两级主簧式非等偏频型渐变刚度板簧接触载荷的验算方法与流程

文档序号:12546831阅读:208来源:国知局
两级主簧式非等偏频型渐变刚度板簧接触载荷的验算方法与流程

本发明涉及车辆悬架钢板弹簧,特别是两级主簧式非等偏频型渐变刚度板簧接触载荷的验算方法。



背景技术:

为了进一步提高车辆在半载情况下的行驶平顺性,可采用两级主簧式渐变刚度板簧,即将原一级渐变刚度板簧的主簧拆分为两级主簧;同时,为了确保主簧的应力强度,通常通过第一级主簧、第二级主簧和副簧的初始切线弧高及两级渐变间隙,使第二级主簧和副簧适当提前承担载荷,即给次接触载荷适当提前,从而降低第一级主簧的应力,即采用两级主簧式非等偏频型渐变刚度板簧悬架,其中,各次接触载荷是由板簧的设计结构及初始切线弧高所决定的,并且影响板簧的渐变刚度和应力强度,悬架的偏频及车辆的行驶平顺性和安全性。然而,由于受两级主簧式非等偏频渐变刚度板簧的各级板簧根部重叠部分等效厚度和挠度计算的制约,先前一直未能给出两级主簧式非等偏频型渐变刚度板簧接触载荷的验算方法,大都是凭经验加以确定,因此,不能满足车辆行业快速发展及悬架弹簧现代化CAD设计要求。随着车辆行驶速度及其对平顺性要求的不断提高,对渐变刚度板簧悬架提出了更高要求,因此,必须建立一种精确、可靠的两级主簧式非等偏频型渐变刚度板簧接触载荷的验算方法,为两级主簧式非等偏频型渐变刚度板簧的设计、特性验证及CAD软件开发奠定可靠的技术基础,满足车辆行业快速发展、车辆行驶平顺性及对渐变刚度板簧的设计要求,确保所设计板簧的结构及初始切线弧高,满足各级接触载荷、应力强度、渐变刚度、悬架偏频的设计要求,提高两级主簧式非等偏频型渐变刚度板簧的设计水平、产品质量和性能及车辆行驶平顺性和安全性;同时,降低设计及试验费用,加快产品开发速度。



技术实现要素:

针对上述现有技术中存在的缺陷,本发明所要解决的技术问题是提供一种简便、可靠的两级主簧式非等偏频型渐变刚度板簧接触载荷的验算方法,验算流程如图1所示。两级主簧式非等偏频型渐变刚度板簧的一半对称结构如图2所示,是由第一级主簧1、第二级主簧2和副簧3组成。采用两级主簧,并通过第一级主簧1、第二级主簧2和副簧的初始切线弧高HgM10、HgM20和HgA0,在第一级主簧1与第二级主簧2和第二级主簧2与副簧3之间设有两级渐变间隙δM12和δMA,以提高半载情况下的车辆行驶平顺性。为了确保满足第一级主簧1应力强度设计要求,第二级主簧2和副簧3适当提前承担载荷,悬架渐变载荷偏频不相等,即将板簧设计为非等偏频型渐变刚度板簧。板簧的一半跨度等于第一级主簧首片的一半作用长度L11T,骑马螺栓夹紧距的一半为L0,宽度为b,弹性模量为E。第一级主簧1的片数为n1,第一级主簧各片的厚度为h1i,一半作用长度为L1iT,一半夹紧长度L1i=L1iT-L0/2,i=1,2,…,n1。第二级主簧2的片数为n2,第二级主簧各片的厚度为h2j,一半作用长度为L2jT,一半夹紧长度L2j=L2jT-L0/2,j=1,2,…,n2。副簧3的片数为m,副簧各片的厚度为hAk,一半作用长度为LAkT,一半夹紧长度LAk=LAkT-L0/2,k=1,2,…,m。根据各片板簧的结构参数,弹性模量,骑马螺栓夹紧距,初始切线弧高,对两级主簧式非等偏频型渐变刚度板簧的各次接触载荷进行验算。

为解决上述技术问题,本发明所提供的两级主簧式非等偏频型渐变刚度板簧接触载荷的验算方法,其特征在于采用以下验算步骤:

(1)两级主簧式非等偏频型渐变刚度板簧的两级主簧和副簧的初始曲率半径计算:

I步骤:第一级主簧末片下表面初始曲率半径RM10b计算

根据第一级主簧片数n1,第一级主簧各片的厚度h1i,i=1,2,…,n1;第一级主簧首片的一半夹紧长度L11,第一级主簧的初始切线弧高HgM10,对第一级主簧末片下表面初始曲率半径RM10b进行计算,即

