流体动力发电机的制作方法

文档序号:5177600阅读:150来源:国知局
专利名称:流体动力发电机的制作方法
技术领域
本发明涉及一种用于从流体流动中提取能量的设备,并且更特别地涉及一种产生可用于驱动空气涡轮的气压差的流体动力发电机。
背景技术
因为碳排放量对环境影响的关注已被提高,近年来在开发可再生能源方面的兴趣已经可见。虽然焦点主要放在风力和太阳能开发上,但这些技术具有种种弊端。风力发电机依赖于给定阈值的烈风的存在从而以足够的速度移动螺旋桨以驱动涡轮。风力发电也需要大面积的土地专门用于能源生产,并且这些大“风农场”往往是不雅观的而且可能构成对周围野生动物的危害。太阳能发电也具有提供不可靠电力来源的缺点,并且受效率低及成本高之苦。波浪或潮汐能设备可克服上述的许多缺点。它们由于是由潮汐和海浪的内部力量驱动而提供了一种可靠的能源来源,并且还具有放置在众多领域的可能性,尤其在具有大风的沿海地区,如欧洲西海岸。已利用了大量不同的技术以使用波浪、潮汐或海洋动力。常规的潮汐能设备都集中在一种隔离布置上,该布置在放置于潮汐系统中时在涨潮时装满水,并且在退潮时通过涡轮释放水以产生电力。有关人士提出,常规屏障型潮汐能设备的使用可以证明对野生动物和船只的危害。此外,这些设备可能只可在每次涨潮后使用并且因而不提供源源不断的
能量°EP1115976中公开了波能收集的一个范例。该设备利用多个部分之间的相对旋转运动以驱动液压马达。一个备选的技术是使用波的振荡性质压缩一定量的空气(振荡水柱装置)。通过将一种带有气室及水下孔的结构浸入水中,入射的表面波使内室液位上升,压缩气室内的空气量。然后这种(绝热)压缩的空气可用于驱动涡轮机,所述涡轮机的旋转可用于驱动发电机。随着水位下降,空气压力减小并且空气被涡轮机抽进室内。EP0948716中示出了这种类型设备的一个范例,其中抛物线波被聚集到一个室中,空气在该室中被压缩并且用于驱动单转向涡轮机。Wavegen已开发了振荡水柱装置的另一个范例并且命名为“Limpet”。这些设备的一个内在问题在于较低的能量转换效率,结合入射波的尺寸和强度的不同性质,导致不稳定的能量输出。这些器件也位于或靠近岸边以获取岸边的高抛物波的优势。这又导致了在涨潮和退潮之间能源产量的变化。另外,上述器件通过结构特征聚集抛物线海浪,所述结构特征例如为一种向上倾斜的底部或基本直立的壁。这些器件也不适合定量流动或恒流的情况,例如潮汐流;温盐引起的洋流,例如北大西洋暖流和墨西哥湾流; 以及重力引起的流体流动,例如在河流中。

发明内容
本发明的目的是通过提供一种用于提取流体流动能量的改进设备以克服这些问
本发明的另一个目的在于提供一种改进的水能发电机。本发明的另一个目的在于提供一种需要较少维护的水能设备。根据本发明,提供一种设备以自流体流动中提取能量。该设备包括空气压缩室和阀门阵列,可操作为打开和关闭以调节通过相关阀门的缝隙的流体流动。当流体流动入射于其上时阀门为可操作的以渐进地关闭,因此朝空气压缩室聚集流体流动并且在其中压缩空气,从而以打开来自压缩室内液体的回流。 有利的是可配置设备为聚集在液体流中的能量以在空气压缩室内压缩空气。如此配置设备使得这可以循环的方式发生。阀门的渐进式关闭聚集流体流动以在空气压缩室内压缩空气。接着回流出空气压缩室的液体允许,通过阀门的开放穿过缝隙流动。接着可通过阀门的渐进式关闭开始另一个压缩循环。相应地,可在任何流动液体中使用设备,例如河流,或潮汐流或海洋流,以空气压缩的形式提取能量。发明的实施方式可进一步包括累积室用以存储已在空气压缩室内压缩的压缩空气。有利地,设备可进一步包括涡轮,可操作其以被压缩空气驱动。可在涡轮的下游定位一降压室用于在所述液体自压缩室回流期间增强穿过涡轮的压力差。在发明的实施方式中,在阵列中的阀门以向上的梯度以流体流动的方向延伸。阀门可为瓣阀。这些瓣阀可包括各自的浮力原件。