一种用于结构振动控制的装置的制作方法

文档序号:5797252阅读:140来源:国知局
专利名称:一种用于结构振动控制的装置的制作方法
一种用于结构振动控制的装置 房屋建筑、陆地与水上交通工具、航空器与航天器,以及其他机
器、装置或者设备,以下被统称为结构(structures),会因动态作用力 (dynamically acting forces )而导致振动,其中该动态作用力会削弱 可操作性、耐久性以及结构和操作的稳定性。作为结构设计的一部分, 需要分析这种振动的可能性和影响力。如果必要的话,经过采取适当 的方式,该振动将得到抑制或受到限制。 一种可能的方法是加固结构, 然而,这种方法需要更多的材料、产生更大的重量、以及导致更高的 成本。
被动式或主动式控制系统可以是一种明智且经济的选择,这种系 统把附加力(additional forces )引入系统来抵消振动,以此降低振动 产生的冲击。就 一 种 一皮称为主动式机械减振器(active mechanical damper)而言,通常通过寿甫助质量块(auxiliary masses )的牙多动或力口 速来产生上述附加力。在该定向(targeted)的控制动作下,那些辅助 质量块的移动或加速作为操作变量,这些操作变量必须是根据系统的 参数、测得的结构运动、以及或许是根据测得的环境条件(闭环控制 closed-loop control)通过计算和调整而得到。这些类型的结构早已被 用在地震区的高层建筑上。(参见文献Housner, G.W.; Bergmann, L.A.; Caughey, T.K.; Chassiakos, A.G.; Claus, R.O.; Masri, S.F.; Skelton, R.E.; Soong, T.T.; Spencer, B.F.; Yao, J.T.P. "Structural Control: Past, Present, andFuture,,(《结构控制过去、现在、和将来》),Journal of Engineering Mechanics (《机械工程杂志》),9 (123), 1997, 897-971 )
人们对振动控制装置有众多需求,在某些程度上,这些需求会抵 消设计结果。 一方面,这些由控制系统产生的力需要能尽量依据时间 和空间来调节。另一方面,为了实现更好的操作性、安全性以及更低 的建造成本,设计原理应该尽可能简单。其它标准包括极其完备的闭
5环控制,以及最低限度的合理的能源需求。
一种减小支撑结构振动的装置,包括一对被枢转地安装的质体
(mass body),这对质体被设置在一根轴的相对的两侧上,从文献 WO 2005/116340 Al中可获知这种设置的技术方案。根据一个控制单 元的说明, 一驱动器移动所述质体,使它们按预设的角度在与所述轴 相垂直的平面内转动,其中所述控制单元能对测得的所述支撑结构的 位置和/或运动数值做出反应。
从文献WO 2006/029851A中可知一种用于降低振动运动的减振 装置,其中, 一对质体附加在一装配好的可旋转的梁的两端,并被设 置在该梁转轴的相对的两侧上,其中,该梁的旋转运动可以预设,或 者,受到促动器的主动控制或受到弹簧和/或减振元件(damping elements)的被动控制。由此,所述两个质体的相对设置根据该梁预 先决定。
从日本专利文献06147258 A的摘要中得知一种减振装置,其包 括一个具有内齿槽(internal cogging)的齿4仑和一个具有外齿槽 (external cogging )的第二齿轮,其中所述内齿槽与所述外齿槽相啮 合。所述第二齿轮的直径为上述外齿轮直径的一半,并且该第二齿轮 在其周边上装配有一重块(weight)。该第二齿轮通过设置在中央的 杆在该外齿轮内做旋转运动。
从日本专利文献2000120764 A的摘要中得知另 一种减振装置, 其具有两个相对的可转动碟,其中,这两个碟还装配有偏心设置的较 小的碟。所述较小的碟偏心地支撑着一重块。通过调整该较小的碟相 对于该较大的碟的角位(angular position),所述重块和转轴之间的距离 可调节。
本发明的任务是提供一种用于结构振动控制的装置,与现有装置 相比较,其能以更平衡、更好的方法来满足现有需求。
