用于测量高温环境中的温度的无线遥测电路结构的制作方法

文档序号:5864984阅读:196来源:国知局
专利名称:用于测量高温环境中的温度的无线遥测电路结构的制作方法
技术领域
本发明一般地涉及用于测量部件温度的无线遥测电子电路并且特别地涉及能够 在超过300°C的高温环境中操作且能够承受高达至少1000g’ s的力的电子电路。
背景技术
在操作的燃气涡轮发动机内部的温度极其高,往往处于超过450°C的水平。当期 望监视涡轮机的部件(诸如涡轮机叶片)的内部温度或者监视在操作期间施加于此类部件 上的应力时,要求特殊的感测、放大和发送电路。针对这个问题的有效解决方案是使用无 线遥测,诸如在公开的题为 SMART COMPONENT FOR USE IN AN OPERATING ENVIRONMENT 的美国专利申请公开号US 2005/0198967 Al、或者题为INSTRUMENTED COMPONENT FOR COMBUSTION TURBINE ENGINE 的美国申请号 11/936,936 以及题为 INSTRUMENTED COMPONENT FOR WIRELESS TELEMETRY的申请号11/521,193中揭示的无线遥测。在这些上面引用的专利申请中,揭示了使用无线遥测的一般概念。本专利申请应 对在实施这种技术中遇到的具体问题。可以承受高温的无线遥测电路板和其上的部件可以实现在诸如在内燃式燃气涡 轮发动机中经历的那些之类的高温环境中从固定和运动部件中提取数据。电子电路提供了 在涡轮发动机(诸如工业燃气涡轮机、航空发动机以及在石油与天然气工业中使用的涡轮 机)的操作期间实时监视部件状况的可能性。知道涡轮机中的部件的状态提供许多益处,包 括基于内部发动机参数来优化涡轮机操作以及实现基于状况的维护。通过使用监视设备, 可以实现先进涡轮发动机的操作成本的显著降低。对涡轮机部件仪表化的当前实践涉及把 传感器安装到部件、把引线铺到路由器并且把大捆引线在涡轮机之外长距离地带到监视位 置。该过程是缓慢的、劳动密集型的、昂贵的,并且要求修改涡轮机的许多部件以便允许包 括所有引线。为了实现从这种传感器系统提取数据的优点,可能要求把数据发送机 (transmitter)放置在热部件的最冷区域上。这可能导致需要将诸如在涡轮发动机的流 道中的叶片根部处在超过300°C的温度下运行的无线遥测系统。使用硅或绝缘体上硅 (silicon-on-insulator, SOI)有源部件的目前工艺水平的电路不能够在此类高温下操作。 这种无线遥测电路板将要求能够在超过300°C的温度下操作的封装、板、路线(rim)、无源 设备、有源设备以及连接。

发明内容
本发明涉及在用于内燃式发动机的遥测系统中的一种电路结构,固定到所述发动
5机的运动部件且被设置用于处理关于所述运动部件的温度所感测的信息,所述电路结构适 于所述发动机的高温环境且包括热电偶,被设置在所述运动部件上用于感测其温度并且 提供表示所感测的温度的信号;放大器,具有耦合到所述热电偶的输出的输入并且被设置 用于对表示由所述热电偶感测的温度的信号进行放大;方波振荡器,被设置用于生成方波 信号,所述方波信号具有指示所述电路结构的局部温度的频率;斩波器,被设置用于把所述 放大器的输出信号转换成交流信号,所述斩波器具有耦合到所述方波振荡器的输出的第一 门控输入以及耦合到所述放大器的输出的第二输入,所述斩波器具有提供信号的输出,所 述信号具有表示所述电路的局部温度的频率以及表示由所述热电偶感测的温度的振幅。


鉴于附图,在以下的描述中解释本发明,所述附图示出
图1是示出包括遥测电路板的电子器件的附着的示例性涡轮机叶片的部分透视图。图2是示出图1的发送机组件的元件的分解透视图。图3是示出包含在图2的发送机组件外壳中的高温电子器件封装(electronics package)内的元件的分解图。图4A示出用于在组装操作期间固定电路板的转移板(transfer plate)的平面图 和侧视图。图4B示出待与图4A的转移板一起用于在组装操作期间把部件固定在适当位置的 对准板的平面图。图5A、5B和5C是使用图4A和4B的转移板和对准板的组装过程的透视图。图6A和6B是在半导体技术中通常使用的导线接合技术的视图。图7是示出典型导线接合的g力分析的透视图。图8示出在模拟g力应力下的导线接合的各种状况。图9A是示出对本文使用的放大器电路偏置(bias)的独特电路的示例性示意图。图9B是示出在变化的温度下图9A的放大器的AC输出电压相对于偏置电压的图表。图10是应变计电路的框图。图11是热电偶(thermocouple)电路的框图。图12是用于放大应变计输出信号的电路的示意图。图13是用于放大热电偶输出和把发送机的局部(local)温度嵌入到放大的输出 信号中的电路的示意图。图14是功率调节电路的示意图。图15是包括Colpitts (科耳皮兹)振荡器的FM发送机的示意图。图16是代表性热电偶的图示。图17是示出在室温下热电偶电路的方波发生器的输出的波形图。图18是示出在升高温度下热电偶电路的方波发生器的输出的波形图。图19是示出随着温度增加时热电偶的输出电压的波形图。图20是示出斩波器的输出的波形图,所述斩波器的输出是热电偶和方波发生器 的组合输出。
具体实施例方式本文公开的实施例实现了通过使用电子电路经由无线遥测从具有从环境到大于 300°C变化且包括高达至少450°C的温度在内的温度的燃气涡轮机的区域发送数据。封装和 电路的所有元件因此要由能够在大于300°C的温度下操作的材料制作。目前工艺水平的高 温电子系统被设计成使得控制逻辑电路放置在冷得足以使用基于硅的电子器件或者能够 在高达最大300°C的升高温度下操作的高温绝缘体上硅(HTSOI)技术的位置处。在这种目 前工艺水平的系统中,控制信号从相对低温的区域经由导线发送到位于处在大于300°C下 的热区域中的功率放大模块。功率放大模块是一种如下电路其将采用针对高温使用设计 的半导体,诸如宽带隙(band gap)半导体材料,包括SiC,AIN, GaN, AIGaN, GaAs, GaP, InP, AIGaAs, AIGaP, AIInGaP和GaAsAIN或者其它可以在大于约300°C的温度下使用的 具备耐高温能力的半导体材料。