半导体用接合线的制作方法

文档序号:5939247阅读:258来源:国知局
专利名称:半导体用接合线的制作方法
技术领域
本发明涉及为了接合半导体元件上的电极与外部连接端子而使用的半导体用接合线。
背景技术
现在,作为将半导体元件上的电极与外部端子之间连接的半导体用接合线(以下称为接合线),主要使用线径为20 50 μ m左右、材质为高纯度4M4-Nine,纯度为99. 99 质量%以上)的金(Au)的接合线(金接合线)。为了使金接合线接合在作为半导体元件的硅芯片上的电极上,一般地进行超声波并用热压接方式的球接合。即为下述的方法使用通用接合装置,将上述金接合线通到称作毛细管的夹具的内部,通过电弧热输入将线尖端加热熔融,通过表面张力形成球部后,使加热熔融形成的球部压接接合于在150°C 300°C的范围内加热了的上述电极上。另一方面,在将金接合线与引线和焊盘等的外部连接端子接合的情况下,一般地不形成如上述那样的球部而进行金接合线与电极直接接合的所谓的楔接合。近年,半导体安装的结构、材料、接合技术等在急速地多样化,例如,在安装结构中,除了现行的使用引线框的QFP(Quad Flat Packaging)以外,使用基板或聚酰亚胺带等的BGA(Ball Grid Array)、CSP(Chip Scale Packaging)等的新的安装方式得到实用化,外部接合端子也在多样化。因此,楔接合特性比过去更加受到重视。另外,半导体元件小型化的需求在增高,为了进行薄型安装,降低接合线连接的环路的高度这种低环路接合技术、从基板侧向多片层叠的芯片翘起环路的逆打线接合技术等在不断推广。然而,随着最近的资源价格的高涨,作为金接合线的原料的价格也在急速增长,研究了铜(Cu)作为代替金的低成本的线坯料。然而,与金相比铜容易被氧化,因此单纯的铜接合线难以长期保管,楔接合特性也不好。另外,在这样的单纯的铜接合线的尖端形成球部时,必须处在还原气氛中以不使球部氧化。具体地,一般地使用在氮(N2)中混合了 4体积% 左右氢(H2)的气体,使球部周边成为还原气氛,但尽管如此,也难以进行象使用金接合线那样的良好的球接合。由于这些原因,铜接合线的利用还没有扩大到一般的LSI领域。于是,为了解决铜接合线氧化的问题,曾提出了在铜线表面被覆了银(Ag)的铜接合线。例如,专利文献1,虽然没有示出在铜线上被覆了银的具体例,但作为接合线的内部金属,列举了铝(Al)、铜、铁(狗)、铁与镍的合金(FeNi)等的非纯贵金属,作为上述接合线的表面被覆金属,公开了对水分、盐分、碱等具有耐腐蚀性的金属,例如金和银。另外,专利文献2,虽然没有示出在铜线上被覆了银的具体例,但例举了在铜系线上被覆了包含金、银的贵金属的铜系接合线,记载了如果对该铜系线实施被覆则耐腐蚀性进一步提高的内容。专利文献3,公开了对铝(Al)或铜线镀了金和银等的贵金属的接合线,在铜接合线的场合,通过上述镀敷消除了耐腐性和热氧化的问题,与引线框的接合性也得到了与金接合线同样的可靠性。专利文献4公开了在高纯度铜极细线的表面上被覆了贵金属或耐腐蚀性金属的铜接合线,作为上述被覆的贵金属之一使用银。通过这样地构成,能够抑制铜接合线的表面氧化(具体地,有无在大气中放置10天后的表面氧化)。另外,作为上述铜极细线的直径为15 80 μ m,上述被覆的被膜为IOnm Iym的平均层厚(实施例中,25 μ m直径的线, 0. Iym的平均层厚的被膜)。专利文献5公开了在铜细线的表面上以线径的0. 001 0. 01 倍的厚度被覆了银的铜接合线,即,在直径25 μ m的铜细线上被覆0. 02 0. 3 μ m厚度的银的铜接合线。