II步骤:第二级主簧首片上表面初始曲率半径RM20a计算

根据第二级主簧首片的一半夹紧长度L21,第二级主簧的初始切线弧高HgM20,对第二级主簧末片上表面初始曲率半径RM20a进行计算,即

III步骤:第二级主簧末片下表面初始曲率半径RM20b计算

根据第二级主簧片数n2,第二级主簧各片的厚度h2j,j=1,2,…,n2;II步骤中计算得到的RM20a,对第二级主簧末片下表面初始曲率半径RM20b进行计算,即

IV步骤:副簧首片上表面初始曲率半径RA0a计算

根据副簧首片的一半夹紧长度LA1,副簧的初始切线弧高HgA0,对副簧末片上表面初始曲率半径RA0a进行计算,即

(2)两级主簧式非等偏频型渐变刚度板簧的第1次开始接触载荷Pk1的验算:

根据两级主簧式非等偏频型渐变刚度板簧的宽度b,弹性模量E;第一级主簧片数n1,第一级主簧各片的厚度h1i,i=1,2,…,n1,第一级主簧首片的一半夹紧长度L11,步骤(1)中计算得到的RM10b和RM20a,对第1次开始接触载荷Pk1进行验算,即

式中,hM1e为第一级主簧的根部重叠部分等效厚度,

(3)两级主簧式非等偏频型渐变刚度板簧的第2次开始接触载荷Pk2的验算:

根据两级主簧式非等偏频型渐变刚度板簧的宽度b,弹性模量E;第一级主簧首片的一半夹紧长度L11;第二级主簧片数n2,第二级主簧各片的厚度h2j,j=1,2,…,n2;步骤(1)中计算得到的RM20b和RA0a,步骤(2)中验算得到的Pk1,对第2次开始接触载荷Pk2进行验算,即

式中,hM2e为第一级主簧和第二级主簧的根部重叠部分等效厚度,

(4)两级主簧式非等偏频型渐变刚度板簧的第2次完全接触载荷Pw2的验算:

根据步骤(2)中验算得到的Pk1,步骤(3)中验算得到的Pk2,对两级主簧式非等偏频型渐变刚度板簧的第2次完全接触载荷Pw2进行验算,即

本发明比现有技术具有的优点

由于受两级主簧式非等偏频渐变刚度板簧的各级板簧根部重叠部分等效厚度和挠度计算的制约,先前一直未能给出两级主簧式非等偏频型渐变刚度板簧接触载荷的验算方法,大都是凭经验加以确定,因此,不能满足车辆行业快速发展及悬架弹簧现代化CAD设计要求。本发明可根据各片一级和二级主簧及副簧的结构参数,弹性模量,骑马螺栓夹紧距,各级板簧的初始切线弧高设计要求值,在各级板簧根部重叠部分等效厚度计算的基础上,通过接触载荷与板簧曲率半径、挠度、一半夹紧长度和初始切线弧高之间关系,利用接触载荷的匹配原则,对该两级主簧式非等偏频渐变刚度板簧的各次接触载荷进行验算。通过样机加载挠度试验测试可知,本发明所提供的两级主簧式非等偏频型渐变刚度板簧接触载荷的验算方法是正确的,为两级主簧式非等偏频型渐变刚度板簧的特性验证及CAD软件开发奠定了可靠的技术基础。利用该方法可得到可靠的接触载荷验算值,确保板簧的设计结构满足接触载荷、渐变刚度及应力强度的设计要求,提高板簧设计水平、质量和性能及车辆行驶平顺性;同时,降低设计及试验费用,加快产品开发速度。

附图说明

为了更好地理解本发明,下面结合附图做进一步的说明。

图1是两级主簧式非等偏频型渐变刚度板簧接触载荷的验算流程图;