本任务是通过一种用于结构振动控制的装置来完成的,这种装置 具有权利要求1所述的特征。优选实施例作为从属权利的主题。
根据本发明用于结构振动控制的装置,其具有-两个质体,每个质体绕着转轴被可旋转地安装,其中所述两个 转轴在同一方向上延伸,并且每个所述质体的重心和对应的转轴之间
存在一段距离;
-驱动器,所述驱动器使每个所述质体进行环行旋转运动
(circulation rotation motion);
-至少一个感应器,用于测量结构的运动或加速度;以及
-控制器,所述控制器基于测得的所述结构的运动或加速度,控 制至少一个下述变量
陽至少一个质体的i走转运动的转动角(rotational angle ); - 一所述质体的转轴与另 一所述质体的转轴之间的距离。
新创词"双失衡转动体"(do^/e ""6a/a"ce rator)在此处被用 于描述根据本发明的装置。
质体的重心和对应的转轴之间的距离使得每个质体产生 一 失衡 状态。两4艮转轴在同一方向上延伸,例如,它们互相平^"。所述转轴 能互相分开或被设置在一起,例如,它们重合。每个质体的旋转方向 在初始阶段是任意的。两个质体进行环行旋转运动(circulating rotational motion )。 由于向心力(centripetal forces)的存在,于是每个 产生失纟耔状态的质体对其转轴产生一临时脉动力(fluctuating force )。
因此,由所述两个质体产生的合力取决于所述装置的构造,其中, 所述合力由所述用于振动控制的装置所施加。具体而言,起决定性作 用的因素包括所述两个质体的质量大小、旋转速度、两个旋转运动 (具有数值上相等的速度)之间的相位关系(phase relation)、以及 一所述质体的转轴与另一所述质体的转轴之间的距离。由此,上述脉 动力基本上是固定或可变的。通过控制器能实现一个定向的合力作用 结果,以便控制,尤其是降低与所述装置相连结构的振动,其中所述 控制器是基于权利要求1的描述根据本发明的多个可应用变化例中的 至少一个而得到的。通过适当的控制,能产生一个扭矩作用和一个力 的作用,其中,该扭矩作用发生在所述转轴的方向上(例如, 一个在 所述轴方向上的扭矩),所述力的作用垂直于所述转轴的方向。所述运动和力的作用随时间的变换取决于上述脉动变量,并可以通过根据 本发明的装置和控制器的构造以多种途径预设。通过所述两个质体的 环行旋转运动,并且当所述旋转速度为恒定时,能产生周期力和扭矩
(periodic forces and torques ),其中,所述驱动器^f又须保持所述两个 质体的旋转运动。因此,所述装置尤其节能。在旋转速度不为恒定的 情况下,也能产生非周期扭矩作用和力的作用。
在本发明的一个优选实施例中,提供了 一种用于测量环境条件的 感应器。该环境条件可以是,例如,风速或地面加速度,如在地震条 件下。必要时,也能使用多个感应器,它们可以测量不同的环境条件。 具备了所述装置的控制器有利于充分利用本装置,其中该控制器能考 虑那些环境条件。例如,本装置可以能仅仅在风速超过某一个值时才 进入工作状态。
在本发明的 一 个优选实施例中,所述两个质体的旋转速度为同一 个高转速。这样能使本装置以一个在所述两个旋转质体之间固定的相 位关系来运作。由此随着两个质体的联合旋转速度(joint rotational speed)产生一个简谐力(harmonic force)作用或扭矩作用。
在本发明的另 一个优选实施例中,所述两个质体具有相同的质 量。在这两块质体被恰当地布置的情况下,这两个旋转质体以及其简 便的方式达到同样的失衡状态。尤其是,通过协调, 一个质体独立的 分力作用能与另一质体的分力相抵消,以便实现所述装置的简单运作 而不产生任何合力、分力、和/或扭矩。
在本发明的另一个优选实施例中,对所述两个质体而言,它们到 各自的对应转轴的距离相等。由此,所述质体和它们各自的转轴之间 的距离可以是固定的,也可以是可变的。在质体质量相同,以及两个 质体到它们各自转轴距离相等的情况下,每个质体能达到相同的失衡 状态。
根据本发明的另 一个优选实施例,所述与两个质体对应的转轴之 间的距离可调节。通过调节这两个转轴之间的距离,就能调节所产生 的扭矩的大小。由此,所述扭矩的可调节性是独立于任何必要的附加
