接触式光纤测头装置的制作方法

文档序号:5851961阅读:137来源:国知局
专利名称:接触式光纤测头装置的制作方法
技术领域
本实用新型涉及一种接触式光纤测头装置,属于精密测试技术与仪器和 光学精密测量技术领域。
背景技术
测头可视为传感器,只是其结构、功能较一般传感器更为复杂。测头的 两大基本功能是测微(即测出与给定的标准坐标值的偏差量)和触发瞄准并过零发讯。测头是精密量仪的关键部件之一,作为传感器提供被测工件的几何信息, 其发展水平直接影响精密量仪的测量精度、工作性能、使用效率和柔性程度。 在目前广泛使用的坐标测量机中,测头的设计和制造更决定了测量机的整体 性能。其发展历史也表明,只有在精密测头为其提供新的触测原理、新的测 量精度后,精密量仪才能发生一次根本的变化。换言之,精密测头是限制精 密量仪精度和速度的主要因素,精密量仪能否满足现代测量要求也依赖于精 密测头装置的不断创新与发展。因此,研制具有高精度、高性能的精密测头 是实现精密测量的关键。测头的分类,按功能分为瞄准测头和测微测头,按结构原理分为机械式 测头、电气式测头和光学测头,按照测量方法又分为接触式测头和非接触式 测头,其中接触式测头又分为硬测头和软测头。从总体分析,目前的扫描式测头精度较高,但结构复杂、体积大、价格 昂贵,影响了其普及应用。其发展方向就是在不影响其精度和扫描速度的同时, 研制结构简单、成本低的新型、高精度扫描式测头。非接触测头具有测量力 为零、测量效率高的优点,得到越来越广泛的应用,但是由于受到被测物体 的形貌特征、辐射特性等影响,测量精度尚需提高,还无法取代接触式测头 在精密量仪中的位置。而接触式测头由于具有结构简单、制作成本低及较高 的触发精度等优点,仍是三维测头中应用最广泛的测头。而其发展方向是尺 寸小、集成度高、精度高、各向异性小。自从1972年实用新型三叉式触发测头以来,其传感方式不断改进,目前 的触发式测头主要是通过判断电子机械开关的通断、压电晶体的压电效应、 应变片的形变等几种方式触发。各种触发方式都有其优缺点,电子机械开关 触发式测头结构简单、抗干扰能力强,但精度有限;压电触发式测头灵敏度 高、结构简单,但易误触发;应变片触发式测头测量力小、精度高,但易受 外界温度影响;振动触发式测头测力小、使用范围广,但精度有限。综合比 较各种触发方式,都不能兼顾高精度、抗干扰强、适应范围广等特点。最为 关键的是,无论采用哪种传感方式,其触发的本质并未改变,仍是测端接触 被测件带动测杆偏移引起触发,其存在的各向异性及测杆变形带来的误差, 虽可采用一定措施减少,但无法从根本上消除,成为制约其精度提高的主要 障碍。综上所述,触发式测头应用最广,其进一步发展必须突破传统的触发模 式,从根本上消除各向异性和测杆变形对测量精度的影响。实用新型内容本实用新型就是突破目前传统的触发式测量原理,将非接触式测量中的 光学原理与接触式触发原理相结合,产生一种新的触测方法,该方法能解决 现有测头的的缺陷,将精密测量带入到一个新的高度。本实用新型针对目前精密测量所用的测头的原理缺陷,提出一种新的触 测原理,其基本思想单色光光源的光通过单根光纤传至远离光源端的光纤 球,然后通过光纤球外层的占有超半球面积的反射膜在光纤球内部进行反射, 然后从接近接收光纤束端面的小半球表面出射,再进入外围的接收光纤束,然后经过光学装置后至图像探测器(CCD),再通过数字图像处理技术来识别接收来的光斑。如果前端光纤球触碰到被测物,则会导致发射光纤在接收光纤 束端面处的部位发生弯曲变形,从而导致反射回来的光强发生变化,反映到 光斑图像信息的变化,然后从光斑图像变化信息提取被测物空间几何量信息。 该方法最大的优点是避免了在接触式测量中普遍存在的各向异性和测杆变形 带来的测量误差,以及非接触测量中对被测物表面要求高的缺陷。本实用新型提供了一种接触式光纤测头装置,其特征在于,该装置结构如下单色光光源l;在单色光光源一侧,有一单根发射光纤5,该单根发射 光纤的远离光源端端头是一个熔合的透明光纤球7,在光纤球7远离光源端的 超半球表面镀上一层内反射膜8,然后在发射光纤5外套上能使发射光纤5在管 内自由活动的光滑套管4,光滑套管外围是均匀分布且至少一层的多根接收光 纤3,接收光纤外围是接收光纤束外包层2;在光滑套管接近光纤球端处内嵌 一能自由伸縮的弹性复位装置6,在弹性复位装置外加起到封闭弹性复位装置 6和固定发射光纤5作用的一个螺纹套管件12;在单色光光源l的另一侧,依次 有透镜组9,光阑IO,图像探测器ll,计算机。
