风力涡轮机的超限保护的制作方法

文档序号:9650363阅读:404来源:国知局
风力涡轮机的超限保护的制作方法
【专利说明】风力涡轮机的超限保护
[0001]相关技术的交叉引用
[0002]本申请要求于2013年7月4日提交的美国临时专利申请N0.61/843,006的优先权,该申请的全部内容通过参引并入文中。
技术领域
[0003]本发明涉及用于风力发电机的制动系统。
【背景技术】
[0004]风力发电机通常由支撑在塔柱上以绕水平轴线旋转的具有螺旋桨和驱动轴的涡轮机构成。驱动轴连接至发电机,使得涡轮机的旋转通过发电机产生电力。风力涡轮机的一个基本特征在于其旋转速度根据盛行风的条件而改变。这些风的条件中的各项可能在短时间内显著地改变,因此有必要考虑在广泛的条件范围内对涡轮机进行控制。
[0005]涡轮机的旋转速度必须被限制,以保持效率并且避免可能在超速的情况下施加在螺旋桨的桨叶上的过大的机械力。
[0006]大型涡轮机设备具有调节桨叶的桨距以保持速度低于设定的极限值的复杂的控制系统。然而,这种设备相对较昂贵而且需要有效的维护,因此,这种设备不适于低功率设备。
[0007]其他系统依赖于机械制动或者桨叶相对于风向效率较低位置的移动来限制所产生的功率。
[0008]PCT申请N0.2010/032012示出了用于在风力涡轮机中使用的液压驱动系统,其中,该液压驱动系统用于驱动发电机并且转子的旋转速度被控制成提供发电机的恒定旋转速度。然而,这种驱动系统相对较复杂,并且由于持续调节流体的流动以调整速度使得该驱动系统受到连续的液压损失,这些液压损失导致系统的总效率低于直接机械驱动发电机的总效率。
[0009]因此,本发明的目的是提供一种消除或缓解上述缺点的风力涡轮机。