8产生的力。
在本发明的另 一 个优选实施例中,所述两个质体中的至少 一 个包
括两个分质体(partial mass body),它们在所述转轴的方向上^1此互 相分开。优选地,这两个形成一个质体的分质体具有相等的大小并且 总是单向运动。具体而言,位于所述两个环行分质体之间的不包含分 质体的质体(non-divided mass body)可以祐j殳置在一共同转轴上, 以便避免产生不希望的绕轴力矩,其中,所述轴垂直对齐于这个共同 转轴。
在本发明的另 一个优选实施例中,所述两个质体的旋转运动之间 的相位关系可以通过积4成耦合(mechanical coupling)来调节。这样 能简化对这两个质体之间相位关系的控制。具体而言,可以运用一齿 轮机构对所述两个环行质体之间的相位差进行预设。
根据本发明的另 一 个优选实施例,所述两个质体的旋转运动以相 反的方向进行。当这两个质体以相反方向旋转时,简谐力作用的方向 能通过运动轨迹上的那些点来确定,其中在运动过程中所述两个质体
位关系来确定。
根据本发明的另一个优选实施例,所述两个质体的转轴重合。这 样就不会产生扭矩。如此,仅产生一个力的作用。
在本发明的另 一个优选实施例中,所述两个质体的旋转运动以相 同的方向进行。优选地,所述两个旋转运动的相位角(phase angle) 总是为180度,即,所述两个质体总是处在彼此相对的位置。这样就 允许在所述转轴方向上产生一个力矩,而同时不会发生力的作用。
在本发明的另 一个优选实施例中,所述装置与 一个第二装置相联 合,其中,第一和第二装置的转轴在同一个方向上延伸。由此,四个 转轴互相平^亍。如此,这些4争轴可以互相分离、也可以相重合。4巴两 个装置联合在一起能产生多个在所述转轴上产生力和力矩的方案。根 据单个装置的构造,能十分容易地调节力和力矩的频率、大小和方向。
由此单个装置的构造得以简化,和/或所需的控制成本得以降低。根据本发明的另 一 个优选实施例,所述第 一 个装置的两个质体的 转速与所述第二装置的两个质体的转速在数值上相等。这样,两个装 置的力和力矩作用产生相同频率的简谐力和力矩。
在本发明的另一个优选实施例中,所述两个装置互相分开。优选 地,这两个装置之间的距离可调节。通过这一距离,可以调节由这两 个装置联合产生的力矩的大小。
在本发明的另 一个优选实施例中,所述两个装置的质体的转轴重
合。换言之,这两个装置之间的距离为0。由此所有四个转轴被设置
在一直线上。这样能产生一个尤其紧凑的构造,并且能产生任何希望 幅度、并且垂直于所述转轴的任何方向上的简谐力。通过预设所述两 个单个装置的相位角,能十分容易地调节所述力的幅度和方向。
在本发明的另 一 个优选实施例中,两个装置被有利地联合在一 起,其中每个装置还包括两个上述装置。
根据本发明的另一个优选实施例, 一控制器被构建成一反馈式控
制器(feedback control),其能基于至少一个感应器测得的数值确定 操作变量(manipulated variables),然后发出用于控制的控制命令, 以控制该结构的加速的运动。这意味着,根据所测得数值的时间特征 变化(temporal change ),不断地调整控制命令,以^更实现抑制或限 制振动的控制任务。通过这类反馈式控制器,可以形成一闭环控制, 其能特别有效地降低结构的非期望的运动或振动。
在本发明的另 一个优选实施例中,多个所述装置分布在所述结构 上。由此得到 一 种特别用于大型结构例如桥梁的有效振动控制装置。 优选地,单个装置的控制器或管理器被谐调一致。自主地控制或管理 这些装置,即,它们之间互相独立,也是可能的,并且,也可能是有 利地。
此外,其它配置还涉及,至少一个质体和其对应的转轴之间的距 离在操作中可以被调整的以及可被控制的,以及基于测得的运动和加 速度通过控制器来控制这一距离。
在下文中,将结合7张附图所示的实施例,对本发明进行更详细
10的描述,它们是


图1是根据本发明的双失衡转动体的原理图(schematic diagram )(基本原理);
图2是本发明的另一实施例的原理图(变化例la),该实施例中的质体以相反的方向旋转;
图3是本发明的另一实施例的原理图(变化例lb),该实施例中的质体以相反的方向旋转,并且转轴重合;