更具体的方案如下
1)选用单色光光源l,可见光光源或者不可见光源都可以,主要是视 后端图像探测器类型而定。
2) 选用一单根发射光纤5,将其远离光源端熔合成透明光纤球7,然后在 光纤球远离光源端的超半球表面镀上一层内反射膜8,反射膜不仅能对进入到 光纤球的光进行反射,而且能起保护作用,保护光纤测球表面不被被测物直 接接触磨损。
3) 加工接收光纤束结构,接收光纤束中心是一根能使发射光纤5在其内 自由活动的光滑套管4,而且在光滑套管接近光纤球端内嵌一弹性复位装置6, 然后用螺纹管套件12进行封闭固定处理。在光滑套管4的周围均匀分布着接收 光纤3,然后再其最外层是接收光纤束外包层2。
4) 然后选取后端光学装置装置,包括透镜组9、光阑10和图像探测器11。
本实用新型首次将传统而且普遍的触发原理与光学间接测量以及机器视 觉技术相结合,具有许多创新点,如下
1) 此装置完全脱离了传统的三叉式等机械结构,能够实现完全的各向 同性,从而解决了目前普遍存在的各向异性的问题。
2) 该装置无需传统测杆等前端结构,只需要在接受光纤束端面处有一 个起固定作用的装置即可,其后端都是可弯曲的光纤束结构,从而解决了受 测杆弯曲等问题带来的误差影响,减少装置误差项。3) 由于该装置使用的是光学检测和机器视觉技术结合,通过图像变化
判断其触碰,大大提高了测头测量灵敏度;同时也就减小测头触碰测量力。
4) 该装置是基于光纤结构,本身尺寸可以做到微米级,甚至更小,从 而克服了传统测量中对微小结构或者深孔的测量难度问题。
5) 该装置也简化了测头的结构,只需要在接受光纤束端面处有一个起 固定作用的装置即可,其后端都是可弯曲的光纤束结构,可以实现前端与后 端图像探测装置的分开,不用像传统测头一定两者固定连接,从而也给坐标 测量机的结构带来很大的变化空间。


图l为接触式光纤测头测量装置示意图1、单色光光源,2、接收光纤
束外包层,3、反射光纤,4、光滑套管,5、发射光纤,6、弹性复位装置,7、 光纤球,8、反射膜,9、透镜组,10、光阑,11、图像探测器,A、触碰的方 向为径向,B、触碰的方向为A与C之间的任意方向,C、触碰的方向为轴向, D-D、向上看的截面图图4, E、光纤式触发测头测端局部放大示意图。
图2为接触式光纤测头测端局部放大示意图E: 12、螺纹管套件,13、发 射光纤与光纤球连接部位。
图3为接触式光纤测头接收光纤束截面示意图D-D。
图4为接触式光纤测头多层接收光纤束截面示意图接收光纤3可以按 照多层次的均匀分布。
具体实施方式
以下结合附图l,图2,图3、图4对本实用新型进一步说明 本实用新型首次将传统而且普遍的触发装置与光学间接测量以及机器视 觉技术相结合,实现一种新的测头结构。其装置示意图如图l所示,主要包 括光纤测头部分和图像接收部分。
单色光光源l的选取,可见或者不可见可以根据后端的图像探测器类型 确定,最好选取可见红色或者绿色单色光,对单根发射光纤5 (选取材质为石 英或者塑料的多模光纤,直径在市场现有的都可以,普遍直径大于10^")进 行加工,首先需要将其远离光源端熔为一透明光纤球7 (光纤球直径视选取的 发射光纤而定, 一般在22^ ),然后需要对光纤球7的远离光源端超半球面积(此面积至少要超过赤道半球面积)上利用镀膜的方法(可选真空镀或