这种设计策略对于在诸如燃气涡轮机叶片之类的旋转热断 面部件上采用仪表装置是无用的,因为整个发送机电子电路必须位于涡轮机叶片上并因而 在超过300°C的温度下操作。本文揭示了新的电子电路,其在大于300°C且包括高达至少 450°C的温度在内的温度下实现传感器信号采集和无线发送二者。所揭示的电子电路和封装因此由能够在高温下操作的材料制作,例如具备耐温能 力的环氧树脂或陶瓷材料,诸如氧化铝、氧化锆、碳化硅、氮化硅、氮化铝等。导体由可以承 受高温而不熔化的金属制作,例如银或金。有源和无源电气部件必须基于该板将操作于其 中的温度环境和电气要求进行选择。可以采用高温无源部件,诸如基于诸如钯、钌、铱、铼、 多层陶瓷电容器(诸如NP0、C0G和X7R)之类的系统的厚膜电阻器。如果市场上买不到合适 的电感器,则具备耐高温能力的电感器可能需要直接沉积到支承电子电路的PC板上。有源 部件,即晶体管、二极管等,可以由能够在高温下操作的半导体材料(诸如上面列举的那些) 制作。部件和电子电路之间的连接同样可以以管芯附着、导线接合或者任何其它适当的方 法的形式由高温金属(诸如金或铝)制成。在其中超过单片高温接合材料的限制的情况下, 可以使用合金成分来执行附着。为了降低这些设备在附着期间所暴露于的温度,共晶合金 成分可以用于附着,接着是热处理以把附着成分改变为具有较高熔化温度的附着成分。该 板上的所有材料必须被选择成使得暴露于所需的操作温度不会导致使该板性能降级的化 学相互作用或成分/结构变化。依据本公开,使用当前买得到或处于研发的高温无源和有 源电子材料的类型,设计了能够从热电偶或应变计传感器发送信号的完整电路。参考图1,本发明的实施例允许从在具有超过300°C的温度的环境中操作的旋转 部件(诸如具有位于叶片根部22上的某些电子部件的涡轮发动机叶片20)发送传感器数 据。就本文的公开而言,没有附加限定条件的术语“高温”将指代任何操作环境,诸如燃式 涡轮机的各部分内具有超过300°C的最大操作温度的操作环境。本发明的实施例提供在仪表化有遥测系统的燃式涡轮机中使用的部件,所述遥 测系统可以包括一个或多个传感器、连接传感器与至少一个遥测发送机电路的引线(lead line)、至少一个发送天线、电源以及至少一个接收天线。图1示出涡轮机叶片20、无线遥测 发送机组件M以及旋转天线组件26。当邻近叶片根部22安装遥测发送机组件M时,引线 或连接器观可以从一个或多个传感器(诸如传感器30)延伸到遥测发送机组件24。引线 观可以把电子数据信号从传感器30路由到遥测发送机组件M,在遥测发送机组件M中信号由形成在包含在图2所示的电子器件封装34内的电路板上的遥测发送机电路处理。引 线或电气连接器36可以被沉积用于把电子数据信号从遥测发送机电路路由到旋转天线组 件26。图2示出可以包含高温电路板且形成遥测发送机组件M的部件的高温电子器件 封装34。电子器件封装34的主体可以由具有低热膨胀系数的合金(诸如Kova/品牌合金、 Fe-Ni-Co合金)制作。Kova/合金的热膨胀系数根据确切成分而从大约4. 5X 10_6/°C变化 到6. 5X 10_6/°C。通常用于高温涡轮机部件(诸如涡轮机叶片20)的Ni基合金具有在大约 15.9-16.4X10_6/°C的范围中的热膨胀系数。电子器件封装34可以稳固地固定在适当位 置同时允许电子器件封装34和涡轮机叶片20之间的相对运动,如下面针对图2所描述的。 这种相对运动可能由在环境空气温度和通常邻近叶片根部22所经历的大于300°C的操作 温度之间的大量热循环期间随着时间而发生的其不同热膨胀率引起。如图2最佳所示的遥测发送机组件M可以包括安装支架37和盖子或盖板38,其 中电子器件封装34定位在其间。多个连接针(pin)40实现在包含在封装34内的电子电路 板(诸如在其上制作有无线遥测电路的电子电路板)和各种外部设备(诸如来自传感器的弓丨 线、感应线圈组件或数据发送天线)之间的连接。安装支架37、盖板38以及把它们连接在 一起的定位螺丝39 (示于图1中)可以由与涡轮机叶片20相同的材料制作。这确保在涡 轮机叶片20和安装支架37之间没有热膨胀差别。因而,在热瞬态期间在安装支架37或涡 轮机叶片20中没有生成应力。电子器件封装34的热膨胀系数可以与安装支架37的热膨胀系数不同。当这些部 件存在于其内的操作系统处于高温时,包括其中包含的任何电路板的由Kova/合金形成的 电子器件封装34将比安装支架37膨胀得小,这可能导致由系统中的振动能量造成的损坏。 为了把电子器件封装34固定在安装支架37内以适应支架37和电子器件封装34之间的尺 寸变化差异,可以在电子器件封装34和安装支架37的内表面之间放置一层陶瓷纤维机织 物41。织物41可以由合适的陶瓷纤维制作,包括诸如碳化硅、氮化硅或氧化铝之类的纤维。 例如,由3M制造的一些Nextel 基于氧化铝的织物可以用于织物41。其中电子器件封装34和陶瓷纤维机织物41与安装支架37和盖板38 —起组装以 形成遥测发送机组件M,安装支架37可以通过合适的附着手段诸如螺栓连接、焊接、铜焊 或者经由瞬态液相接合而附着到涡轮机叶片20。图1示出可以邻近叶片根部22研磨或以 其它方式形成于涡轮机叶片20内用于容纳组件M的凹口或扁平口袋42。盖板38可以形成有与G力方向垂直定向的凸缘44,以给盖板增加结构支承,这对 抗在旋转涡轮机叶片20正在全速操作时发生的g负荷力(load force).这使定位螺丝39 免于承载经由g力施加到盖板38的负荷,并且允许它们制得足够小使得遥测发送机组件M 装配在相对小的凹口 42中且不干扰任何相邻的部件。如果要求定位螺丝39承载由G力施 加的负荷,则它们所需的大小将太大而不能装配在可用的空间中。图1示出旋转天线组件沈可以固定到根部22的端面或颈部。组件沈可以是具 有与用于涡轮机热气路部件(诸如包括其根部22的涡轮机叶片20)的Ni基合金的那些热 膨胀系数不同的热膨胀系数的电子组件。可以保护一个或多个旋转天线组件26以在涡轮 机叶片20以声速或接近声速旋转期间不受风阻(windage)。在实施例中,风阻保护材料对 RF辐射频率是透明的以便实现通过材料发送功率和数据。