流体机械和换热设备的制造方法_2

文档序号:9957008阅读:来源:国知局
2、电机组件;93、栗体组件;94、上盖组件;95、下盖及安装板。
【具体实施方式】
[0059]需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本实用新型。
[0060]应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
[0061]在本实用新型中,在未作相反说明的情况下,使用的方位词如“左、右”通常是针对附图所示的左、右;“内、外”是指相对于各部件本身的轮廓的内、外,但上述方位词并不用于限制本实用新型。
[0062]为了解决现有技术中的流体机械存在运动不稳、振动大、存在余隙容积的问题,本实用新型提供了一种流体机械和换热设备,其中,换热设备包括下述的流体机械。另外,还提供了一种流体机械的运行方法。
[0063]流体机械主要包括压缩机和膨胀机两类。后面将分别介绍。先来介绍流体机械通用的特征。
[0064]如图2至图22所示,流体机械包括上法兰50、下法兰60、气缸20、转轴10、活塞套33、活塞套轴34和活塞32,其中,活塞套33可枢转地设置在气缸20内,活塞套轴34穿过上法兰50与活塞套33固定连接,活塞32滑动设置在活塞套33内以形成变容积腔31,且变容积腔31位于活塞32的滑动方向上,转轴10,转轴10的轴心与气缸20的轴心偏心设置且偏心距离固定,转轴10依次穿过下法兰60和气缸20与活塞32滑动配合,在活塞套轴34的驱动作用下,活塞套33随活塞套轴34同步转动,以驱动活塞32在活塞套33内滑动以改变变容积腔31的容积,同时转轴10在活塞32的驱动作用下转动。其中,上法兰50通过第一紧固件70与气缸20固定,下法兰60通过第二紧固件80与气缸20固定。
[0065]优选地,第一紧固件70和/或第二紧固件80为螺钉或螺栓。
[0066]通过将转轴10与气缸20的偏心距离固定,转轴10和气缸20在运动过程中绕各自轴心旋转,且质心位置不变,因而使得活塞32和活塞套33在气缸20内运动时,能够稳定且连续地转动,有效缓解了流体机械的振动,并保证变容积腔的容积变化具有规律、减小了余隙容积,从而提高了流体机械的运行稳定性,进而提高了换热设备的工作可靠性。
[0067]本实用新型中的流体机械通过活塞套轴34驱动活塞套33转动并带动活塞32转动,以使活塞32在活塞套33内滑动以改变变容积腔31的容积,同时转轴10在活塞32的驱动作用下转动,从而使活塞套33和转轴10分别承受弯曲变形和扭转变形,降低了单个零件的整体变形,降低了对转轴10的结构强度要求,并能够有效减小活塞套33的端面与上法兰50的端面之间的泄漏。
[0068]需要说明的是,上法兰50和气缸20同轴心设置,且下法兰60的轴心与气缸20的轴心偏心设置。以上述方式安装的气缸20,能够保证气缸20与转轴10或上法兰50的偏心距固定,从而使活塞套33具有运动稳定性好的特点。
[0069]在图2至图22所示的优选实施方式中,活塞32与转轴10滑动配合,且活塞32在活塞套33的驱动作用下,使转轴10的转动,活塞32相对于转轴10具有直线运动趋势。由于活塞32与活塞套33滑动连接,因而有效避免活塞32运动卡死,从而保证了活塞32、转轴10和活塞套33的运动可靠性,进而提高了流体机械的运行稳定性。
[0070]由于活塞32、活塞套33、气缸20和转轴10之间形成十字滑块机构,因而使活塞32、活塞套33与气缸20的运动稳定且连续,并保证变容积腔31的容积变化具有规律,从而保证了流体机械的运行稳定性,进而提高了换热设备的工作可靠性。
[0071]本实用新型中的活塞32具有沿转轴10的轴向贯通设置的滑移孔321,转轴10穿过滑移孔321,转轴10在活塞32的驱动下随活塞套33和活塞32旋转,同时活塞32沿垂直于转轴10的轴线方向在活塞套33内往复滑动(请参考图10至图12、图16至图22)。由于使活塞32相对于转轴10做直线运动而非旋转往复运动,因而有效降低了偏心质量,降低了转轴10和活塞32受到的侧向力,从而降低了活塞32的磨损、提高了活塞32的密封性能。同时,保证了栗体组件93的运行稳定性和可靠性,并降低了流体机械的振动风险、简化了流体机械的结构。
[0072]优选地,滑移孔321为长孔或腰形孔。
[0073]在一个未图示的优选实施方式中,活塞32具有朝向转轴10—侧设置的滑移槽。不论是滑移槽还是滑移孔321,只要保证转轴10与活塞32相对可靠滑动即可。该滑移槽为直线式滑槽,且该滑移槽的延伸方向与转轴10的轴线垂直。