图2是两级主簧式非等偏频渐变刚度板簧的一半对称结构示意图。

具体实施方案

下面通过实施例对本发明作进一步详细说明。

实施例:某两级主簧式非等偏频渐变刚度板簧的宽度b=63mm,骑马螺栓夹紧距的一半L0=50mm,弹性模量E=200GPa。第一级主簧片数n1=2,第一级主簧各片的厚度h11=h12=8mm,第一级主簧首片的一半作用长度L11T=525mm,一半夹紧长度L11=L11T-L0/2=500mm。第二级主簧片数n2=1,厚度h21=8mm,一半作用长度L21T=350mm,一半夹紧长度L21=L21T-L0/2=325mm。副簧片数m=2,副簧各片的厚度hA1=hA2=13mm;副簧首片的一半作用长度LA1T=250mm,一半夹紧长度为LA1=LA1T-L0/2=225mm。第一级主簧的初始切线弧高设计值HgM10=103.7mm,第二级主簧的初始切线弧高HgM20=18.8mm,副簧的初始切线弧高HgA0=6mm。根据板簧的结构参数,弹性模量,对该两级主簧式非等偏频渐变刚度板簧的各次接触载荷进行验算,确保板簧初始切线弧高满足接触载荷的设计要求。

本发明实例所提供的两级主簧式非等偏频型渐变刚度板簧接触载荷的验算方法,其验算流程如图1所示,具体验算步骤如下:

(1)两级主簧式非等偏频型渐变刚度板簧的两级主簧和副簧的初始曲率半径计算:

I步骤:第一级主簧末片下表面初始曲率半径RM10b计算

根据第一级主簧片数n1=2,第一级主簧各片的厚度h11=h12=8mm,第一级主簧首片的一半夹紧长度L11=500mm,第一级主簧的初始切线弧高HgM10=103.7mm,对第一级主簧末片下表面初始曲率半径RM10b进行计算,即

II步骤:第二级主簧首片上表面初始曲率半径RM20a计算

根据第二级主簧首片的一半夹紧长度L21=325mm,第二级主簧的初始切线弧高HgM20=18.8mm,对第二级主簧末片上表面初始曲率半径RM20a进行计算,即

III步骤:第二级主簧末片下表面初始曲率半径RM20b计算

根据第二级主簧片数n2=1,厚度h21=8mm;II步骤中计算得到的RM20a=2818.6mm,对第二级主簧末片下表面初始曲率半径RM20b进行计算,即

IV步骤:副簧首片上表面的曲率半径RA0a计算

根据副簧首片的一半夹紧长度LA1=225mm,副簧的初始切线弧高HgA0=6mm,对副簧末片上表面的曲率半径RA0a进行计算,即

(2)两级主簧式非等偏频型渐变刚度板簧的第1次开始接触载荷Pk1的验算:

根据两级主簧式非等偏频型渐变刚度板簧的宽度b=63mm,弹性模量E=200GPa;第一级主簧片数n1=2,第一级主簧各片的厚度h11=h12=8mm,第一级主簧首片的一半夹紧长度L11=500mm,步骤(1)中计算得到的RM10b=1273.3mm和RM20a=2818.6mm,对第1次开始接触载荷Pk1进行验算,即

式中,hM1e为第一级主簧的根部重叠部分等效厚度,

(3)两级主簧式非等偏频型渐变刚度板簧的第2次开始接触载荷Pk2的验算:

根据两级主簧式非等偏频型渐变刚度板簧的宽度b=63mm,弹性模量E=200GPa;第一级主簧片数n1=2,第一级主簧各片的厚度h11=h12=8mm,第一级主簧首片的一半夹紧长度L11=500mm;第二级主簧片数n2=1,厚度h21==8mm;步骤(1)中计算得到的RM20b=2826.6mm和RA0a=4221.8mm,步骤(2)中验算得到的Pk1=1851.3N,对第2次开始接触载荷Pk2进行验算,即

式中,hM2e为第一级主簧和第二级主簧的根部重叠部分等效厚度,

(4)两级主簧式非等偏频型渐变刚度板簧的第2次完全接触载荷Pw2的验算:

根据步骤(2)中验算得到的Pk1=1851.3N,步骤(3)中验算得到的Pk2=2606.2N,对两级主簧式非等偏频型渐变刚度板簧的第2次完全接触载荷Pw2进行验算,即

通过验算值与设计要求值比较可知,所得到的各次接触载荷的验算值,与设计要求值的最大绝对偏差8.9N,最大相对偏差仅为0.24%。

通过样机加载挠度试验测试可知,本发明所提供的两级主簧式非等偏频型渐变刚度板簧接触载荷的验算方法是正确的,为两级主簧式非等偏频型渐变刚度板簧的特性验证及CAD软件开发奠定了可靠的技术基础。利用该方法可得到可靠的接触载荷验算值,确保板簧的设计结构满足接触载荷、渐变刚度及应力强度的设计要求,提高板簧设计水平、质量和性能及车辆行驶平顺性;同时,降低设计及试验费用,加快产品开发速度。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1