双气门内燃机的制作方法

文档序号:17336036发布日期:2019-04-05 22:29阅读:206来源:国知局
双气门内燃机的制作方法

本发明涉及直喷火花点火式内燃机的领域。更特别地,本发明涉及可用于道路或飞行器部门或静止设备(例如是发电机组)的领域中的发动机。

这种类型的发动机总地至少包括气缸、在该气缸中以往复直线运动滑动的活塞、氧化剂进气装置、已燃烧气体排气装置、燃烧室和用于喷射燃料的喷射装置。

如所熟知的,在设计发动机时,性能、污染物排放和燃烧室机械强度目标越来越高,而用于满足这些目标的手段可能彼此抵触。

因此,性能增加一般会导致排放的增加且导致更高的机械应力。

为了克服这些应力且为了在整个发动机运行范围上保证低污染物排放和令人满意的机械强度,必要的是燃烧室中的燃料混合物(氧化剂/燃油)尽可能均质化。



背景技术:

文献us-6,267,107和us-2005/241,612描述了一种直喷式高挤流燃烧室,其点燃通过至少一个火花塞发生,可能具有livc(进气门延迟关闭)。专利ph-2010/000,186和us-3,658,046还提到了一种燃烧室,该燃烧室通过与双点火装置联接的接近椭圆的形状产生挤流。然而,没有一篇文献描述了根据本发明的发动机的架构,本发明的发动机包括优化的燃烧、点火和供给装置以及机械工程元件的组合。



技术实现要素:

本发明因而涉及一种内燃机,该内燃机包括至少两个气缸,与燃烧室相关的活塞在气缸中运动。根据本发明,所述燃烧室包括单个进气门、单个排气门、单个燃料喷射器、两个火花塞和用于在所述腔室中产生涡滚流的装置。

优选地,内燃机可包括三个气缸。

用于产生涡滚流的所述装置可包括气门、喷射器的相对布局和燃烧室的进气管线形状的优化。

气缸盖样式可由关于穿过气缸盖螺钉的轴线的平面的对称来实现。

排气歧管可在气缸盖中成一体。

喷射器和火花塞可不行进通过水管线或油管线。

单个燃料喷射器可布置在燃烧室中用于直接燃料喷射。

根据本发明的内燃机可用于在米勒(miller)循环或阿特金森(atkinson)循环中运行。

本发明描述了一种用于内燃机、具体是开发用于高效火花点火式发动机的新颖的架构设计。

附图说明

通过阅读下文通过非限制性示例并参考附图对实施例的描述,根据本发明的装置的其他的特征和优点将会变得清晰,在附图中:

-图1示出了根据分布规则的燃烧率的演化的曲线图;

-图2示出了根据本发明的实施例的燃烧室;

-图3示出了气缸盖样式的一种实施例;

-图4是气缸盖的曲折形密封路径的整体视图;以及

-图5示出了一体式排气歧管。

具体实施方式

欧洲和全球范围内越来越严格的防污染标准迫使发动机制造商(无论是用于飞行器或道路行业的发动机)通过为内燃机带来新想法而持续地改进内燃机。虽然压缩点火式发动机长期以来已由于其较高的效率而得到了用户的良好拥护,但它们现出于公共卫生原因而经受恶化的形象。因而,火花点火式发动机在内燃机的演变过程中再次跻身于核心位置。为了满足规范演变的严格性,他们仍需要整合更多技术和新思想。

本发明提供了一种创新的火花点火式发动机:其设计自一系列若干种现有技术方案,这些技术方案首次组合且相互作用,从而组成了在能量性能方面的突破性产品,同时保持在紧凑性、成本和耐久性方面的竞争性。

该发动机的特定特征中的一个在于其在以下初始约束的情况下开发:即、其必须能够在宽广的操作范围上以米勒循环运行。米勒循环的特征在于,进气门在活塞到达下死点之前关闭。除了冷却所吸入的充载之外,这还允许具有更大的恢复功,因此允许更高的发动机整体效率。然而,该类循环对于常规的火花点火式发动机而言具有非常受限的使用范围,这是由于对燃料混合物的空气动力学性能的并非不显著的影响,且更具体地是由于点火时的涡流动能急剧下降而导致的燃烧率显著下降。

为了克服在点火时这种湍流的缺乏,已设计了一种发动机,这种发动机的燃烧室和空气动力学进气结构包括用于产生被称作涡滚流的流动的装置。涡滚流由涡流(纵向运动)和滚流(横向运动)组成。

涡流是燃料混合物围绕与气缸轴线共线的轴线的宏观旋转运动,涡流的特征在于,进气过程期间、且更具体是在活塞上升期间的良好运动保持。这是一种通常用于压燃式内燃机的空气动力学宏观运动,对于压燃式内燃机而言,这是使燃料混合物均质化的良好方式。