可旋转天线组件沈的实施例可以包括图1所示的耐用的保护性RF透明盖50,这基本上是其内包含数据天线和感应功率部 件的中空夹具。RF透明盖50保护其内含物以在燃式涡轮机的操作期间不受风阻的物理效 应。某些陶瓷适合于保护RF发送装置不受处于升高温度的元件影响。然而,许多陶瓷和陶 瓷基质复合物易于在旋转涡轮机叶片20在燃式涡轮机的操作期间经历的振动冲击和G负 荷下剥落(chipping)和破裂。本发明的发明人已确定RF透明盖50可以由RF透明的高韧 性的结构陶瓷材料制作。陶瓷基质复合物可以用于制作盖50以及从被称为增韧陶瓷的材 料族中选择的材料。诸如碳化硅、氮化硅、氧化锆和氧化铝之类的材料由于掺杂有附加元素 或者由具体的处理方法产生的设计微结构而获得提高的韧性。RF透明、容易形成且相对廉价的一种此类材料是从一般称为氧化锆增韧氧化铝 (ZTA)的陶瓷族中选择的材料。从这个氧化铝材料族中选择的陶瓷材料比常规的纯氧化铝 材料在强度和韧性方面高得多。这起因于通过遍及氧化铝均勻地采用精细的氧化锆颗粒而 获得的应力诱导相变增韧。典型的氧化锆含量在10%和20%之间。结果,ZTA相对于常规 的纯氧化铝材料提供提高的部件寿命和性能。当陶瓷被受压负荷时,设计的ZTA微结构是抗断裂的。然而,如果被充分受拉负 荷,则陶瓷与传统的陶瓷材料一样将致命失效。因而,RF透明盖50被设计成使得在燃式 涡轮机的操作期间最小化陶瓷材料中的拉应力。这是通过设计和制作使得如下而实现的 (1)加工ZTA部件的所有拐角、边缘和弯曲以消除尖锐拐角和边缘,以便降低这些位置处的 应力集中因数;以及(2)ZTA部件在旋转天线安装支架51中的定向和装配是使得在操作期 间施加到ZTA盒的G力不在附着凸缘中生成显著的弯曲应力。这是通过使凸缘定向成与G 负荷方向平行而不是与G负荷方向垂直而实现的,因此ZTA凸缘被受压负荷而不是受弯曲 负荷。安装支架51可以被设计成使得在燃式涡轮机的操作期间由旋转天线组件沈所经 历的所有G负荷在朝支架51的上端延伸的方向上被吸收。安装支架51的部分并没有延伸 远得足以经过其中包含的天线从而衰减RF发送数据信号。RF透明盖50被固定在适当位置 因此其内部应力场主要是压缩的并且可以使用螺纹针(未示出)通过其凸缘上的半圆形草 皮(divot)来保持。安装支架51可以经由常规的手段诸如焊接、铜焊、接合、螺栓连接或螺丝接合而 附着到涡轮机叶片22的表面。旋转天线组件沈的实施例可以通过把期望的天线放置到包 含天线的利用陶瓷灌封材料的盖50的中空体中进行组装。包含天线的灌封RF透明盖50 然后可以滑到安装支架51中,所述安装支架51可以先前已固定到涡轮机叶片根部22。盖 50可以经由安装支架51中插入的针和盖50中的草皮而固定到安装支架51。现在参考图3,示出分解图,其示出在图2的外壳M内包括的高温电子器件封装 34内的元件。封装底部空腔34A包括从其一端延伸的电气连接针40,该连接器实现在封装 34内部的电子器件和外部传感器、源及天线之间的通信。为了在高达至少450°C的高温下 运行,该封装必须被设计且大小被制成包含电子电路及其衬底(在下文中为PC板42)。该 封装必须能够承受温度和离心负荷要求并且保护衬底上的电路。因此,封装34由镀金的 Kova/合金制成并且电气连接针40由金制成。对封装34的镀金防止可能在升高温度下发 生的Kova/合金的氧化。连接器40借助于各个绝缘套管(未示出)而与该封装绝缘。一对 针40耦合到与传感器30通信的电气连接器28。第三针耦合到地电位,而针4、5、6和7耦合到电源(两个,每个用于正和负交流)。最后针用于把发送机输出(数据)信号耦合到天线 26。PC 板
PC板42或衬底优选地由能够在高温下操作的材料制作,诸如具备耐高温能力的环氧 树脂或陶瓷材料,诸如氧化铝、氧化锆、碳化硅、氮化硅、氮化铝等。电路路线(或“印刷电 路”)优选地由在高温下工作的金属(诸如银或金)制作。发明人选择一种使用氧化铝衬底 来制作PC板42的一个实施例的厚膜工艺。氧化铝衬底金属化有厚膜金膏。这些衬底在高 温下很好地执行并且与(下面讨论的)管芯附着工艺非常兼容。杜邦QG150品牌金膏被选择 作为金属化。该膏包括高密度金粉末与玻璃氧化物粘合剂。PC板可以由10-100密耳(mil) 厚度的氧化铝形成。最终衬底包括测量为20 mil厚的96%氧化铝衬底。高密度金膏被用 作导电层,并且也被用作能够与其焊接和导线接合的表面。印刷能力允许5 mil的线分辨 率。PC板42通过如上文中概述的以下工艺来组装。利用厚膜丝网印刷工艺来制备 衬底。专门的丝网印刷机结合图案化的不锈钢精细筛网一起使用。金膏被印刷到氧化铝 (Al2O3)衬底上。在印刷之后,在150°C下在烤箱中使该膏变干以“烤出”膏中的溶剂。接着, 衬底被放置在炉子中并且在850°C下烧制(fire)。在这个过程期间,膏中的玻璃/氧化物 粘合剂形成在烧结膏和氧化铝衬底之间的强接合。多个印刷要求多个烧制步骤。依据一个 实施例,采用两个印刷/烧制循环(顶侧金属化和底侧金属化)。经烧制的衬底然后用切割锯被切出至适当的尺寸。顶部印刷在其上形成了电路图 案,而底部印刷是由于印刷性限制而被“网格化”的金属平面。后金属平面将允许在其上执 行冶金接合工艺。一旦PC板42完成并且部件附着到其上(在下文中描述),PC板然后被放置到空腔 34A中并且12开金线44A、44B被激光焊接到PC板和用于形成保持器(retainer)的空腔以 把PC板固定在适当位置。把衬底机械地保持在封装中极其重要,因为高g力施加在封装及 其内含物上。保持器可以由具有在封装的热膨胀系数的20%内的热膨胀系数的材料形成 以便最小化其间的差异热生长。可行的是把填料材料添加到封装34中并且使其在PC板和 电路部件上扩展以在操作期间帮助稳定其放置。然而,使用的任何填料必须允许部件及其 连接导线在温度循环期间的任何膨胀或收缩。最后,盖子34B固定到空腔34A的顶部。依 据一个实施例,Kapton 品牌聚酰亚胺绝缘胶带用于把盖子34B保持在适当位置,直到其可 以通过压缩被机械地固定为止。用于固定盖子34B的另一个实施例是把其焊接到封装空腔 34A。如下面将更详细描述的,可以使用PC板42的两个不同电路布局图案。第一图案 被设计用于感测涡轮机的选择部件的温度变化的电路,其中传感器30是热电偶。