通过被覆银可抑制铜的氧化,并且球形成能力提高。另外,为了解决铜接合线氧化的问题,提出了在铜线的表面上被覆贵金属,具体地被覆金(Au)的铜接合线。例如,专利文献1虽然没有示出在铜线上被覆金的具体例,但作为接合线的内部金属列举出铝(Al)、铜、铁(狗)、铁与镍的合金(FeNi)等的非纯贵金属,作为上述接合线的表面被覆金属公开了对水分、盐分、碱等具有耐腐蚀性的金属,例如,金和银。 专利文献7公开了以含有铜或锡的铜合金为芯线,在芯线上镀金的接合线。记载了断裂强度提高。另外,虽然专利文献2没有示出在铜线上被覆金的具体例,但例举了在铜系线上被覆包含金、银的贵金属的铜接合线,记载了如果对铜系线实施被覆则耐腐蚀性进一步提高。 专利文献3公开了在铝(Al)或铜线上镀有金和银等的贵金属的接合线,在铜接合线的场合,通过上述镀敷消除了耐腐蚀性和热氧化的问题,与引线框的接合性也得到了与金接合线同样的可靠性,专利文献4公开了在高纯度铜极细线的表面上被覆贵金属或耐腐蚀性金属的铜接合线,作为上述被覆的贵金属之一使用金。通过这样地构成,能够抑制铜接合线的表面氧化(具体地,有无在大气中放置10天后的表面氧化)。另外,作为上述铜极细线的直径为15 80 μ m,上述被覆的被膜是IOnm 1 μ m的平均层厚(实施例中,25 μ m直径的线,0.1 μπι的平均层厚的被膜。)。专利文献8公开了使用金被覆铜芯线的外周,记载了对由铝构成的电极的接合性提高。专利文献9公开了由未塑性变形的芯材与比芯材柔软且塑性变形的外周材料构成的复合导体,作为一例,示出金作为芯材、铜合金作为外周材料,具有提高导线与电路之间的接合强度的效果。专利文献10公开了使用金或金合金被覆铜合金的外侧,显示出防止在树脂封装半导体元件时接合线彼此接触的不良事故。专利文献11 公开了在由无氧铜线构成的线材的表面上镀纯金,示出了高频传送优异的信号导通率高的接合线。专利文献12公开了在以铜为主成分的芯材的上面隔着由铜以外的金属构成的异种金属层具有由熔点比铜高的熔点的耐氧化性金属构成的被覆层的接合线,示出了能够稳定地形成圆球的球部,而且被覆层与芯材之间的粘附性优异的特性。然而,如上所述在线表面上被覆银或金的铜接合线,虽然能够抑制铜的表面氧化 (尤其是保管中的氧化的进行),但在接合时形成在线尖端的球部往往不成为圆球而成为椭圆形,妨碍该铜接合线的实用化。在被覆银的场合,认为是以下情况所致在通过电弧热输入加热熔融线尖端时,熔点低的银(熔点961°C )优先地熔融,而熔点高的铜(熔点 1083°C )只有一部分熔融。另外,在被覆金的场合,认为是以下情况所致在想要线尖端加热熔融通过电弧给予热输入时,由于铜比热大(380J/kg*K)因此难以使其熔融,而金比热小(U8J/kg · K),因此即使一点点的热输入也能够熔融,其结果,在铜与金的多层结构体中,金优先地熔融。另外,如在专利文献5中那样在还原气氛(10% - )中进行接合的话, 则即使是银被覆,球部形成变得良好的情况也较多,但在不含有氢的气氛中不能够抑制熔融时的氧化,因此难以进行接合,不能够实现良好的球部形成。另一方面,也可以考虑在铜线的表面上被覆钯(Pd)来代替被覆银或金。实际上,在专利文献2 4中,关于被覆层,作为银和金以外的贵金属也例举了钯。上述文献虽然没有示出钯的优势性,但由于钯的熔点比银高(熔点)、钯的比热比金高Q44J/ kg · K),因此认为若被覆钯则可以解决下述问题如上述的银和金那样地在铜线熔融形成球部之前被覆层熔融,不能够形成圆球状的球部。即,认为通过在铜线的表面被覆钯,能够同时地解决防止铜的氧化和确保球部的圆球性这两个课题。