[0074]本实用新型中的活塞32呈柱形。优选地,活塞32呈圆柱形或非圆柱形。
[0075]如图10至图12、图16至图22,活塞32具有沿活塞32的中垂面对称设置的一对弧形表面,弧形表面与气缸20的内表面适应性配合,且弧形表面的弧面曲率半径的二倍等于气缸20的内径。这样,可以使得排气过程中可实现零余隙容积。需要说明的是,当活塞32放置在活塞套33内时,活塞32的中垂面为活塞套33的轴向平面。
[0076]如图7至图9所示,活塞套33中具有沿活塞套33的径向贯通设置的导向孔311,活塞32滑动设置在导向孔311内以往复直线运动。由于活塞32滑动设置在导向孔311内,因而当活塞32在导向孔311内左右运动时,可以使变容积腔31的容积不断变化,从而保证流体机械的吸气、排气稳定性。
[0077]为了防止活塞32在活塞套33内旋转,导向孔311在下法兰60处的正投影具有一对相平行的直线段,一对相平行的直线段为活塞套33的一对相平行的内壁面投影形成,活塞32具有与导向孔311的一对相平行的内壁面形状相适配且滑移配合的外型面。如上述结构配合的活塞32和活塞套33,能够使使活塞32在活塞套33内平稳滑动且保持密封效果O
[0078]优选地,导向孔311在下法兰60处的正投影具有一对弧形线段,该一对弧形线段与一对相平行的直线段相连接以形成不规则的截面形状。
[0079]如图2所示,活塞套33的外周面与气缸20的内壁面形状相适配。从而使得活塞套33与气缸20之间、导向孔311与活塞32之间为大面密封,且整机密封均为大面密封,有利于减小泄漏。
[0080]如图18所示,活塞套33的朝向下法兰60 —侧的第一止推面332与下法兰60的表面接触。从而使活塞套33与下法兰60可靠定位。
[0081]如图2所示,转轴10具有与活塞32滑动配合的滑移段11,滑移段11位于转轴10的远离下法兰60的一端,且滑移段11具有滑移配合面111。由于转轴10通过滑移配合面111与活塞32滑动配合,因而保证了二者的运动可靠性,有效避免二者卡死。
[0082]优选地,滑移段11具有两个对称设置的滑移配合面111。由于滑移配合面111对称设置,因而使得两个滑移配合面111的受力更加均匀,保证了转轴10与活塞32的运动可靠性。
[0083]如图2所示,滑移配合面111与转轴10的轴向平面相平行,滑移配合面111与活塞32的滑移孔321的内壁面在垂直于转轴10的轴线方向上滑动配合。
[0084]本实用新型中的活塞套轴34具有沿活塞套轴34的轴向贯通设置的第一润滑油道341,转轴10具有与第一润滑油道341连通的第二润滑油道13,第二润滑油道13的至少一部分为转轴10的内部油道。由于第二润滑油道13的至少一部分内部油道,因而有效避免润滑油大量外泄,提高了润滑油的流动可靠性。
[0085]如图2所示,在滑移配合面111处的第二润滑油道13为外部油道。由于滑移配合面111处的第二润滑油道13为外部油道,因而使得润滑油可以直接供给给滑移配合面111和活塞32,有效避免二者摩擦力过大而磨损,从而提高了二者的运动平滑性。
[0086]如图2所示,转轴10具有通油孔14,内部油道通过通油孔14与外部油道连通。由于设置有通油孔14,因而使得内外油道可以顺利连通,且通过通油孔14处也可以向第二润滑油道13处注油,从而保证了第二润滑油道13的注油便捷性。
[0087]如图2和图23所示,本实用新型中的流体机械还包括支撑板61,支撑板61设置在下法兰60的远离气缸20 —侧的端面上,且支撑板61与下法兰60同轴心设置并用于支撑转轴10,转轴10穿过下法兰60上的通孔支撑在支撑板61上,支撑板61具有用于支撑转轴10的第二止推面611。由于设置有支撑板61用于支撑转轴10,因而提高了各部件间的连接可靠性。
[0088]如图2至图4所示,支撑板61通过第三紧固件82与下法兰60连接。
[0089]优选地,第三紧固件82为螺栓或螺钉。
[0090]如图5所示,下法兰60上分布有供第二紧固件80穿设的四个栗体螺钉孔、以及供第三紧固件82穿过的三个支撑盘螺纹孔,四个栗体螺钉孔中心所构成的圆与轴承中心存在偏心,其偏心量大小为e,此量决定栗体装配的偏心量,在活塞套33旋转一周后,气体容积V = 2*2e*S,其中S为活塞32的主体结构横截面积;支撑盘螺纹孔中心与下法兰60的轴心重
当前第2页1 2 3 4 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1