【发明内容】

[0010]根据本发明提供了一种用于风力涡轮机的制动系统,其中,液压机连接至涡轮机驱动轴。通过液压机的旋转而输送的流体被引导至调压阀,该调压阀被调整以改变由液压机输送的设定压力。该压力随着旋转速度的增大而增大,从而向驱动轴施加制动力。
[0011 ] 优选地,所吸收的能量穿过冷却器,在冷却器中,所吸收的能量作为热能被消散。
[0012]还优选地,机械制动器对轴起作用并且通过将流体压力施加至该制动器而释放。
【附图说明】
[0013]现在将仅参照附图通过示例对本发明的实施方式进行描述,在附图中:
[0014]图1为风力发电机的示意性侧视图;
[0015]图2为放大比例的穿过图1的发电机的涡轮机的截面图;
[0016]图3为示出了主要部件组件的涡轮机的后视立体图;以及
[0017]图4为在图1的发电机中实施的控制系统的液压原理图。
【具体实施方式】
[0018]因此,参照图1,风力发电机10包括基部12,基部12具有向上延伸以支撑涡轮机组件16的塔柱14。涡轮机组件16包括流线型机舱18和连接至螺旋桨22的驱动轴20。螺旋桨22具有连接至中心毂26的固定桨叶24,中心毂26又连接至驱动轴20。
[0019]如从图2中可见,驱动轴20支撑在安装于发电机壳体28的相反两端的壁上的一对隔开的轴承30中。如已知的,驱动轴20与发电机27的电枢接合,以使电枢在壳体28内旋转并产生电力。平台32从壳体28向后延伸并且具有用以接纳塔柱14的上端部的孔口31。轴承33围绕孔口 31设置以将塔柱14与涡轮机组件16连接,从而使涡轮机组件16以可旋转的方式安装在塔柱14上。液压偏航马达34承载在平台32上并且具有与安装至塔柱的齿圈38啮合的传动齿轮36。马达34用于控制涡轮机组件16绕竖向轴线的旋转并且调节螺旋桨22相对于盛行风的设置。
[0020]制动组件40在与螺旋桨22相反的端部处安装在转子20上。制动组件40包括液压机42、机械制动器43和控制模块44(图3)。液压机42可以是具有已知结构的基于驱动轴20的旋转而将流体从入口传递至出口的液压栗,诸如齿轮栗、叶轮栗或径向柱塞栗。
[0021]压力供应管线96连接至液压机的出口并且将流体运送至阀组件47。流体通过返回管道49返回至液压机42的入口。用作冷却器46的热交换器位于返回管道49中并且在发电机壳体28下方设置成位于螺旋桨22的下游。冷却器46竖向定位成正交于气流并且位于可以使热从冷却器46散逸到周围大气中的位置中。
[0022]液压流体通过相应的液压管线48输送至偏航马达34和制动组件40。管线48连接至支撑在平台32上的液压动力装置52。
[0023]如从图3中可见,动力装置52包括流体贮存器60,该流体贮存器60邻近由电动马达64驱动的齿轮栗62定位。因此,平台以方便且独立的方式支撑风力发电机10的操作部件。
[0024]部件的液压互连和互操作性可以从图4中的液压控制回路的示意图看出。栗62通过过滤器66从贮存器60抽吸流体,并且通过止回阀70将加压流体输送至主供应管线72。泄压阀74保护主供应管线72免受超压,并且使流体通过排放管线76返回至贮存器60。
[0025]来自主供应管线的流体由二位旁通阀78 (过渡状态也在示意图中示出)控制,该二位旁通阀78被偏置至使供应管线72中的所有流体均被引导至旁路管线79的位置中。旁路管线79将流体的流动引导为穿过制动组件40的外壳,以为液压机42提供冷却并且允许栗62在相对较低的压力下持续运行。管线79通过过滤器81返回至贮存器60。
[0026]阀78可以通过螺线管80从将流动转向至旁路管线79并因此使栗62卸载的位置移动至栗的出口与阀78的供应端口 82直接连接的位置。来自供应端口 82的流体连接至偏航马达34和制动控制组件40两者。供应管线48从供应端口 82通过限流节流阀84延伸至一对二位电磁操作阀86、88(同样,在示意图上也示出了过渡状态)的入口。返回管线49连接至阀86、88的排放端口并且通过过滤器组件81返回至贮存器60。
[0027]在管线48中包括有蓄能器87,以确保在电力故障的情况下持续供应流体。蓄能器87也为偏航阀86、88提供加压流体源,从而允许偏航系统在如下状态下操作:阀78处于使栗62的流动在低压下循环通过外壳的位置中。
[0028]阀86、88中的每一者均具有连接至偏航马达34的相反两侧的供应管线89。阀86、88中的每一者均被弹簧偏置到第一位置并且可以通过相关联的螺线管经由中间位置移动至第二位置,在第一位置中,供应端口连接至排放端口,在中间位置中,入口供应端口和排放端口两者相连接,在第二位置中,阀将入口端口直接连接至供应管线89。为了抑制连接至偏航马达34的供应管线中的气穴,旁路管线90设置有允许补给流体流入到供应管线89中进而流动至偏航马达34的节流阀91和止回阀92。
[0029]阀78的供应端口 82也连接至补给管线94,补给管线94连接至制动回路40。补给管线94中设置减压阀95以抑制气穴,该减压阀95将供应至液压机42的补给压力限制成低于由阀74设定的系统压力。
[0030]液压机42连接在包括压力管线96、先导式流量阀98和冷却器46的液压回路中。液压机42将流体输送至压力管线96,压力管线96连接至先导式流量阀98的入口。阀98的出口 99向返回管道49排放并且穿过冷却器46,并且阀98的出口 99返回至马达42的入
□ ο
[0031]在马达42在异常状态下反转的情况下,十字泄放阀100提供泄放路径。返回管道49中包括蓄能器101,以便在电力故障的情况下的持续供应流体以及适应热膨胀。
[0032]先导式流量阀98由管道102中的先导压力控制,该先导压力进而由比例阀104控制。比例阀104通过螺线管106电动操作成使阀104抵抗偏置从关闭位置移动至打开位置,从而改变管道102中的压力。在关闭位置中,穿过比例阀104的流动受限,因此最大压力存在于管道102中。当阀移动至对流动的限制最小的完全打开位置时,管道102中的压力减小。该压力被作为先导压力施加至阀98,以调节流量阀98打开时的压力。由此,管道102中的压力的变化控制压力管线96中的压力。
[0033]在比例阀104与排放部之间设置有过载阀108。过载阀被偏置至关闭位置,并且能够通过电磁致动器110从关闭位置移动至打开位置,电磁致动器110由控制器44控制。在关闭位置中,阀108通过以液压的方式使比例阀104失效来限制流动,从而将流量阀98设定至最大系统压力。这在控制器44的电力故障的情况下提供了冗余保险。
[0034]穿过补给管线94的流体流也供应至机械制动器43的致动器,并且向机械制动器43的流动通过二位阀112来控制,该二位阀112被偏置至关闭位置并且能够通过由控制器44控制的致动器移动至打开位置。减压阀114将能够施加至机械制动器的最大压力限制成小于由马达64供应的压力。穿过减压阀114的流动由节流孔116控制,节流孔116连接至受限制的排放管线118。穿过排放管线118的流动转而由可变节流孔120控制以及由制动释放阀122控制。制动释放阀122被偏置至允许穿过排放管线118的流动的打开位置,但是制动释放阀122可以在控制器44的控制下通过螺线管移动至关闭位置,在关闭位置中,穿过管线的流动被止回阀阻止。受限制的排放管线118也连接至制动释放管线124,制动释放管线124向机械制动器43的致动器供应流体并且使机械制动器43移动脱离与转子(应为驱动轴)20的接合。蓄能器127确保加压流体在电力故障的情况下的有限的持续供应。蓄能器127还在阀78被切换成允许栗62以低压进行循环时确保流体的供应,以保持机械制动器43处于断开状态。
[0035]液压回路中的阀的操作通过电子控制器44来设置,电子控制器44可以是接收来自传
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1