专利文献6公开了在芯线与被覆层(外周部)的双层接合线中,在芯线与被覆层之间设置扩散层来改善被覆层的粘附性等,例举了芯线使用铜、被覆层使用钯。在这样的被覆了钯的铜接合线中,铜的氧化被抑制, 因此不仅铜接合线的长期保管和楔接合特性优异,而且在线尖端形成球部时能够大幅度地改善球部氧化的可能性。因此,即使不使用作为危险的气体的氢,而使用纯氮气体只使球部周边成为氮气氛也能够形成圆球的球部。现有技术文献专利文献1 日本特开昭57-12543号公报专利文献2 日本特开昭59-181040号公报专利文献3 日本特开昭6H85743号公报专利文献4 日本特开昭62-97360号公报专利文献5 日本特开昭62-120057号公报专利文献6 日本再公表W02002-23618专利文献7 日本特开昭59-155161号公报专利文献8 日本特开昭63-46738号公报专利文献9 日本特开平3-32033号公报专利文献10 日本特开平4-206646号公报专利文献11 日本特开2003-59963号公报专利文献12 日本特开2004-6740号公报

发明内容
如上所述,铜接合线通过在铜线的表面上被覆钯,与金接合线相比能够作为廉价的接合线实用,但不一定能够应对最近的半导体安装中的结构·材料·接合技术等的急速的变化和多样化的问题已显著化。例如,目前的引线框表面一般地镀银,而最近在发展使用镀钯的引线框。这是因为在过去的镀银的引线框(以下,称为「镀银引线框」中,在母板等的基板上软钎焊引线框前, 出于提高哪怕是一点点的与焊料的润湿性的目的,具有在引线的尖端预先薄地镀焊料的工序(镀焊料工序),成为高成本,因此通过在引线框上镀敷相比于银能够确保对焊料高的润湿性的钯来代替银,来省略该镀焊料工序,成为低成本。本发明者们发现了下述问题在铜线的表面被覆了钯的铜接合线的场合,虽然在以往的镀银引线框中未显著化,但对于镀钯的引线框的楔接合性不充分的情况增多。而且, 本发明者们对上述问题详细地进行研究的结果,由于该铜接合线的最表面是钯,因此在对镀钯的引线框的楔接合中,钯彼此接触。于是发现,由于钯的硬度(钯的莫氏硬度4. 75、铜的莫氏硬度3. 0)高,钯难以变形,因此钯表面的氧化皮膜层的破坏不充分是上述问题的原因。进而还发现,由于在线最表面的钯与引线框上的钯之间产生的扩散慢,因此在两钯层之间未形成充分的扩散层也是上述问题的原因。为了防止铜接合线的氧化,可以考虑在铜线的表面被覆比铜难以氧化的贵金属。 作为比铜贵的金属,一般已知银、钼、金,但其中的银和金如上所述在球部的形成性上有困难。另一方面,由于钼是极高价格的材料,因此认为在铜线的表面被覆钼的铜接合线难以在工业上利用。这样,即使在铜的表面单纯地被覆贵金属(金、钯、银、钼),也难以同时地满足镀钯的引线框上的良好的楔接合性、耐氧化性和耐硫化性。另外,用于电动机等流过大电流的功率装置的接合线,芯线的线径需要是200 μ m 左右,该场合由于线径大,因此楔接合和球接合时不产生特别的不良情况。与此相对,芯线的线径为15 50 μ m左右的LSI用接合线的场合,由于线径小,因此存在线表面的污物、损伤或者球形状等对接合性给予不良影响的问题。所以,芯线的线径为15 50μπι左右的 LSI用的接合线,楔接合与球部的圆球性特别重要。本发明是鉴于上述问题完成的,其目的在于提供一种以铜或铜合金为芯线的半导体用接合线,其中,即使是镀钯的引线框也能够确保良好的楔接合性,耐氧化性优异。为了达到上述目的,本发明的要旨如下。权利要求1涉及的半导体用接合线,其特征在于,具有由铜或铜合金构成的芯线、 形成于该芯线的表面的具有10 200nm的厚度的含有钯的被覆层、和形成于该被覆层的表面的具有1 80nm的厚度的包含贵金属和钯的合金层,上述贵金属是金或银,上述合金层中的上述贵金属的浓度为10体积%以上、75体积%以下。