指示部件 温度的信号被电路放大和处理,然后经由FM发送机发送并且经由诸如天线沈的天线广播。 这种类型的电路可以用于除了测量温度的那些传感器之外的、但其也产生直流(D/C)输出 信号作为响应的传感器,诸如静应变、导电迹线或化学传感器。第二图案被设计用于感测在 涡轮机的选择部件上发生的动态应变的电路,其中传感器30是应变计。指示在选择部件上 发生的动态应变的信号被电路放大和处理,然后经由单独的FM发送机发送并且经由诸如 天线沈的天线广播。这种类型的电路可以用于除了测量动态应变的那些传感器之外的、但其也产生交流(A/C)输出信号作为响应的传感器,诸如加速计或电磁波反射检测器。可选 的实施例使用单个FM发送机,所述单个FM发送机复用多个信号以发送到单个FM接收机, 所述单个FM接收机被配置成把接收的信号解码成两个单独的数据信号。如图3所示的PC 板42在图示中是部分完整的并且一般表示热电偶电路。两个电路都包括作为FM发送机的 Colpitts振荡器的部分储能电路的露天芯线(open air core wire)电感器线圈Li,这将在 下面本文中进一步解释。线圈Ll的品质因数Q在电路的操作温度和操作频率下可以至少为 5。溅射的金或银膏材料可以用于形成该线圈;然而,此类膏通常具有低Q值。本发明人已成 功地利用金或银导线来形成电感器线圈。金属导线空气芯导体可以沿其长度被灌封(pot) 以防止在高频下电气短路。绝缘胶带可以缠绕在其中其自身交叉的灌封导线上以便防止电 气短路。可选地,金属导线可以在其交叉点处形成为桥(bridge)以便防止电气短路。为了 提高这种线圈的机械强度和稳定性,可以在导线周围放置灌封材料,尽管任何这种灌封材 料将必然影响线圈的Q因数。在一个实施例中,用陶瓷氧化铝膏悬浮液(诸如Ceramabond 品牌陶瓷粘结剂)灌封的金导线提供在燃气涡轮机操作温度和G力下期望程度的结构稳定 性并且提供大于5的Q因数。这种基于氧化铝的灌封也充当线圈的电气绝缘体,因此在导 线自身周围不要求单独的电气绝缘。管芯/部件附着
为了使电子封装在高达至少450°C的升高温度下运行且承受大于lOOOg’ s的离心 负荷,要满足特殊的要求以把部件附着到PC板42。在真空烤箱中执行所有接合以确保 焊料的正确回流。发明人明白在被焊接的部件具有微小质量时可能遇到的主要问题。如 果部件的质量很小,则可能不能在液体合金形成珠状时打破液体合金的表面张力,并且 部件部分可能离开焊料并滑到另一个位置,或者其可能以一角度倾斜(称作“元件竖立 (tomb-stoning),,)。为克服这个问题,本发明人研发了一种利用在真空烤箱的加热夹具中装配的部件 对准模板和转移板的方法。转移板60以平面图和正视图示于图4A中并且一对部件对准板 61和62也以平面图示于图4B中。图4A示出在组装图3所示的PC板42中使用的转移板 60的平面图和端视图。该板由石墨制成并且大小被定制且被整形以容纳衬底(PC板)和对 准板60、61以对准在组装操作期间要附着到PC板的部件。对准板60、61必须能够承受高 温、必须与焊料不发生反应且耐焊料,并且能够定义部件的高度精确的剪切块(cutout)。 因而,合金316不锈钢可以用于制作这些板。由于剪切块的小尺寸和对高精度的需要,激光 切割可以用于制作。下一关注是用于把部件附着到PC板42的焊料的配制。材料必须与管芯金属化部 (Au薄膜)和衬底金属化部(Au厚膜)兼容。铜焊是一种涉及在两个浸润表面之间熔化高温填料金属的相对简单工艺,由于以 下三个主要因数而发现铜焊对本应用而言是不到最优的(1)大多数铜焊具有在700°C之 上的液线温度并且要求高腐蚀性焊剂;(2)大多数铜焊合金不是共晶的并且具有很大的塑 性区域,这可能使处理复杂化;以及(3)大多数铜焊不与金表面兼容。发明人也发现瞬态液相(TLP)接合是不到最优的。在这个过程中,在两个兼容表面 之间使低熔点合金液化。在合金填充在贴合表面之间的间隙时,其用来“溶解”或“滤除”兼 容金属。这个动作改变了合金的成分,从而使填料的熔点偏移,导致凝固和极高质量接合。
11这个过程的主要要求在于被接合的表面要厚而熔化的合金层极薄。当这个过程被应用于镀 薄膜(20微米厚)和厚膜(25微米厚)衬底时,发明人发现结果与许多未通过验收要求的很 大不一致性。发明人发现利用纯金的固态扩散过程对本应用而言是有用的。在这个过程中,没 有利用液态金属。作为代替,金的快速自扩散属性用于产生两个纯金表面之间的很高质量 接合。虽然可以不用填料材料来执行固态扩散,但是它通常要求很高压力以把面对表面压 缩在一起从而获得合适的接触面积。代替这种压力,发明人选择金填料材料来填充接合表 面之间的间隙。研究了金箔和粉末两者,其中粉末证明是更好的选项,原因在于其既填充间 隙又在加热时由于烧结而形成固体同质层的能力。烧结是一种利用扩散把两个小颗粒一起 联接为固体基质的过程。这一般是在升高温度下执行的以提高扩散速率。虽然可以用金粉 末来执行固态扩散过程,但是还发现金膏更容易用于本应用中。可以通过许多方法(包括滴 涂(dispensing)、冲压和丝网印刷)来涂敷膏。金膏和金粉末之间的主要差别在于膏具有 有机载体(诸如聚合物、萜品醇或乙二醇醚),其充当转移介质使得可以容易地涂敷粉末;以 及表面活性剂,其用来分离粉末直到期望接合为止。选择许多金厚膜膏进行使用。虽然膏具有将不提供与纯金层的粘接的其它添加剂 (基于氧化物的粘结剂和玻璃粉),但是它们与氧化铝衬底和厚膜金金属化部兼容。另外,这 些膏容易获得,包含小高纯金粉末,并且被设计用于容易的涂敷。虽然许多金膏已证明兼 容,但是表现最佳的选项发现是杜邦QG 150,其是具有可获得最高金成分的膏。这是用于金 属化衬底的相同膏,并因而与整个系统非常兼容。在这个过程中,用少量的QG 150金膏把 管芯和部件放置在金金属化的衬底上。然后把组件放置在400°C的烤箱中达12小时。在这 个时间期间,在邻近的金颗粒之间以及在颗粒和接合表面之间发生金-金扩散。所得到的 接合很强且能够承受远远超过500°C的温度。另外,该过程是简单的、快速的、可重复的,并 且可以对很小的部件执行。现在参考图5A,5B和5C,示出用于在电路板上对准和组装部件的转移板的透视 图。首先,衬底或PC板42放置在转移板60的空腔中。接着,对准板61、62放置在衬底上。 然后把部件附着金膏放置在对准板的开口中并且然后把部件放置在对准板61、62的开口 中进行组装操作。转移板60连同衬底、对准板、金膏和部件一起夹在加热的石墨板65之间, 如图5C所示。接着把组件放置在400°C的烤箱中达12小时。在这个时间期间,发生金-金 扩散,并且管芯和部件在大于500°C的温度下以高剪切强度保持附着。由正确地对准管芯和 部件的取放机器使得该过程可重复。导线接合
