料28接触,因此阻碍了所需的催化反应。本发明的燃料输送系统20包括能除去燃料中相当部分溶解氧的燃料脱氧器22。去除溶解氧推迟了焦炭沉积物的形成,其典型形成温度低于800°F。温度升高后,催化反应开始将燃料分解成所需的具有良好燃烧性能和更大热吸收能力的组分。
参见图2,该图给出了根据本发明的燃料脱氧器22’的示意图,包括了位于箱室40的多根气管42。燃料30从进料口44进入后,绕着气管42流动,然后从出料口46流出。气管42包括用以吸收溶在燃料30中的氧分子的复合渗透膜48。干气体50流过气管42时,在复合物渗透膜48的两侧形成分压差,膜48将燃料30中的溶解氧吸入气管42中,然后排到干气体50中。随后氧从干气体50中去除并从系统20中排出。干气体50可以通过燃料脱氧器22’循环使用。脱氧后的燃料从出料口46中流出后,进入催化模块24中和其发生催化反应。
参见图3,该图给出燃料脱氧器22”的另一实施方案,包括一系列上下堆叠的燃料板52。每块燃料板52包括有复合渗透膜48,构成了燃料通道54的一部分。燃料从进料口56进入,从出料口58中流出。开孔60对着真空源62。燃料30通过由堆叠的燃料板52构成的燃料通道54。燃料板52置于箱室55内,该箱室界定了进料口56和出料口58的位置。通过增减燃料板52可以让燃料脱氧器22”适用于不同的场合。虽然本申请给出并描述了燃料脱氧器的实施方案,但了解了本申请的本领域技术人员便会知道,其它结构的燃料脱氧器也在本发明的保护范围以内。
参见图4,该图给出了复合渗透膜48的横截面,优选包括放置在多孔垫64上的渗透层62。多孔垫64提供渗透层62所需的支撑结构,同时允许氧最大程度地从燃料中扩散出去。渗透层62涂覆在多孔垫64上,两者之间形成机械结合。渗透层62是优选厚度为0.5-20μm厚的Teflon AF 2400,多孔垫64是孔径为0.25μm的0.005英寸厚的聚偏二氯乙烯(PVDF)。也可以使用具有所需强度和开孔的其它不同材料、厚度和孔径的支撑。
渗透层62优选是Dupon Telfon AF无定形含氟聚合物,但本领域技术人员已知的其它材料也在本发明的保护范围之内,如SolvayHyflon AD全氟玻璃状聚合物和Asahi Glass CYTOP聚全氟丁烯基乙烯醚。每片复合渗透膜48都支撑在多孔基底66上。多孔基底66和真空源62相连,以在复合渗透膜48两侧形成氧分压差。
在工作状态,渗透膜48的非燃料侧68和燃料侧70之间的分压差源自真空源62。箭头72标明的氧从燃料30中扩散出来,通过复合渗透膜48进入多孔基底66。氧72经由多孔基底66排出燃料系统20。
参见图5,催化模块24安装在推进系统10的箱室19里。推进系统10产生的热量加热催化材料36和流经其中的燃料30到促进所需催化反应的温度。燃料发生的催化反应提高了燃料的吸热能力,并生成有益的可燃性材料。
在低温时,如推进系统10初始启动时,由于脱氧装置22去除了溶解氧而防止了焦炭的形成。正如所料,不去除燃料中的溶解氧,在燃料系统20的内部组件上会形成焦炭沉积。包括催化模块24中的蜂房结构38。正是由于这个原因,用以提供吸热分解燃料的催化剂一直没能广泛应用。采用燃料脱氧器22防止了催化材料36低温时中毒,从而使得在高温时发生的能提高吸热型燃料的吸热能力的有益催化反应可以进行。吸热能力的提高使得系统10能够在更高的温度工作,而且工作效率更高。
上述描述是示例性的,并不就是材料的规格。本发明采用了举例说明的形式,应该了解所用的术语针对的是这些描述性语句的本质而不是限制。根据上面的教导,对本发明的多种修改和改变都是可行的。虽然已经公开了本发明的优选实施方案,但是本领域的技术人员可以认识到有些修改是在本发明的范围内。应该明确的是,本发明可以采用上述特定描述以外的方法实现,但仍然在所附权利要求的范围以内。基于此,应该仔细研究下面的权利要求,以确定本发明的真实范围和内容。