者化学镀)镀上一层金属反射膜8 (此镀膜均匀且厚度在1()"^ 25()/^范围), 使其球内表面达到镜面反射。然后还需要在图3的螺纹管套件12的位置处对 发射光纤5加工一个台阶(可以采用薄套环固定在此),以卡住弹性复位装 置6和固定发射光纤5远离光源端伸出接收光纤束的长度。在接收光纤束中 心选取一根能使发射光纤5在其内自由活动的光滑套管4 (长度一般在 5-20mm,材质可以是金属或者非金属,视加工难易而定,建议选取毛细玻璃 管),而且在光滑套管4接近光纤球端加工形成一个端口带有螺纹的内台阶 如图3所示,使其能内嵌一弹性复位装置6 (可选塑胶弹簧或者金属弹簧), 然后用螺纹管套件12进行固定,使弹性复位装置6处于弹性势能为0的状态 (即自然伸长状态),此处的加工主要是有利于其在C向的移动以及复位。
进行测头前端的安装。先螺纹管套件12倒向串到发射光纤5上,然后固 定发射光纤的台阶,再将选取的弹性复位装置6从接受光源端穿过发射光纤5 直至台阶处,再将带有台阶的发射光纤5从接收光纤束的接收端穿入直到毛 细玻璃管台阶处,然后旋进螺纹管套件12直到使塑胶弹簧处于自然伸长状态。 至此,测头前端安装完毕。
测量过程。初始状态下,首先将单色光光源1点亮,将光线引入发射光 纤5,直至光纤球7,然后经过反射膜8反射,通过光纤球7接近接收光纤束 端面的预留未镀膜的部分出射,返回到反射光纤3,出射的反射光经透镜组9 进行聚焦和光阑10光学处理后打到图像探测器11上,形成光斑图像(彩色 或者灰度,根据选取的图像探测器而定)。在测量过程中,光纤测球与被测 物在不高于光纤球赤道平面各方向进行触碰的瞬间,使具有一定韧性的发射 光纤5在图2中的发射光纤与光纤球连接部位13发生弯曲变形,以及光纤球 7与接收光纤束端面的距离也会发生变化,从而导致从光纤球出射光的光强大 小和分布都会发生变化,也就导致外围接受光纤束接收到的反射光光强大小 和分布发生变化,同时后端接收到的光斑图像也会产生与初始光斑图像的差 别,而且这种差别可以通过标定技术定性且定量的获取光纤球的空间几何位 置的变化信息,从而达到测头传感器传感测量的目的。
权利要求1.一种接触式光纤测头装置,其特征在于,该装置结构如下单色光光源(1);在单色光光源一侧,有一单根发射光纤(5),该单根发射光纤的远离光源端端头是一个熔合的透明光纤球(7),在光纤球(7)远离光源端的超半球表面镀上一层内反射膜(8),然后在发射光纤(5)外套上能使发射光纤(5)在管内自由活动的光滑套管(4),光滑套管外围是均匀分布且至少一层的多根接收光纤(3),接收光纤外围是接收光纤束外包层(2);在光滑套管接近光纤球端处内嵌一能自由伸缩的弹性复位装置(6),在弹性复位装置外加起到封闭弹性复位装置(6)和固定发射光纤(5)作用的一个螺纹套管件(12);在单色光光源(1)的另一侧,依次有透镜组(9),光阑(10),图像探测器(11),计算机。
专利摘要本实用新型涉及一种接触式光纤测头装置,属于精密测试技术与仪器和光学精密测量领域。该装置有单色光光源,光源一侧有一单根发射光纤,发射光纤的远离光源端端头是一个熔合的透明光纤球,在光纤球远离光源端的超半球表面镀上一层内反射膜,然后在发射光纤外套上能使发射光纤在管内自由活动的光滑套管,光滑套管外围是多根接收光纤;在光滑套管接近光纤球端处内嵌一能自由伸缩的弹性复位装置,在弹性复位装置外加起到封闭弹性复位装置和固定发射光纤作用的一个螺纹套管件;在单色光光源的另一侧有透镜组,光阑,图像探测器,计算机。该装置克服了接触式测量的各向异性和测杆变形带来的测量误差,以及非接触测量中对被测物表面要求高的缺陷。
文档编号G01B11/00GK201413124SQ200920109408
公开日2010年2月24日 申请日期2009年6月19日 优先权日2009年6月19日
发明者向大超, 石照耀, 蔡轶珩 申请人:北京工业大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1