导线接合是在许多电子应用中使用的标准方法;然而,发明人不知道把它们用于使它 们经受这种高剪切力(即g负荷)同时处于高温的环境中。现在参考图6A和6B,示出通常 用于半导体领域中的导线接合技术。图6A示出接合导线的每端的脚部和跟部,而图6B示 出术语“环路高度(loop height)”和“接合长度”。图7是示出典型导线接合的g力分析的 透视图,其中从四个不同方向施加g力。首先,在标记为X和-χ方向的横跨导线接合的相 对方向上(即在平行于导线的方向上)存在两个可能力,然后在标记为Z和-Z方向的进入导 线接合的相对方向上(即在垂直于导线的方向上)存在两个可能力。图8示出导线接合的图 示,示出导线在这些各个方向上的模拟g力应力下的变形。用于连接集成电路与PC板的互连技术对任何电子系统而言是关键部件。在高g力下,正常预期导线接合将偏离其原始位置达一定程度。本发明人意外发 现可以在本发明的高温和高g环境中利用金线接合。发现,在χ方向上使导线接合负荷(图 8中的负荷集2)导致导线中最小的总应力。使用了 0.7和1.0 mil直径的金线接合。已 表明,这两个直径的导线接合将是结构稳定的,如果它们被定向为与离心负荷平行,最大环 路高度不大于17. 4 mil并且最大接合长度(从接合焊盘到接合焊盘)保持在35 mil之下 的话。这些结果对于大于1000 g’s的负荷而言是可接受的,并且事实上经测试对在10000 g’s之上的负荷而言是可接受的。导线属性、环路高度、接合长度和温度全都影响导线接合 的最大可承受G负荷。电子器件
现在参考图9A,示出示例性示意图,其示出对本文使用的放大器电路偏置的独特电路。 偏置电路的功能是把JFET放置到正确的操作区中。对于JFET,操作的位置可以是在其中 JFET相当于小电阻器的欧姆区域内或者在其中JFET相当于电压受控电流源的饱和区域内 的各点。不同偏置点导致不同的JFET行为;甚至相同区域内的不同点。当在25°C到500°C 的温度范围上操作JFET时,许多JFET特性发生变化。本文具体感兴趣的是设备将在高温 下比在低温下展现更小增益的事实。另一个重要变化是JFET性能随温度的特性,这是JFET 阈值电压随温度的提高而向下(更负)偏移,这在图9B的图示中被例证。结构上,图9A中示出的放大器电路包括分压器网络,包括串联耦合在正电压源V (+ )和负电压源V (_)之间的RB_1和RB_2。连接RB_1与RB_2的电路节点1000耦合到输 入电容器(_1的一侧并耦合到JFET Ql的栅极端子。C_1的另一侧耦合到输入端子V(in)。 JFET Ql的源极端子耦合到地电位,而其漏极端子耦合到负载电阻器RD的一侧。电阻器RD 的另一侧耦合到正电压源V ( + )。Ql的漏极端子也通过另一个电容器C_2耦合到输出端子 V (out)。图9B示出在变化的温度下图9A的放大器的AC输出电压相对于偏置电压的变化 电平。即,节点1000上的电压电平被绘制在图9B的水平轴上,而所得到的输出电压V(OUt) 被绘制在垂直轴上。曲线1001表示在25°C的温度下的输出电压;曲线1002表示在100°C 下的输出电压;曲线1003表示在200°C的温度下的输出电压;曲线1004表示在300°C的温 度下的输出电压;曲线1005表示在400°C的温度下的输出电压;而曲线1006表示在500°C 的温度下的输出电压。在JFET共源交流放大器(例如图9A)中,存在导致最高交流电压增益的窄偏置电 压范围。因而,如可以从该图中看到的,存在随温度而降低的增益,其导致较低的最大交流 输出电压。此外,表明其中发生最大峰峰值输出电压的偏置点向左偏移(随温度的提高,更 负的直流栅极偏置电压)。理想的偏置电路将跟踪该峰值从而提供最优的性能。因此,期望 的是随温度变化而适配偏置直流电压。电阻器RB_1和RB_2把栅极的直流操作点设置为共源放大器(图9A)的源电压 (Vgs),这是与图9B的水平轴上绘制的电压相同的电压。例如,在25°C下峰值交流电压输 出的偏置点是在Vgs = -1. 7v处。电阻器RD是JFET漏极电阻器,其帮助确定放大器的电 压增益。在(25°C到450°C的)温度漂移(temperature excursion)上偏置该电路时必须说 明的两个特性是由电阻器RB_1和RB_2设置的偏置点,这应当跟踪峰值输出电压的电压结果;以及电路的增益应当随着温度的提高而提高。如果采取上面两个措施,则设备的输出特 性将在感兴趣的温度范围内保持基本恒定。这可以通过把电阻器RB_1设计为具有正的电 阻温度系数(PTC)同时电阻器RB_2具有零电阻温度系数(ZTC)而实现。第二方法是也给电 阻器RD提供PTC以便随着温度提高而提高放大器增益(导致高温下的增益等于低温下的增
Irft- ) O电阻温度系数可以以若干方式来实施。它们可以潜在地使用表面贴装热敏电阻器来施加或者它们可以用固定到电路板 的不同材料来制作。存在许多可用的拥有各种电阻温度系数(TCR)的厚膜膏。依据一个实 施例,电阻器RB_1和RD由TaN厚膜形成,而电阻器RB_2由钼厚膜形成。现在参考图10,示出应变计电路的框图。指示置于所测量涡轮机部件上的应变量 的信号由应变计101产生。这个信号然后由差动放大器102感测并且耦合到AC放大器103 以用于进一步放大。放大的应变计信号然后施加到电压受控振荡器104的输入,所述电压 受控振荡器104产生其频率表示置于所测量涡轮机部件上的应变的振荡信号。这个振荡信 号然后由缓冲器105缓冲并且传递给天线沈以发送到调谐到载波频率的常规调谐器(未示 出)。现在参考图11,示出热电偶电路的框图。指示所测量涡轮机部件的温度的信号由 热电偶Iio检测,该信号传递到差动放大器111。