权利要求
1.一种推进系统,其包括能量转换装置;和燃料输送系统,其包括用以去除燃料中溶解气体部分的燃料脱氧器,该燃料流过对其进行调节的催化剂。
2.根据权利要求1的组件,其中燃料脱氧器包含当燃料流过所述燃料通道时和燃料接触的渗透膜。
3.根据权利要求2的组件,其包含位于所述渗透膜的燃料侧的聚四氟乙烯涂层。
4.根据权利要求2的组件,其包含在所述渗透膜的非燃料侧对其进行支撑的多孔基底。
5.根据权利要求4的组件,其包含用以在所述渗透膜的燃料侧和非燃料侧之间产生分压差的装置,该分压差将溶解气体从所述燃料通道的燃料中抽出。
6.根据权利要求1的组件,其中所述催化剂暴露于生热元件。
7.根据权利要求1的组件,其中所述催化剂被流经的燃料加热。
8.根据权利要求1的组件,其包含邻近所述推进系统的箱室,所述催化剂安装在所述箱室里。
9.根据权利要求1的组件,其中所述催化剂包含金属。
10.根据权利要求1的组件,其中所述催化剂包含沸石。
11.根据权利要求1的组件,其中所述催化剂引发所述燃料的吸热分解。
12.一种适用于推进系统的燃料输送系统,其包含用于从燃料中去除部分溶解气体的燃料脱氧器;和接收从所述燃料脱氧器中排出燃料的催化剂。
13.根据权利要求12的系统,其中燃料脱氧器包含同流过所述燃料通道的燃料相接触的渗透膜。
14.根据权利要求13的系统,其包含位于所述渗透膜燃料侧的无定形含氟聚合物涂层。
15.根据权利要求13的系统,其包含在所述渗透膜的非燃料侧对所述渗透膜进行支撑的多孔基底。
16.根据权利要求13的系统,其包含在所述渗透膜的燃料侧和非燃料侧之间产生分压差的装置,该分压差将溶入气体从燃料通道的燃料中抽出。
17.根据权利要求12的系统,其中所述催化剂引发吸热分解反应。
18.根据权利要求12的系统,其中所述催化剂包含金属。
19.根据权利要求12的系统,其中所述催化剂包含沸石。
20.根据权利要求12的系统,其中所述催化剂安装在邻近所述推进系统的生热元件的位置。
21.根据权利要求12的系统,其中所述催化剂被流经的燃料加热。
22.一种抑制用于推进系统的吸热型燃料形成焦炭的方法,其包含以下步骤a)去除燃料的溶解氧;和b)在去除溶解氧后引发所述燃料的催化反应。
23.根据权利要求22的方法,其包含通过去除燃料中的溶解氧防止在催化剂材料上形成不溶性材料。
24.根据权利要求23的方法,其包含将催化材料加热到促进燃料吸热分解的温度。
25.根据权利要求24的方法,其包含将燃料直接分解形成优选的可燃性产物。
26.根据权利要求25的方法,其中燃料在分解后的吸热能力比分解前好。
27.根据权利要求22的方法,其包含在透气膜两侧产生分压差使得氧从所述燃料中扩散出来。
28.根据权利要求27的方法,其包含采用多孔基底支撑透气膜并且经过多孔基底将扩散氧从燃料中抽出。
全文摘要
用于推进系统的燃料系统,包括燃料脱氧器和含有催化材料的催化模块。燃料脱氧器去除燃料中的溶解氧,以防形成不溶性材料,该不溶性材料可能使催化剂中毒并阻碍增加吸热型燃料的可用冷却能力所需的催化反应。
文档编号F02M33/00GK1672778SQ20051005600
公开日2005年9月28日 申请日期2005年3月21日 优先权日2004年3月22日
发明者L·J·斯帕达茨尼, H·黄, D·R·索贝尔 申请人:联合工艺公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1