图4是本发明的另一实施例的原理图(变化例lc),该实施例中
的一个质体由两个分质体构成;
图5是本发明的另一实施例的原理图(变化例2a),该实施例中的质体以相同的方向i走转;
图6是本发明的另一实施例的原理图(变化例3),该实施例中的两个双失衡转动体相联合;
图7是本发明的另一实施例的原理图(变化例4c),该实施例中的两个双失衡转动体相联合,并且其转轴相重合,其中四个失tf质体中的三个各自被两个大小相等的分质体所代替。
双失衡转动体的两个质体中的任何一个由 一 失衡质量块(unbalance mass)构成。 一失衡质量块与其对应的转轴净皮称为转动体(rotor)。借助于基本力学图,将依照该双失衡转动体以及其实施例的效力,对它们进行描述,因此,它们将遵循这些基本力学原理。其技术实现的选择是多种多样的,这里不对这些选择进行个别验证。
双失衡转动体包括两个被相同地建造的、具有旋转失衡质量块10(mi)或20 (m2)的旋转体(图1)。所述两个旋转体的轴12、 22被设置成互相平行,且两者之间互相分开一段距离。所述失衡质量块10、20以转速w或"2进行^走转。在一个闭环控制框架内,所述转速on和w2、所述两个失tf质量块10、 20旋转角之间的相位关系6、所述两个转轴之间的距离、以及所述两个失4軒质量块10、 20的半径r:或r2、两个失衡状态的大小,这些都能作为控制变量进行变化。另一能被反馈式控制器作为控制变量进行选择或调节的参数是所述两个转动体的旋转方向,其中,可以进行同向或反向旋转。所述控制变量是基于对结构30的运动的测量,必要时,是基于闭环控制环境内的环境条件经过计算得到的,此外,这些控制变量能通过伺服电动机
(servomotors)、 液压调节装置(hydraulic adjusting devices )、 或其它
类型的促动器进行调节。在所述两个旋转体上调节的控制变量的协调可以部分地由机械附加装置来执行。在具体实施例中,独立控制变量(individual control variables )可以被预设成常数或具有预设关系。具体而言,所述两个转速能在数值上相等,即l"」=|w2| = w 。所述双失衡转动体附加在所述结构30上。为了提高功效或实现特殊效果,多个装置能被用在相同或不同的实施例中,它们的操作被协调一致或能独立执行。
通过把上述装置作为单个或多个单元,或多或少能在所需的方向上、频率以及大小中产生简谐力或非简谐力(non-harmonic forces ),这些力作用在所述结构30上。在装置为单个单元的情况下,这些力
由两个力Fx、 Fy和一个力矩组成,其中所述力Fx、 Fy的在垂直于所
述转轴12、 22的平面内且互相垂直,所述力矩在所述转轴12、 22方向上(例如,绕着该方向)。通过选择合适的如前文所述的控制变量,这三个力能分别或同时产生。当同时产生时,能在宽范围内调节该作用力的范围或大小比率。在恒定转速co下产生频率为w/2vr简谐力。
以下,图1中所使用的标示具有以下含义A是第一质体在其旋转运动中相对一参考角位的转动角(在图1中,该参考角位的方向垂直于所述两个转轴12、 22) ; 02是第二质体在其旋转运动中相对相同的参考角位的转动角;必要的话,所述两个转动角之差为&此处一皮称为相位角(phase angle) ; 和0)2表示所述两个^走转运动的角速度(angular velocities )。当两个角速度co = | | = | w21相对于时间在数值上相等且为恒值时,遵循以下规则在旋转方向相同的情况下,<^ = wt; 02 = wt +或在旋转方向相反的情况下,= wt; & = - wt
+ 6。当旋转方向相同时,02-^ = 61,其中,0也作为通用术语表示相位角。当旋转方向相反时,02-0f -2c0t+&其中 里的0符号表示相位角与其在通用术语中的含义不同。
作用在所述结构30上的力用于所述振动控制,并且,在闭环控制环境下,所述力作为控制变量被确定。为了获得更高的控制效率,
希望能产生非简谐,但是具有周期或不具有周期的力的进阶(forceprogressions )。这能通过不同的转速w (t)产生。 一大致呈锯齿形的力的进阶可以通过一恒定转速w获得,其中, 一谐调项次(harmonic term)△co sin coH皮累积在所述转速w上。为了更简明的表述,以下评述涉及具有恒定转速的操作,其中,具有变化转速的操作也总是可行的,同样也是本发明的目的。