浮力原件可具有关闭瓣阀所需的角位移,所述角位移提高了梯度。浮力原件的浮力也可提高梯度并且浮力原件可包括潮汐。在此发明的实施方式中阀门包括扰流器原件以利于沿着向上倾斜梯度的流体流动的偏向和/或在回流期间帮助阀门打开。进一步的实施方式包括用于在预定的位置保持设备的稳定器或系链工具。稳定器可采取锚,缆绳,锁链或任意其它的锚固。发明的实施方式进一步包括所述设备作为潮汐能设备的用途,以驱动水力涡轮或将水泵至更高的水库。其他实施方式包括所述设备作为海洋或河流设备的用途。在最后的实施方式中,可将多个设备布置或相联在一起以形成设备网络,其定位为优化利用流体流动。


现在将通过范例的方式、参考附图描述本发明,在图中图1为用于自流体流动提取能量的设备在浸入流体中之前的透视图;图2为图1设备的对端视图,示出了剖面和阀门阵列的细节;图3为浸入流体流动后通过图2的线A-A的横截面视图;图4为依据图3的横截面视图并且示出由于入射流体流动产生的阀门的部分关闭;以及图5为依据图3和图4的横截面视图并且示出由于入射流体流动产生的阀门的完全闭合,并且示出流体后续地涌入所述压缩空间。
具体实施例方式图1示出用于自液体流动提取能量的设备10的简化透视图。该设备包括顶部12, 和进入流动方向形成开口 16的侧壁14。设备10的顶端部分20,在顶部12之下,容纳空气室的配置,其将在以下更具体的描述。顶部12,侧壁14和其他结构部分可由混凝土建造,尽管可使用任何能产生稳定、水封结构的材料,例如,金属,包括钢铁。基部部分30自开口 16 的底部边缘延伸并且将在以下具体地描述。可为效率而优化设备的尺寸和/或优化流体的捕获并且可基于入射流体的特征,其将在以下进一步描述。设备10的基部部分30包括交替的斜后壁34和水平地面33。图2示出穿过开口 16的设备对端视图。在后壁34上的缝隙23的阵列被阀门40的相应阵列所覆盖(在图2 中仅示出了阵列的一列)。额外地,尽管缝隙32的阵列以6x7的配置示出,可以理解的是阵列的行及列的数量可根据所要求聚集效果和设备尺寸而不同。例如,为了使用海洋或潮汐流,设备10可以带有200或更多列以及2000或更多行的阵列为特征。此外,多个设备10 可连接在一起以形成更大的结构。为了简化图像并允许观察缝隙32,在每个图像中仅示出一列阀门40。阀门40示出为瓣阀;但是可以理解的是也可使用其他类型的阀门。下面参考图3-5详细解释瓣阀40 的结构。这些阀门40的目的是用于以一种将在下面更具体地描述的方式引导和调节液体的流动。示出阀门40的列沿着向上延伸梯度以流体流动动方向延伸从而阀门的每行既位于较低行之上又位于较低行之后。尽管阵列以阶梯型配置示出,可使用任何提供向上延伸梯度的配置,其取决于关于入射液体流动或所要求液体引导的设备定向。图3示出通过在图2中标注的线A-A的横截面视图。在这个图中,设备已经浸入液体中至水位60。阀门40是开放的并且设备内液体65的水位近似地与外部水位60相同。 顶端部分20包括空气压缩室M,其在底端开放从而液体水位65将空气限制其中,还包括积累器室22a,和降压室22b。在顶部12,侧壁14,后壁18,室22a,22b和液体65之间限制于压缩室M内的空气压力也近似地与外部气压相同。可以理解的是空间M的区域和体积可根据限制部件(12,14,18,20,2幻的相对尺寸及水位65的高度可不同。在示出实施方式中,两个室20,22与顶部12和设备10的侧壁14相连。这些室作用为存储不同压力的空气并且彼此通过涡轮50和管52J4相连。瓣阀21,23分别通过每个积累器室2 和降压室22b与压缩室22b相连。当在压缩室M内的空气压力高于在室 22a中的压力时,通过空气压力迫使阀门21开放直至在室22b和压缩室M中的压力相同。 相反地,如果在室22b中的压力比在压缩室M中的压力大,接着阀门23打开直至压力相同。这些室22a,22b也作用为浮力池以保持在水中漂浮。