权利要求2涉及的半导体用接合线,其特征在于,上述贵金属是金,上述合金层中的金的浓度为15体积%以上、75体积%以下。权利要求3涉及的半导体用接合线,其特征在于,上述合金层的表面晶粒之中, <111>结晶取向相对于拉丝方向的倾斜为15度以下的晶粒的面积为40%以上、100%以下。权利要求4涉及的半导体用接合线,其特征在于,上述合金层中的金的浓度为40 体积%以上、75体积%以下。权利要求5涉及的半导体用接合线,其特征在于,上述贵金属是银,以1 30nm的厚度形成上述合金层,上述合金层中的银的浓度为10体积%以上、70体积%以下。权利要求6涉及的半导体用接合线,其特征在于,上述合金层中的银的浓度为20 体积%以上、70体积%以下。权利要求7涉及的半导体用接合线,其特征在于,上述合金层的表面晶粒之中, <100>结晶取向相对于拉丝方向的倾斜为15度以下的晶粒的面积为50%以上、100%以下。权利要求8涉及的半导体用接合线,其特征在于,上述合金层的表面晶粒之中, <111>结晶取向相对于拉丝方向的倾斜为15度以下的晶粒的面积为60%以上、100%以下。权利要求9涉及的半导体用接合线,其特征在于,上述接合线表面的梅耶硬度为 0. 2 2. OGPa的范围。权利要求10涉及的半导体用接合线,其特征在于,上述芯线含有总计为5 300 质量ppm的B、PJe中的至少一种。根据本发明,能够提供即使是镀钯的引线框也可确保良好的楔接合性,耐氧化性优异的以铜或铜合金为芯线的廉价的半导体用接合线。
具体实施例方式以下,对本发明的半导体用接合线的构成进一步进行说明。再者,在以下的说明中,只要没有特别的说明,「%」意指「体积%」。另外,组成是分析多个部位时得到的只金属的数值的平均值,碳作为自然混入物(不可避免杂质)存在,但不包含于以下所述的组成中。为了提供确保镀钯的引线框(以下,称为「镀钯引线框」)上的良好的楔接合性和耐氧化性两者、并且以铜或铜合金为芯线的廉价的接合线,本发明者们发现在由铜或铜合金构成的芯线的表面形成特定厚度的含有钯的被覆层,再在该被覆层的表面以特定的厚度形成特定组成的贵金属与钯的合金层的接合线是有效的。本发明中涉及的贵金属是银或
^^ ο首先,对在由铜或铜合金构成的芯线的表面上,形成适当的厚度的含有钯的被覆层的构成进行说明。如上所述铜或铜合金容易被氧化,因此由铜或铜合金构成的接合线,长期保管和楔接合性差。另一方面,通过在由铜或铜合金构成的芯线的表面上形成含有钯的被覆层,可抑制铜的氧化,因此不仅上述的长期保管性和楔接合特性优异,而且在接合线的尖端形成球部时能够大幅度地改善球部氧化的担心。通过使上述被覆层含有比铜难以氧化 (即,氧化物生成热八^大)的钯能够得到上述效果。由此,不使用作为危险的气体的氢与氮的混合气体,而使用纯氮气使球部周边成为氮气氛,也能够形成圆球的球部。这样的效果在该被覆层的厚度为10 200nm时可得到。另一方面,上述被覆层的厚度小于IOnm时,抑制氧化效果不充分。该被覆层的厚度超过200nm时,在球部的表面产生直径为数μ m大小的气泡的情况较多从而不优选。在此,含有钯的被覆层中的除钯以外所含有的元素,是钯的不可避免杂质和构成芯线和接合线最表面的元素。另外,该被覆层的钯的含有量只要是50% 以上则能够得到充分的抑制氧化效果。但是,优选作为该被覆层中含有的钯以外的元素, 不包含后述的构成最表面的银,或者在含有银的场合银的浓度低于10%。