图2示出了一个在前面单个单元的描述中所涉及的装置的实施例(变化例la),其中,两个失衡质量块10、 20的大小相等(n^ = m2 =m),并且它们以相反的方向^^转。该运动由凄t学项=wt;02 = -wt +6表示。(虽然图2至图7未示出图1中的闭环控制元件,例如感应器40和EDV50,但这些元件依然存在着)。所述失4軒质量块10、 20的两个交汇点(meeting points)(它们是两个所述质量块的位置,所述转动体的角位在该位置上相匹配)在直线60(g)上,该直线以某角度7=0/2倾斜,其中该角度的始边垂直于所述两个转轴12、 22的连冲妻线(connecting line )。由此,所述角負&通过相4立角0进4亍调节。如此, 一个简谐力能在方向g上产生, 一个简谐力矩M能在转轴12、22的方向上产生。当频率维持不变时,所述力的大小能通过变动半径ri、 r2得到调节,其中,通常采用较简单的参数n = r2 。如果7能被调节,使g处在垂直于所述两个转轴12、 22的连接线的位置上(7=0),那么,若^二r2,仅在g方向上产生简谐力F。这样,所述两个转轴12、 22之间的距离大小不产生影响,如此(为了尽可能实现最紧凑的建造),该距离可以减小到O,例如,这两个转轴被设置成重合。
该装置的作用机理可以通过选择所需的直线60 (g)的方向得到扩展(图3的变化例lb中,形成以下关系& = wt; 02 = - wt + 0)。在这种情况下,简谐力在一方向上产生,而不会同时产生绕转轴的力矩。该力的方向可以通过预设的相位角0而得到调节。为了避免不希望得到的绕垂直于所述转轴的轴的力矩,可以通过把任一个失衡质量块二等分以便使所述两个失衡质量块的重心被没有偏移地设置在所
述转轴12、 22的方向上,其中,所述被二等分的质量块成为单向分
质量块20a、 20b,它们被设置在另一失衡质量块10的两侧(在所述转轴12、 22的方向上),并且离该失衡质量块10的距离相等(图4的变化例lc中,依次形成以下关系=wt;02 = -+ 。失衡质量块10、 20的转动角,且若需要的话,分失衡质量块20a、 20b的转动角,可以^尤选i也通过一才几才戒孝禺合(mechanical coupling)来十办调,所述机械耦合可以是齿轮机构。这适用于所有在本文中被描述的实施例。
在另一个本装置的实施例中,如图5所示的一个单个单元(变化例2a),其大小相等的失衡质量块10、 20沿同一个方向旋转并具有相同的半径r。其中,相位偏移(phase shift)为0 = 180°,即所述两个失衡质量块10、 20总是处在相对位置上。该运动遵循以下表达式A =cot;02 = -wt+180°。这允许简谐力矩M在转轴12、 22的方向上产生。该力矩的大小的调节可以通过改变所述两个转轴12、 22之间的距离,或如之前那样,通过同时并一致地改变所述两个质量块10、20的半径r而实现。如果所述失衡质量块10、 20中的一个被表示成两个大小相等的单向分质量块20a、 20b(如图4中的变化例2b那样,但此处转轴之间的距离a可变化),那么把a调节成一个小数值,即a二O时,则不必处理不希望得到的绕垂直于上述转轴的轴的力矩。如此,力矩M的大小被减小到O,在闭环控制的进阶过程(progression)中也仅暂时性地需要这种情况。有利的情况是,所述失衡质量块的转动角能通过一齿轮机构得到协调。
在图6所示的另一实施例(变化例3)中,两个和图2中所示类型(变化例la)相同的装置被空间导向地(spatially oriented )等距离布置。这两个装置的失衡质量块10、 20或70、 80以相同数值的速度旋转,调节每个装置中的相位角,以使每个装置仅产生一个简谐力而不产生力矩(^ i = 0 2 = 0)。两条直线60、 62(gp g2)互相平行并垂直于两个对应的转轴12、 22或72、 82之间的连4妄线(力二72二0),因此 力的方向也互相平4亍并垂直于两个对应的转轴12、 22或72、 82之间 的连接线。所述两个装置之间具有一距离b,该距离的方向垂直于gp