如图1示出,可使用系链工具11 以将设备10固定进位置内并允许设备朝向入射液体流动。这种系链工具11可采取锚,缆绳,锁链或任意其它的锚固。现在将描述有关图3、4、5描述设备的操作。流体线仅作为参考示出。图3示出设备在放松或初始的位置。在这个位置,阀门40是开放的,水位60,65为近似的水位,并且在压缩室M内和设备外的压力近似相同。入射流动液体或涌流,由单个流动线100表示并入射在设备10上,通过缝隙16流动并且在阀门40阵列上作用。流动液体100进入设备并在阀门40上作用。将阀门配置为使得阀门的最低行,由于液体流动100的脉冲,第一个对缝隙32关闭。一旦阀门40关闭,入射液体流动100以向上的方向偏斜,提高了对阀门第二行的液体流动脉冲,其中阀门也通过流动100的力而关闭。阀门的渐进关闭聚集了液体流动 (在图中由流动线100代表)进入压缩室对,导致其中的水水位65上升,并且压缩在室M 中的空气。这个过程继续直至所有的阀门40完全关闭(图5)。回到中间状态(图4),其中(在此表示中)7行阀门中的3行关闭,明确的是在设备10的压缩室对内的流体水位65 已经提高至超过外部平均水位60的水位。这提高了在压缩室M内的空气压力,关闭了位于压缩室M和减压室22b之间的阀门23并且打开压缩室M和积累器室2 之间的阀门 21。可如图4所见,阀门40沿着阀门阵列向上斜梯度按顺序地关闭。这种按顺序地关闭通过改变位于阵列内行之间阀门关闭的浮力和角度而达到。在这种情况下,较低的阀门比在直接上方行内的阀门具有较低的浮力。在当前实施方式中,阀门包括不同胎压的轮胎压42。另外,后壁34关于垂直线的角度沿着朝压缩空间M的向上梯度提高。阀门40’具有轮胎42’,其具有较低的压力并且与阀门40”相比具有在后壁34’与垂直线之间较小的角度,其胎压42”以及后壁34”。图5示出设备的末端状态,此时所有的阀门40为全部关闭的。阀门40的渐进关闭导致在压缩室对内的水65的水位得到提高。水位65的角度提高取决于阀门40的数量和入射流体的推动。尽管当前实施方式以七行阀门为特色,取决于流体的深度和所需涌动的角度可使用任意数量的行。流体的入射流动现在是浓缩的并朝压缩室M导向(由流动 100的线所示出),其体积由增长的水位65所减少。这种体积上的减少产生了在压缩室M 和累加器22a中空气压力的相应提高。一旦水的向上涌动到达最大值,在压缩室M里的空气压缩快速地下降并且至积累器室2 的入口阀门21关闭。在此点处设备10内没有净流体流动。当设备10在这个无流动平衡位置处时,位于压缩室24和室22a,22b之间的阀门21和23关闭。由于阀门21, 23的操作和在设备10操作的不同阶段处室M的相对空气压强,两个室22a,22b具有不同的空气压力。在示出的实施方式中,积累器室2 具有比降压室22b更大的空气压力。两个室22a,22b由涡轮50和入口以及出口联结52J4相连。通过打开至涡轮50 的入口 52和出口 M联结,引入积累器室20的正压通过联结52,由于两个主体空气之间的压力分差,进入涡轮50并通过联结M进入降压室22。这个过程驱动涡轮50并可用于通过发电机(未示出)发电。由于室22a,22b的构造和联结至涡轮50的方法,室可用于在许多循环的震动水位65之上存储不同压力的空气,在每个循环上积累压强差别。一旦达到临界压力差别,可打开连接至涡轮50的联结并空气移动穿过涡轮50。当设备10在非流动位置时,在阀门40的前端作用水压力与在阀门后部的相同。由于轮胎的浮力阀门因此开始打开。当离压缩空间最近的阀门具有最高的压力或浮力时,这个阀门第一个打开。水位65因此开始下降,产生在阀门上回流或向下的水流。因为在阀门顶部的扰流器44,水向下的力起作用为打开阀门,直至所有的阀门打开,重设设备至在图3 中示出的情况。可使用轨道120或其他的方式以防止阀门40打开超过预定的角度。因此设备10实质上被重设,并且重复上述的过程(i.e.入射流体向上行动,并且开始关闭,阀门阵列)。作为上述单向涡轮50的备选,室2 和22b可省略并且双向流涡轮直接与压缩室 M相连,例如井涡轮,其可不论入射气流方向以相同的方向旋转。