若该被覆层的银的浓度变成10%以上,则会出现如上述那样的银被覆线的问题(球形成时的氧化等)。优选作为该被覆层中含有的钯以外的元素,不包含后述的构成最表面层的金,或者在含有金的场合金的浓度低于15%。该被覆层的金的浓度变成15%以上时,出现如上述那样的金被覆线的问题(球部不成为圆球而变得走形的不良)的缘故。当只是在由铜或铜合金构成的芯线的表面形成含有钯的被覆层的上述的构成时, 不能够确保镀钯引线框上良好的楔接合性。为了解决该课题,本发明者们进而发现在该被覆层的表面上再形成银或金、与钯的合金层为好。该合金层是在上述被覆层上进而以1 SOnm的厚度形成的层。这起因于楔接合性受从接合线的最表面起3nm左右的区域的物性值控制。即,从接合线的最表面起至少Inm的区域,优选从接合线的最表面起3nm的区域, 若是银或金、与钯的合金,则在镀钯引线框上进行楔接合时,构成接合线最表面的合金层中的银或金优先地向镀钯引线框上的钯扩散,在接合线与镀钯引线框两者之间容易形成新的合金层。由此,本发明涉及的接合线,与镀钯引线框的楔接合性提高,例如,2nd剥离强度良好。这起因于银或金、与钯之间的相互扩散比钯的自扩散快。但是,该合金层的厚度低于 Inm时,作为接合线的基底的被覆层对上述楔接合性产生影响,因此不能够确保与镀钯引线框的楔接合性。另外,该合金层的厚度低于3nm时,作为接合线的基底的被覆层对上述楔接合性给予不良影响的危险性不是零,发生上述效果不稳定的危险,因此更优选使上述厚度为3nm以上。为了得到上述效果,上述银或金、与钯的合金层的厚度的上限没有特别的限制。上述合金层的厚度超过80nm时,必须在后述的电镀时在大电流下,在无电解镀(化学镀)时长时间,在蒸镀法时长时间地分别进行镀银、镀金或者蒸镀银、蒸镀金之后,再使后述的炉内温度达到超过740°C的高温,难以确保稳定的品质,因此使该合金的厚度的上限为 SOnm以下。再者,合金层的厚度更优选使上限为50nm以下。原因是当使上限为50nm以下时,能够使该加热温度为600 650°C。另外,为了得到由上述银或金与钯的合金层产生的上述效果,该合金层中的银或金的组成(银或金浓度)必须是特定的范围。具体地,如果上述银或金与钯的合金层中的银或金浓度为10%以上、75%以下,则能够提高与上述的镀钯引线框的楔接合性。上述银或金浓度低于10%时不能够得到上述的效果。相反,上述银或金浓度超过75%时,在线尖端形成球部时由于由银或金与钯构成的上述合金层中只银或金优先地熔融,形成走形的球部的危险性增大而不优选。相反,若该合金层中的银或金浓度为75%以下,则在接合线的合金层中银或金与钯均质地混合存在,因此,在线的尖端形成球部时没有只银或金优先地熔融从而形成走形的球部的危险性,不会损害球部的圆球性和尺寸精度的问题。接着,对在上述被覆层的表面具有包含银和钯的合金层的构成的接合线更详细地进行说明。该合金层是在上述被覆层的上面进而以1 30nm的厚度形成的层。这起因于楔接合性受从接合线的最表面起3nm左右区域的物性值控制。即,从接合线的最表面起至少Inm 的区域,优选从接合线的最表面起3nm的区域,若是银与钯的合金,则在镀钯引线框上进行楔接合时,构成线最表面的合金层中的银优先地向镀钯引线框上的钯扩散,在接合线与镀钯引线框两者之间容易形成新的合金层。由此,本发明涉及的接合线与镀钯引线框的楔接合性提高,例如2nd剥离强度良好。这起因于银与钯之间的相互扩散比钯的自扩散快。但是当该合金层的厚度小于Inm时,作为接合线的基底的被覆层对上述楔接合性产生影响, 因此不能够确保与镀钯引线框的楔接合性。另外,该合金层的厚度低于3nm时,作为接合线的基底的被覆层对上述楔接合性给予不良影响的危险性不是零,发生上述效果不稳定的危险,因此更优选使上述厚度为3nm以上。