g2 。这样就能同时产生在gi、 g2方向上的简谐力,以及在所述转轴
12、22或72、82方向上的简谐力矩M。通过改变所述失tf质量块(10、 20或70、80)的半径(其中所述两个装置的半径n、 i"2彼此独立, 且每个装置上的两个半径通常被调节成一致)、改变所述失衡质量块 10、 20或70、 80的旋转角之间的相位角6和改变两个装置之间的距 离b能调节所述力和力矩的大小,以及两个力之间的相位角。
另一个与实施例3 (图6)中的双装置相应的实施例(变化例4a, 图中未示出),其中距离b为O。这样就能在产生简谐力F时而不产 生力矩M。通过改变这两个装置的失衡质量块的旋转角之间的相位角 0,能十分容易地调节该力的大小。这里不再需要改变失衡质量块的 半径。力F作用方向垂直于所述两个对应转轴之间的连接线(如果a Z 0),若这两个转轴一直被设置重合到一个装置上(a=0),那么所有 四个轴被设置在一条直线上(变化例4a,图中未示出)。 一方面,这 样就能得到一个精简的构造,而另一方面,能使简谐力产生在所需的 垂直于所述转轴的方向上。通过预设这两个装置的相位角^和6>2,能 调节所述力的方向,其中使两个设备的相位角被调节成相等(^ = &)。 如前面所述,通过改变相位角l能调节力F的大小。为了避免产生 绕垂直于转轴12、 22、 72、 82的轴的力矩,通过把所述四个失ff质 量块中的三个显示成两个大小相等的单向分质量块20a、 20b、 70a、 70b、 80a、 80b,其中,这些分质量块总是被设置在两侧(在所述转 轴方向上),并且离不包含分质体的失衡质量块10的距离相等,这样 能使所有失衡质量块的重心被没有偏移地设置在所述转轴的方向上 (变化例4c,如图7所示)。
在另一实施例(变化例5,图中未示出)中,两个和变化例4a、 4b或4c中所述的类型(变化例la)相同的装置,近似变化例3那样 被组合和使用,其中变化例3从变化例la中书于变而来。这样,从另
15一方面来看,能产生垂直于转轴的简谐力和具有相同频率的沿转轴方 向的简谐力矩M。除了如变化例3 (图6)那样,需要改变所述失衡 质量块的半径,以便调节力和力矩的大小与相位角,还能根据变化例
4a、 4b或4c,改变所述两个装置的相位角&、 6>2。
在另一实施例(变化例6,图中未示出)中,所述装置以任意方 式联合成单个或多个单元,或成为变化例1至5中的一个或多个。其 中每次都能产生不同类型和频率的力。例如,通过把变化例1 (如图 2所示变化例la,其被调节成仅产生力而不产生力矩,或者变化例lb、 lc)和变化例2联合起来,能使简谐力和简谐力矩相互独立地产生, 且这些力和力矩的大小、频率和相位关系总能以任一方式调节。这两 个装置能被整合在一个通用闭环控制中,或两者互相独立地设置在单 独的闭环控制中。其中,后一个自主才喿作(autonomous operation )的 技术方案能简化反馈式控制任务。用于产生力的闭环控制仅测量位 移,而用于产生力矩的闭环控制仅测量旋转。在同时发生多种有待降 低的具有不同频率的振动模式时,这些实施例是具有优势的,其中, 对每个振动模式而言,在不同的实施例中,多个装置也能联合在一起。
在另一实施例(变化例7,图中未示出)中,所描述的装置,作 为单个或多个单元,或属于变化例1至6中的一个或多个,被封装在 一个贮存器(container)内,其中,所述贮存器被牢固地,但也可分 离地,连接在所述结构上。此处,有利的情况是,提供了转换所述贮 存器的选择,由此,就能提供适用于不同结构、不同操作和不同负载 条件的选择,也能提供在其他结构上重复使用的选择。对使用相对较 大的失衡质量块的应用而言(房屋与结构,水上交通器), 一个20 英尺或40英尺的标准集装箱(20, or 40, standard container)能作为上 述贮存器。由此产生的另一些优点是简便和经济的组装以及物流(运 输、存储)。能采用多个贮存器,其中,封装在不同贮存器中的装置
的"t喿作可以#:协调 一 致或独立^i行。
上述装置能用于控制房屋建筑、陆地与水上交通工具、航空器与 航天器,以及其他机器、装置或者设备的振动,其中,所述装置作为单个或多个单元,或属于变化例1至7中的一个或多个。在建筑业中, 一个可能的应用是抑制或限制由地震、风或交通而产生的振动,以此 确保结构的稳定性、耐久性和可操作性。例子包括由运动感应飞机