尽管设备10已参考单独操作的单个设备得到解释,可以想象的是多个设备可相连或放置在一起以形成能供应大量能量的设备多孔网络,例如,空气压缩和降压室和/或涡轮以及发电机以最大化设备的效率。额外地,为了最大化通过设备的流体流动,网络可配置为“U”或“V”形以防止流体流沿着网络的外部逃离。备选地,设备可配置在类似“隐形轰炸机”的形状内,产生在结构后面低液体压力的区域。多个网络可相连或配置在一起以优化取决于流动状况的流体流的利用。尽管设备网络在上述的情况介绍中得到描述,可使用任何的情况介绍以适应特别的流动状况。另外,可以系列地或堆叠地配置设备以提高引出的能量量。可选择堆叠中设备的数量以优化关于能量的回流,其关于建造费用而引出。而且,可配置堆叠为一系列的设备,导向它们以接受一个方向的流动,同时导向其他系列以接受相反方向的流动。这种配置特别适合在潮汐流动中使用并且当潮汐改变方向时避免不得不回转设备。
权利要求
1.一种用于自流体流动提取能量的设备,该设备包括空气压缩室;以及阀门阵列,可操作为开放或关闭以调节通过相关的阀门缝隙的流体流动,其中当流体流动入射于其上时,阀门可操作为渐进地关闭,因此朝空气压缩室聚集液体流动并且在其中压缩空气,从而以打开来自压缩室内液体的回流。
2.根据权利要求2的设备进一步包括积累室,其用于存储在所述空气压缩室内压缩的压缩空气。
3.根据权利要求1或2的设备进一步包括涡轮,其可操作为由在所述空气压缩室内压缩的空气所驱动。
4.根据权利要求3的设备,包括减压室,其定位于涡轮的下游以在所述液体自压缩室回流期间增强穿过涡轮的压力差。
5.根据任一上述权利要求的设备,其中位于阵列里的阀门以向上梯度以流体流动的方向延伸。
6.根据权利要求5的设备,其中位于阵列内的阀门为瓣阀。
7.根据权利要求6的设备,其中瓣阀包括单独的浮力原件。
8.根据权利要求7的设备,其中浮力原件具有关闭瓣阀所需的角位移,所述角位移提高梯度。
9.根据权利要求7或8的设备,其中浮力原件的浮力提高了梯度。
10.根据权利要求7至9中的任一条的设备,其中浮力原件包括轮胎。
11.根据权利要求7至10权利的任一条的设备,其中阀门包括扰流器原件以利于流体流动沿着向上梯度的偏向和/或以在所述回流期间帮助阀门开放。
12.根据前述权利要求任一条的设备进一步包括用于在预定位置固定设备的稳定器。
13.根据前述权利要求任一条的设备,其中所述流体流动为潮汐流体流动。
14.根据前述权利要求任一条的设备,其中所述流体流动为河流流体流动。
15.根据权利要求1至12中的任一的设备,其中所述流体流动为海洋流体流动。
16.根据前述权利要求的任一的设备,其中所述设备驱动水力涡轮。
17.根据前述权利要求的任一的设备,其中所述设备将水泵至较高的水库。
18.根据前述权利要求的任一的设备,其中多个所述设备配置或相连在一起以形成设备网络。
全文摘要
本发明提供一种用于自流体流动提取能量的设备。设备具有空气压缩室和阀门阵列,可操作为打开或关闭以调节通过相关的阀门缝隙的流体流动。当流体流动入射于其上时,阀门可操作为渐进式地关闭。因此朝空气压缩室聚集流体流动并且在其中压缩空气。阀门也打开了自压缩室液体的回流。
文档编号F03B13/14GK102203410SQ200980144321
公开日2011年9月28日 申请日期2009年9月2日 优先权日2008年9月5日
发明者德里克·詹姆斯·华莱士·麦克明 申请人:德里克·詹姆斯·华莱士·麦克明
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1