滚流也是燃料混合物的宏观旋转运动,但围绕基本上垂直于气缸轴线的轴线。其具有的特定特征在于,当气缸提升时,转化成产生湍流的微观空气动力学运动。这是一种通常用于火花点火式内燃机的空气动力学宏观运动,对于火花点火式内燃机而言,这是获得可接受的燃烧率的良好方式。此外,在扩散以及最大升程高度方面,该运动对于燃烧室几何形状和升程规律相当敏感。

因而,涡滚流可定义为结合有围绕垂直于所述气缸的轴线的轴线的旋转运动的、围绕气缸轴线的空气旋转运动。使用涡滚流允许受益于以上详细描述的两种空气动力学结构的优势并因而受益于出色的均质化和更好的燃烧率,这是由于在进气阶段期间比最好的现有火花点火式发动机所观察到的湍流度更高的湍流度。

因而,米勒循环的使用范围由此大大拓宽。

为了以高紧凑性和适度成本来联接该特定涡滚流类型进气,根据本发明的发动机每个气缸仅包括两个气门、即进气门和排气门,且具有单一直接喷射和两个点火点。进气管和燃烧室的形状以及喷射装置和点火装置的相对位置是允许获得涡滚流类型进气的主要手段。实际上,这些元件可构造为引起一种结合有围绕垂直于所述气缸的轴线的轴线的旋转运动的、围绕气缸轴线的空气旋转运动。

已通过最佳的现有火花点火式发动机对本发明进行评估和比较。图1通过呈现升程规律对燃烧持续时间的影响示出了本发明的附加价值。

在图1的曲线图中,横坐标示出了进气门的关闭角(ivc)。负值对应于在活塞的下死点(bdc)之前关闭,而正值对应于在活塞上升时关闭。纵轴对应于代表燃烧率的热量释放率(rohr)。最后的变量是升程规律覆盖范围(升程持续角)。受限的覆盖范围(135℃a和165℃a,其中℃a为曲轴角度数)对应于米勒循环的特定升程规律,而普通的覆盖范围(185℃a)对应于常规的升程规律。这里要指出的是,无论所选的升程规律如何,燃烧率v燃烧是相同的。特别地,我们对于米勒循环和常规循环(阿特金森循环)具有相同的燃烧率,这表明在米勒循环中包括涡滚流的根据本发明的架构的显著性。

要指出的是,燃烧率与气门范围和正时规律无关,这在现有最佳火花点火式发动机中未发现。这表明根据本发明的内燃机的整体效率已显著地提高。

图2至5示出了本发明的各种特征。

图2描述了燃烧室的非限制性实施例,该燃烧室包括氧化剂进气门sa、排气门se、两个点火点a1和喷射点id。

为了紧凑性目的,所选的气缸盖样式非常特殊,从而允许整合所有辅助元件,比如两个火花塞a1、喷射器id、两个气门sa和se,并获得良好的热机械稳定性(图3)。气缸盖样式要被理解为代表在热机的气缸盖上配备有辅助元件的热机的燃烧室。与样式由每个气缸的简单转换所获得大多数气缸盖不同,这里我们使用通过关于隔开两个相继燃烧室的平面(例如,穿过气缸盖螺钉的轴线的平面)、即图3中的轴线xx’对称而获得的气缸盖样式cu。换言之,对于两个相继的气缸,辅助元件的布局关于平面xx’对称,平面xx在此对应于气缸盖螺钉的轴线。

结果是本发明专用的在气缸盖与气缸盖覆盖件之间的曲折形密封路径。实际上,为了防止套管的设计且因此为了防止显著的重量、成本和尺寸,火花塞和喷射器两者都不行进通过水芯或油芯。因此,密封路径需要绕过它们。图4示出了通过线js可视化的曲折形密封路径。

出于紧凑性和性能目的,内燃机包括三个气缸。然而,根据本发明的内燃机包括至少两个气缸。

图4和5示出了实施整合在气缸盖中(在气缸盖中成一体)的排气歧管ci的技术选择,这允许关注性能、紧凑性和成本问题。排气歧管被称作整合在气缸盖中是因为,由气缸盖和排气歧管组成的组件由单件制成。排气门se将燃烧室(未示出)连接至一体式排气歧管ci。该图示出了喷射装置id的位置。实际上,该技术选择允许通过对排气管周围的传热的更好控制而获得这些优势。特别地,在存在涡轮增压的情形中,涡轮入口处的排气的热状态因而被更好地控制。此外,整合在气缸盖中的歧管ci比需要考虑尤其是螺钉和螺栓的接合长度的常规方案更紧凑。最后,由于没有专用的不锈钢歧管(用于阻热)和其紧固元件,成本减少。

在本发明的优选构造中,本发明提供了一种气门机构方案,该方案使用具有两个同心凸轮轴的止挡间隔件,但具有两个不同凸轮轴的架构也完全是可能的。

最后,在本发明的优选实施例中,发动机具有由机械涡轮增压器增压的三个气缸,但其也可能以包括至少两个气缸的构造操作,以及用于任何(增压或非增压)空气供应循环(供气回路)。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1