(motion-induced aircraft)对大跨度桥梁的结构稳定性产生的危险, 这会产生弯扭振动(flexural-torsional oscillations ),该弯扭振动会在 该桥梁的营造和在最终状态中发生。运用梁法(cantilever method )建 造的桥梁,具有大悬挑部分(large overhang),例如具体来说,在建 的斜拉桥(cable-stayed bridges )便具有所述大悬挑部分,此外加之阵 风的原因,该桥梁受到纵向、横向以及扭转振动,这会危及结构的稳 定性或施工过程。另 一个在建筑业中的应用例子是限制高层建筑或塔 楼上的横向或扭转振动,这些振动是由地震或风导致的。
有利的情况是,所述例子中发生的平移振动(translations vibrations)能被变化例1、 3或4中所描述的装置所抑制,其中,这 些装置和它们的部件被排列成,以及它们的相位角被调节成能产生力 的方式,其中,所产生的力平行于该平移方向并能与所述平移振动相 抵。有利的是,扭转振动(torsional vibrations ) 能被变化例2、 3或 5中所描述的装置所抑制,其中,这些装置和它们的部件被排列成能 产生力矩的方式,其中,所产生的力矩能抵消所述扭转振动(由此, 在桥梁上,所述转轴沿桥的纵向设置,而在高层建筑或塔楼上,所述 转轴沿垂直方向设置)。以及,在必要时,能调节所述相位角,以便 不同时产生作用力。在平移振动和扭转振动联合作用的情况下,根据 变化例1、 3、 5或6中所描述的装置能单独工作,或与变化例2或4 联合工作。在闭环控制的环境下、或在基于测得的结构运动和可能测 得的环境条件(对于地震而言,例如,现场地面加速度和现场环境) 的闭环控制的环境下,计算和调节所产生的力和力矩的大小、频率和 相位。在最简明的例子中(简谐振动为纯平移或扭转运动),所产 生的力在与待被抑制的振动的速度的相位相对的相位上。对于在建房 屋而言,有利的情况是,上述应用能连同变化例7被实现。
1权利要求
1.一种用于结构(30)振动控制的装置,具有-两个质体(10、20),每个质体绕着转轴(12、22)被可旋转地安装,其中所述两个转轴在同一方向上延伸,并且每个所述质体的重心和对应的转轴(12、22)之间存在一段距离(r1、r2);-驱动器,所述驱动器使每个所述质体(10、20)进行环行旋转运动;-至少一个感应器(40),所述感应器(40)测量结构(30)的运动或加速度;以及-控制器(50),所述控制器(50)基于测得的所述结构的运动或加速度控制至少一个下述变量-至少一个质体(10、20)的旋转运动的转动角(φ1、φ2);-一所述质体(10)的转轴(12)与另一所述质体(20)的转轴(22)之间的距离。
2. 根据权利要求1所述的装置,其特征在于,具有一个测量环 境条件的感应器。
3. 根据权利要求1或2所述的装置,其特征在于,所述两个质体 (10、 20)的转速(cd, C02)数值上相同。
4. 根据权利要求1至3中任一项所述的装置,其特征在于,所 述两个质体(IO、 20)具有相同的质量。
5. 根据权利要求1至4中任一项所述的装置,其特征在于,对 于所述两个质体(IO、 20)而言,所述任一个质体到该质体(10、 20) 对应的转轴(12、 22)的距离(rl、 r2)相等。
6. 根据权利要求1至5中任一项所述的装置,其特征在于,与 所述两个质体(IO、 20)对应的转轴(12、 22)之间的距离(a)可 调节。
7. 根据权利要求1至6中任一项所述的装置,其特征在于,所述 两个质体(IO、 20)中的至少一个包括两个分质体(20a、 20b),所 述分质体在所述转轴(12、 22)的方向上彼此互相分开。
8. 根据权利要求1至7中任一项所述的装置,其特征在于,所述两个质体(10、 20或10、 20a、 20b)的i走转运动之间的相位关 系可以通过才几械耦合来调节。
9. 根据权利要求1至8中任一项所述的装置,其特征在于,所述 两个质体(10, 20)的S走转运动以相反的方向进4亍。