差动放大器111的输出传递到DC放大器 112。DC放大器112的输出和方波振荡器113 (或方波发生器)的输出耦合到“斩波器” 114 的输入。斩波器114的输出耦合到电压受控振荡器115的输入,所述电压受控振荡器115产 生其频率和振幅表示在所测量涡轮机部件上感测的温度的振荡信号。这个振荡信号然后由 缓冲器116缓冲并且传递给天线沈以发送到调谐到载波频率的常规调谐器(未示出)。在 这两种类型的电路都用在相同的涡轮机上的情况下,载波频率将是不同的以便避免两个信 号之间的混淆。现在参考图12,示出用于放大应变计输出信号的电路101、102和103的示意图。要 求传统无线遥测电路设计的修改以便通过在超过450°C的温度下可使用的可用电气设备的 更有限选择来电气实现所需的任务。应变计信号调节(激发和放大)电路是仅使用一种类型 的晶体管(具有高温金属化部的JFET)设计的。不能使得金属接合焊盘(即金)直接连接到半 导体材料,而是必须利用粘接层,诸如钨,且也许还添加扩散阻挡层(diffusion barrier)。 这些金属包括管芯的“金属堆”,即高温金属化部。结构上,存在包括耦合在正电压源Vdc ( + )和地电位之间的应变计和电阻器R7的 分压器网络。电路节点1100是电阻器R7和应变计之间的连接点,并且也通过电容器C4耦 合到JFET晶体管Jl的栅极端子。晶体管Jl由一对电阻器RB_1和RB_2偏置,该对电阻器 RB_1和RB_2以与上面参考图9A描述的相同方式联接在这个晶体管的栅极端子。晶体管Jl 是包括晶体管J2的差动放大器的半部。晶体管Jl的漏极端子通过电阻器Rl耦合到正电 压Vdc ( + ),而晶体管J2的漏极端子通过电阻器R2耦合到相同的Vdc ( + )。晶体管Jl和 J2的源极端子被耦合在一起并且耦合到另一个晶体管J3的漏极端子,该晶体管J3包括耦 合到地电位的栅极端子和通过另一个电阻器R3也耦合到地电位的其源极端子。晶体管J2 的栅极端子也耦合到地电位。因此,晶体管Jl的栅极端子上的任何变化将在其漏极端子处 被放大并且通过电容器Cl耦合到又一个晶体管J4的栅极端子,该晶体管J4是包括晶体管J5和J6的又三个放大级(交流放大器103)的第一级,其中在端子Vout处提供放大器的输出。置于被测量的部件(该部件包括应变计)上的应变的变化改变应变计电阻器的电 阻,从而改变晶体管Jl的栅极端子处的电压。这改变横跨电阻器Rl的晶体管Jl的输出,其 由晶体管J4、J5和J6耦合到后继的放大级。图13中示出的所有电阻器,除了电阻器RB_2 (其具有ZTC)之外,具有很低(接近零,微正)的电阻温度系数。此外,所有JFET晶体管用高 温金属化部制成,如上文中所描述的。现在参考图13,示出用于放大热电偶输出和把热电偶电路的局部温度嵌入到放大 的输出信号中的电路110、111和112的示意图。以此方式,横跨热电偶的热梯度而不仅热 电偶输出可以被发送,因而给出准确的温度测量。图16示出耦合到图11的框图中示出的 电路(即热电偶电路201)的热电偶110。热电偶110输出被示为表示Δ T°C。如在下文中 将进一步示出和描述的,它是表示涡轮机的真实测量温度的热电偶电路201的局部温度与 Δ T°C之和。再次参考图13,热电偶的负腿(leg)接地,而正腿连接到晶体管J7的栅极端子,该 晶体管J7连同晶体管J8 —起形成差动放大器111。这个差动放大器由包括在晶体管J7的 栅极端子处耦合在一起的RB_1和RB_2的分压器加上用晶体管J9形成的电流源偏置。如 上文中所描述的,电阻器RB_1具有PTC而电阻器RB_2具有ZTC以便补偿高温环境(参见图 9A和伴随的描述)。由于热电偶信号是直流或者是很低频率的交流,所以连续的放大级不能被电容性 耦合。作为代替,晶体管Jio用于源极跟随器(follower)配置中以使差动放大器的输出向 下偏移至共源晶体管Jll必须被偏置的电平。晶体管Jll用来进一步放大该信号。晶体管 J12和J14形成另一个电平偏移和放大级(直流放大器112)。此时,热电偶的输出已被放大 到适当的电平。现在,热电偶电路的局部温度必须嵌入到放大的信号中。晶体管J14和J15形成由晶体管J16形成的电流源所偏置的差动对放大器。电容 器C6和C7连同电阻器R18、R19和R20 —起形成-90°到+90°相移网络。这个相移网络在 晶体管J15处连接在放大器输入的一端,而另一端耦合到放大器的输出(晶体管J14的漏极 端子),其包括RC反馈网络。这种配置形成松弛型RC振荡器(方波振荡器113)。电容器C6 和C7是NPO类型电容器,并且其电容在25°C到450°C的温度漂移上不会明显地改变。NPO 电容器电介质具有负一正一零电容温度系数,其中正和负温度系数彼此消除。电容器C8串 联耦合在RC反馈网络和在晶体管J14的漏极端子处的差动放大器的输出之间。这个电容 器用X7R电介质制成,因而其电容随温度变化而可预测地改变。X7R是具有比NPO电介质 更高的介电常数但具有与温度的大电容相关性(其是可预测的)的电容器电介质。这个振荡 器的输出是具有由温度相关电容器C8确定的频率的方波;因而,热电偶电路的局部温度可 以被编码成方波信号。(参见在室温下图17所示的振荡器113输出波形210 ;以及图18所 示的在升高温度下的相同振荡器输出波形212)。晶体管J27用作斩波器晶体管(即斩波器 114)。来自晶体管J13的放大热电偶输出(图19中的波形214)耦合到晶体管J27的漏极 端子,同时方波振荡器输出耦合到相同晶体管J27的栅极端子。晶体管J27的源极提供方 波输出,其振幅与热电偶110的温度成比例且其频率与热电偶电路的温度成比例(参见图 20所示的波形216)。因而,信号包含热电偶输出加上热电偶电路的温度,该信号施加到电压受控振荡器115。作为热电偶110及其电路113的操作示例,假设电路113的温度处于25°C并且振 荡器113的对应输出处于1.62 kHz的频率(波形210,图17)。此外,针对使用的特定热电 偶110假设12 mv输出电压(波形214,图19)对应于320°C的Δ Τ。现在,假设电路113的 温度处于325°C并且振荡器113的输出是5. 44 kHz (波形212,图18)。