为了得到上述效果,上述银与钯的合金层的厚度的上限没有特别的限制。使上述合金层的厚度超过30nm时,必须使后述的炉内温度达到超过 720°C的高温,难以确保稳定的品质,因此使该合金层的厚度的上限为30nm以下。另外,为了由得到上述银与钯的合金层产生的上述效果,该合金层中的银的组成 (银浓度)必须是特定的范围。具体地,若上述银与钯的合金层中的银浓度为10%以上、 70%以下,更优选为20%以下、70%以下,则能够进一步提高与上述的镀钯引线框的楔接合性。上述银浓度低于10%时不能够得到上述的效果。相反,上述银浓度超过70%时,在线尖端形成球时由于由银与钯构成的上述合金层中只银优先地熔融,形成走形的球部的危险性增大因而不好。相反,若该合金层中的银浓度为70%以下,则在接合线的合金层中钯均质地混合存在,在线尖端形成球部时没有只银优先地熔融从而形成走形的球部的危险性,不会损害球部的圆球性和尺寸精度。另外,上述银浓度若为10%以上、40%以下则球部的圆球性和尺寸精度更好而优选。因此,本发明涉及的接合线,通过在由铜或铜合金构成的芯线的表面形成适当的厚度的含有钯的被覆层,在该被覆层的表面施加适宜的厚度和组成的银与钯的合金层,能够提供确保镀钯引线框上的良好的楔接合性与耐氧性两者、并且以铜或铜合金为芯线的廉价的接合线。另外判明,进而使上述银与钯的合金层中的银浓度为20%以上、70%以下时,能够同时地得到如下的效果。一般地,在毛细管的内壁上毛细管与接合线接触的区域,接合的工序中毛细管与接合线经常摩擦。此时,为了避免毛细管对接合线给予擦伤,毛细管的内壁被加工使得在上述区域没有凹凸。以往的场合,在由铜或铜合金构成的芯线的表面只具有含有钯的被覆层的接合线中,例如多次重复如超过5mm那样的长跨距接合时,上述毛细管与接合线接触的毛细管的区域磨损。于是,该区域产生锐利的凹凸,其结果在线表面因毛细管形成的擦伤变得明显。 这起因于钯是硬的金属因此含有钯的被覆层也硬。与此相反,在本发明中,设置在上述被覆层的表面上的上述银与钯的合金层,由于提高了该合金层中的银的浓度,因此能够抑制如上述那样的锐利的凹凸的发生。在上述银与钯的合金层中,银与钯以称作全率固溶的方式均质地混合存在,银的浓度高的场合,在毛细管与接合线接触的区域银优先地有助于变形,因此能够抑制如上述的锐利的凹凸的发生。能够得到这样的效果的是银浓度为20%以上、更优选为30%以上的情况。另外,银浓度为70%以上时,由于上述的理由不能够充分地得到球部的圆球性和尺寸精度。另外,上述银与钯的合金层中,该合金层中的银浓度为20%以上时,判明不能够同时地得到如下的效果。以往的场合,在由铜或铜合金构成的芯线表面只具有包含钯的被覆层的接合线中,在该接合线的尖端形成30 μ m强的直径的球部时,有时在球部的表面较多发生数μ m直径的气泡。这关系到最近的电子设备的小型化、高功能化。即,为了支持电子设备的小型化、 高功能化,半导体元件也在小型化、高功能化,在接合线中,为了缩小接合部的面积,缩小形成于线尖端的球部的倾向的增强,以往使用即使小也为50 μ m弱的直径的球部,而最近正在大量生产使用30 μ m强的直径的球部。在以往的50 μ m以上的直径的球部也形成如上述那样的数μ m的微小的气泡,但由于球径大,因此接合面积也必然地变大,这样微小的气泡目前没有特别视为问题。然而,由于最近的30 μ m强的直径的小的球部,接合面积也变小, 因此即使是目前不成为问题的程度的上述气泡,也对接合部的接合强度和长期可靠性造成影响,变得视为问题。本发明者们发现这样的气泡的存在部位总是钯。