10. 根据权利要求9所述的装置,其特征在于,所述两个质体(10, 20)的转轴(12、 22 )重合。
11. 根据权利要求1至8中任一项所述的装置,其特征在于,所 述两个质体(10、 20)的旋转运动以相同的方向进4亍。
12. 根据权利要求11所述的装置,其特征在于,所述两个旋转运 动之间的相位角总是为180度。
13. 根据权利要求1至12中任一项所述的装置,其特征在于,所 述装置与一根据权利要求1至12中任一项的第二装置相联合,其中, 所述第一装置和第二装置的转轴(12、 22、 72、 82)在同一个方向上 延伸。
14. 根据权利要求13所述的装置,其特征在于,所述第一装置的 两个质体(IO、 20)的转速(oo)与所述第二装置的两个质体(70、 80) 的转速(w)在数值上相同。
15. 根据权利要求13或14所述的装置,其特征在于,所述两个 装置之间存在一段距离(b)。
16. 根据权利要求15所述的装置,其特征在于,所述两个装置之 间的距离(b)可以调节。
17. 根据权利要求13或14所述的装置,其特征在于,所述两个 装置之间的距离(b)为0。
18. 根据权利要求13至17中任一项所述的装置,其特征在于, 所述两个装置的质体(IO、20、 70、 80)的转轴(12、22、72、 82) 相重合。
19. 根据权利要求18所述的装置,其特征在于,所述四个质体(IO、 20、 70、 80)中的三个总是包括两个尺寸相等的单向分质体(20a、 20b;70a、 70b; 80a、 80b),其中,所述单向分质体(20a、 20b; 70a、 70b; 80a、 80b)被设置在所述转轴(12、 22)的方向上,并且离开不包含 分质体的质体(10)的距离相等。
20. 根据权利要求13至19中任一项所述的装置,其特征在于, 所述装置与一根据权利要求13至19中任一所述的第二装置相联合, 其中,第一装置与第二装置的转轴(12、22、 72、 82)在相同的方向 上延伸。
21. 根据权利要求13至20中任一项所述的装置,其特征在于, 所述质体(IO、 20、 70、 80或10、 20a、 20b、 70a、 70b、 80a、 8 0b )的旋转运动之间的相位关系可以通过积4戒耦合来调节。
22. 根据权利要求1至21中任一项所述的装置,其特征在于,所 述控制器(50)被构建成反馈式控制器,其中,所述控制器(50)基 于由至少 一个感应器测得的数值,生成控制所述装置的命令。
23. 根据权利要求1至22中任一项所述的装置,其特征在于,所 述装置被封装在一个贮存器内,其中,所述贮存器被牢固地,但也可 分离地,连接在所述结构上。
24. 根据权利要求1至23中任一所述的装置,其特征在于,多个 所述装置分布在所述结构(30)上。
25. 根据权利要求24所述的装置,其特征在于,所述单个装置的 控制器或反馈式控制器被谐调 一致。
26. 根据权利要求24所述的装置,其特征在于,所述单个装置的 控制器或反馈式控制器互相独立。
27. 根据权利要求1至26中任一项所述的装置,其特征在于,所 述控制器(50)基于所述测得的运动或加速度,控制至少一个质体到与 其对应的转轴之间的距离。
全文摘要
本发明涉及一种用于结构振动控制的装置,其包括两个质体(10、20),每个质体绕着转轴(12、22)被可旋转地安装,其中着两个转轴在同一方向上延伸,并且每个质体的重心和对应的转轴(12、22)之间存在一段距离(r1、r2);驱动器,该驱动器使每个质体(10、20)进行环行旋转运动;至少一个感应器(40),其测量结构(30)的运动与加速度;以及控制器,其基于测得的运动和加速度,控制至少一个下述变量至少一个质体(10、20)的旋转运动的转动角(φ<sub>1</sub>、φ<sub>2</sub>);一质体(10)的转轴(12)与另一质体(20)的转轴(22)之间的距离。
文档编号F16F15/22GK101646881SQ200780049820
公开日2010年2月10日 申请日期2007年12月13日 优先权日2006年12月15日
发明者乌韦·斯达洛斯克 申请人:索列丹斯-弗莱西奈公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1