通过组合波形212 和214与晶体管J27,晶体管J27的所得到输出(即电路的输出)由波形216示出。因而,在 热电偶的热端处测量的所得到的温度是645°C。波形216的频率表示局部电路113的温度 并且振幅表示Δ T。因而,本领域的技术人员可以构造与FM接收机(未示出)关联的电路以 执行信号解码和附加操作。现在参考图14,示出功率调节电路的示意图。能够整流RF输入电压、过滤经整 流的电压且调整该电压的功率调节电路必须仅使用一种类型的晶体管和可用二极管来设 计。电路对由旋转涡轮机提供的RF感应功率进行整流并且传送正负调整的直流电压。RF 感应发电机的细节在上面引用的共同待决的题为INSTRUMENTED COMPONENT FOR WIRELESS TELEMETRY的专利申请中详述。结构上,二极管D5到D8以及二极管D9到Dll用作桥式整 流器。端子Vacl和Vac2或Vac3或Vac4上的交流(ac)电压被全波整流成具有大纹波的 直流电压。电容器C9到C12用作滤波电容器以便把纹波降低到足够低的水平。晶体管J17 和J21用作恒流源,分别传送恒定电流到电阻器似6和R30中。经过恒定电阻的这个恒定 电流产生恒定电压,其耦合到晶体管J19和J23。这个恒定电压偏置晶体管J19和J23使得 在R25/R26电阻器对或R29/R30电阻器对确定阈值之后,在晶体管的输入处的任何提高电 压不会对晶体管输出的提高电压有贡献。该提高电压输入被耗散为晶体管J19和J23中的 热。因而,晶体管J17和J19以及晶体管J21和J23构成低压差(LDO)电压调整器。这些 调整器用晶体管J18和J20以及晶体管J22和JM来重复以改善净电压调整。然后电压分 别被供应为正或负调整电压Vdc ( + )或Vdc (-)。依据一个实施例,电阻器似6、似8、1 30和R32具有PTC,而电阻器R25、R27、I^9和 R31具有ZTC。如上文中讨论的,这种电阻器布置补偿在升高温度下偏置电压的变化。以此 方式,电路自补偿温度变化并且使横跨晶体管J19、J20、J23和JM的电压降保持恒定。如 上文中描述的,PTC电阻器可以由钼制成而ZTC电阻器可以由氮化钽制成。要指出的是在 电阻器R26、R28、R30和R32用ZTC制成而电阻器R25、R27、R29和R31通过使用硅电阻器 (诸如碳化硅)而用负温度系数(NTC)制成的情况下,电路也将同样地运行。现在参考图15,示出FM发送机(S卩,VCO 104和缓冲器105)的示意图。为了产生 频率调制的(FM)信号,可变阻抗设备通常用于把信息编码(即调制)到RF载波上。在低温 电路中完成这项任务的常见方式是使用其电容具有与所施加电压的相关性的设备。几乎所 有pn结二极管在被反向偏置时展现这种特性;即,施加到反向偏置二极管的变化电压影响 横跨二极管的电容的变化。对于低温无线电应用而言,称作变容二极管的特殊二极管用于 此目的。变容二极管是具有“超突变(hyper-abrupt)”结(即被重度掺杂以提升大调谐角度 的结)的pn结二极管并且由硅或砷化镓制作。图15所示的电路包括Colplitts振荡器,其包括电感器Ll以及两者与电感器Ll 并联耦合的、串联耦合的电容器C13和C14。晶体管J25用作Colplitts振荡器中的有源设 备。振荡器的载波频率由电感器Ll和电容器C13与C14的值确定。与电容器C14并联耦合的二极管D13用作电压可变电容器也就是变容二极管,其把交流电压调制(即编码)到载 波上。该载波然后被电容性耦合到晶体管J26中,该晶体管E6用作缓冲晶体管以及功率 放大器。二极管D13的阴极耦合到电路节点1400并且其阳极耦合到地电位。电容器C13 和C14之间的电路接点耦合到节点1400,其也包括到电路的输入端子V (in)。电路的输出 然后被电容性耦合到发送天线(未示出)。在高温应用中,典型的变容二极管不能被使用并且不用于本文感兴趣的FM发送 机中,因为这个变容二极管的电容在升高温度下在施加的偏置电压范围内是非线性的。因 此,校正信息不能从发送的信号得以恢复(等同的频率偏差不会对应于不同的调谐电压)。 发现,该问题是SiC本身固有的并因而没有SiC设备将获得期望的结果。可以在高温下运 行(即,在相同的升高温度下在施加的偏置电压的相同范围内具有线性电容)的GaN设备被 探究用作变容二极管D13。氮化镓(即GaN)也是宽带隙半导体,其中宽带隙能量为3. 4 eV @ 300 K (而SiC是2. 86 eV),意味着其可以在高温(超过600°C)下运行。当前可用的唯一 市场上可买到的GaN 二极管是蓝色或紫外LED的形式,其在本文感兴趣的温度漂移上产生 令人满意的结果。虽然本文已示出和描述了本发明的各个实施例,但是将显然的是仅作为示例提供 此类实施例。可以在不偏离本文的发明的情况下做出众多变化、改变和替代。因而,本发明 旨在仅由所附权利要求的精神和范围限制。
权利要求
1.在用于内燃式发动机的遥测系统中,一种电路结构,固定到所述发动机的运动部件 且被设置用于处理关于所述运动部件的温度所感测的信息,所述电路结构适于所述发动机 的高温环境且包括热电偶,被设置在所述运动部件上用于感测其温度并且提供表示所感测的温度的信号;放大器,具有耦合到所述热电偶的输出的输入并且被设置用于对表示由所述热电偶感 测的温度的信号进行放大;方波振荡器,被设置用于生成方波信号,所述方波信号具有指示所述电路结构的局部 温度的频率;斩波器,被设置用于把所述放大器的输出信号转换成交流信号,所述斩波器具有耦合 到所述方波振荡器的输出的第一门控输入以及耦合到所述放大器的输出的第二输入,所述 斩波器具有提供信号的输出,所述信号具有表示所述电路的局部温度的频率以及表示由所 述热电偶感测的温度的振幅。
2.如权利要求1所述的系统,其中所述方波振荡器包括具有随温度可变的电容的反 馈耦合电容器,由此所述电路结构的局部温度的提高造成所述耦合电容器的电容的下降从 而造成所述方波振荡器的所述输出信号的频率的可预测提高。
3.如权利要求1所述的系统,其中所述方波振荡器包括差动放大器,所述差动放大器 具有耦合在所述放大器的输入和输出之间的RC反馈网络并且具有耦合在所述RC反馈网络 和所述放大器的所述输出之间的电容器,其中所述电容器具有温度敏感电介质使得其电容 响应于温度的改变而成比例地改变,从而响应于温度的改变而改变所述方波信号的频率。
4.如权利要求3所述的系统,其中所述电容器的电介质被分类为X7R。
5.如权利要求1所述的系统,进一步包括用于把所述感测的信息发送到在所述发动 机外部的接收机的、包括电压受控振荡器的结构,所述电压受控振荡器具有被设置用于从 所述斩波器接收所述交流信号的输入以及用于产生表示由所述热电偶感测的温度的无线 电频率信号,所述无线电频率信号耦合到天线以发送到远离所述发动机的接收机。
6.如权利要求5所述的系统,进一步包括用于缓冲所述无线电频率信号的耦合在所 述电压受控振荡器和所述天线之间的缓冲器。
7.如权利要求5所述的系统,其中所述电压受控振荡器包括用于设置参考载波频率 的Colpitts振荡器。
8.如权利要求7所述的系统,其中所述Colpitts振荡器包括与电路节点处的一对串 联耦合的电容器并联的电感线圈。
9.如权利要求8所述的系统,其中所述电感线圈包括在支承所述电路的印刷电路板 上直接形成的导线线圈。
10.如权利要求7所述的系统,其中所述Colpitts振荡器包括作为变容二极管以反向 偏置配置且与所述电路节点和地电位之间的所述电容器之一并联耦合的氮化镓(GaN) LED 二极管。
11.如权利要求10所述的系统,其中所述LED二极管包括铟镓氮(InGaN)。
12.如权利要求1所述的系统,进一步包括用于给电路结构提供直流功率的交流功率 调节电路,所述交流功率调节电路包括整流二极管阵列、滤波电容器和温度补偿电压调整器,每个温度补偿电压调整器包括第一晶体管,与所述滤波电容器并联耦合并且具有通过一对电阻器耦合到地电位的源 极端子且具有耦合到所述对电阻器之间的接点的栅极端子,所述对电阻器中的第一电阻器 具有零电阻系数、耦合在所述源极端子和所述接点之间而所述对电阻器中的第二电阻器具 有正电阻系数、耦合在所述接点和地电位之间,由此所述第一晶体管和所述对电阻器充当 恒流源;第二晶体管,与所述交流功率调节电路的正输出串联耦合并且具有耦合到所述对电阻 器之间的接点的栅极端子,由此所述第二晶体管的所述栅极端子上的偏置电压根据温度改 变而偏移,从而使所述第二晶体管两端的电压降在温度改变的范围内恒定。
13.如权利要求12所述的系统,其中在所述交流功率调节电路中所述对电阻器中的 所述第一电阻器包括氮化钽。
14.如权利要求12所述的系统,其中在所述交流功率调节电路中所述对电阻器中的 所述第二电阻器包括钼。
15.如权利要求12所述的系统,其中在所述交流功率调节电路中所述对电阻器中的 所述第一电阻器具有负电阻系数且包括碳化硅。
16.如权利要求12所述的系统,其中在所述交流功率调节电路中所述对电阻器中的 所述第二电阻器具有零电阻系数且包括氮化钽。
17.在用于内燃式发动机的遥测系统中,一种电路结构,固定到所述发动机的运动部 件且被设置用于处理关于所述运动部件的温度所感测的信息且用于把所述感测的信息发 送到在所述发动机外部的接收机,所述电路结构适于所述发动机的高温环境且包括热电偶,被设置在所述运动部件上用于感测其温度并且提供表示所感测的温度的信号;放大器,具有耦合到所述热电偶的输出的输入并且被设置用于对表示由所述热电偶感 测的温度的信号进行放大;方波振荡器,被设置用于生成方波信号且包括反馈耦合电容器,所述方波信号具有指 示所述电路结构的局部温度的频率,所述反馈耦合电容器具有随温度可变的电容,由此所 述电路结构的温度的提高造成所述耦合电容器的电容的下降从而造成所述方波信号的频 率的可预测提高;斩波器,被设置用于把所述放大器的输出信号转换成交流信号,所述斩波器具有耦合 到所述方波振荡器的输出的第一门控输入以及耦合到所述放大器的输出的第二输入,所述 斩波器具有提供信号的输出,所述信号具有表示所述电路结构的局部温度的频率以及表示 由所述热电偶感测的温度的振幅;以及电压受控振荡器,具有被设置用于从所述斩波器接收所述交流信号的输入以及用于产 生表示由所述热电偶感测的温度的无线电频率信号,所述无线电频率信号耦合到天线以发 送到远离所述发动机的接收机。
18.如权利要求17所述的系统,其中所述方波振荡器包括差动放大器,所述差动放大 器具有耦合在所述放大器的输入和输出之间的RC反馈网络并且具有耦合在所述RC反馈 网络和所述放大器的所述输出之间的电容器,其中所述电容器具有温度敏感电介质使得其 电容响应于温度的改变而成比例地改变,从而响应于温度的改变而改变所述方波信号的频率。
19.如权利要求18所述的系统,其中所述电容器的电介质被分类为X7R。
20.如权利要求17所述的系统,其中所述电压受控振荡器包括用于设置参考载波频 率的Colpitts振荡器,所述振荡器包括与电路节点处的一对串联耦合的电容器并联的且 包括在支承所述电路的印刷电路板上直接形成的导线线圈的电感线圈。
21.如权利要求20所述的系统,其中所述Colpitts振荡器包括作为变容二极管以反 向偏置配置且与所述电路节点和地电位之间的所述电容器之一并联耦合的氮化镓(GaN) LED 二极管。
全文摘要
一种电路,固定到发动机的运动部件以用于感测和处理部件的温度。所述电路生成表示由热电偶(110)感测的温度、且由放大器(112)放大的信号。具有温度敏感电容器(C8)的方波振荡器(113)响应于电路的局部温度的变化而改变其频率。斩波器(114,J27)把所述放大器的输出转换成交流信号。斩波器由方波振荡器门控并且第二输入耦合到放大器的输出。因而,斩波器具有输出信号,所述输出信号具有表示局部温度的频率以及表示热电偶温度的振幅,由此组合的信号表示部件的真实温度。
文档编号G01K7/13GK102124419SQ200980131595
公开日2011年7月13日 申请日期2009年6月29日 优先权日2008年8月15日
发明者A. 库尔卡尼 A., B. 罗斯特特 A., 维斯特恩 B., 麦菲尔森 B., J. 米切尔 D., R. 勒施 E., R. 弗拉利 J., 维茨 R., 舒普巴赫 R., 苏布拉马尼安 R. 申请人:西门子能源公司, 阿肯色州电力电子国际有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1