即,该气泡的原因在于,在形成球部时存在于线表面上的钯向球中偏析,形成钯单层的浓化区域,有机物起因的气体封入到该区域中。与此相反,在本发明中,通过使含有钯的被覆层的表面含有特定的浓度以上的银, 在形成球部时不形成钯的浓化区域,代之以形成银-钯合金或铜-钯-银三元合金的浓化区域。因此本发明的接合线中,若是该浓化区域则封入有机物起因的气体的危险性小,因此即使是形成30 μ m强的这种小的直径的球部的场合,也能够抑制气泡的发生。即,本发明涉及的银与钯的合金中的银的浓度为20%以上时,能够得到上述效果,若更优选为30%以上则该效果更高因而优选。被覆层以及合金层的厚度与组成的测定方法,一边由溅射法从接合线的表面向深度方向挖下一边进行分析的方法、和在接合线的断面上的线分析或点分析是有效的。前者的一边挖下一边测定的方法,测定深度增大时过于花费测定时间。后者的线分析或点分析,优点是确认断面全体的浓度分布和在多个部位的再现性等比较容易。接合线的断面,线分析比较简便,但在希望使分析精度提高的场合,在缩小线分析的分析间隔、或者放大希望特别详细地分析的区域后进行点分析也有效。在此,合金层的厚度是从表面起沿深度方向进行组成分析、银的浓度为10%以上的部分的距离(深度)。另外,被覆层的厚度是从成为上述合金层的厚度的界面起沿深度方向进行组成分析、钯的浓度为50%以上的部分的距离(深度)。作为用于这些分析的分析装置,可以利用EPMA(电子探针显微分析;Electron Probe Micro Analysis)、EDX (能量分散型 X 身寸线分析;Energy Dispersive X-Ray Analysis, )、AES(俄歇电子能谱法;Auger Electron Spectroscopy)、TEM(透射型电子显微镜Jransmiss Electron Microscope)等。采用上述任何一种的方法得到的厚度和组成只要是在本发明的范围内则能够得到本发明的作用效果。为了确保如上述那样的镀钯引线框上的良好的楔接合性和耐氧化性两者,进而为了也满足后述的环路特性,本发明者们发现使线表面的结晶取向、线表面的硬度或芯线中的添加元素的种类和组成为特定的范围的接合线是有效的。关于线表面的结晶取向,更优选在上述合金层的表面晶粒之中,<100>结晶取向相对于拉丝方向的倾斜没有或小。具体地,若使上述倾斜为15度以下的晶粒的面积为50% 以上、100%以下,则即使是进行逆打接合时,也难以在环路的表面发生皱纹因而优选,若更优选为70%以上、100%以下的话,则其效果提高因而更优选。再者,所谓在此的皱纹是在形成环路时产生的表面的微小的伤痕和凹凸的总称。其结果,例如通过在最近正在增加的 2nd接合用电极上进行球接合,在1st接合用电极上进行楔接合来抑制环路高度,使芯片的薄型化容易。因此,在如上述那样的逆打接合中,首先,在1st接合用电极上进行环路接合,切断接合了的球正上方的接合线,然后,在2nd接合用的电极上进行球接合,最后对刚制作的 1st接合用电极上的球部进行楔接合。在该1st接合用电极上进行球接合后切断球正上方的接合线时,如果对接合线施加大的冲击,则在接合线的表面产生皱纹。此外,器件使用所导致的加热与随着器件的停止向室温冷却的这种热疲劳长期地施加给器件时,则有时该皱纹加速龟裂的发生。本发明者们潜心研究的结果判明,该皱纹不良与线表面(合金层)的结晶取向相关,在该取向如<111>结晶取向所代表的那样为强度高但缺乏延展性的取向的场合,显著地发生皱纹。本发明者们又反复研究的结果判明,为了抑制该皱纹,在线表面缩小<100> 结晶取向相对于拉丝方向的倾斜,使该倾斜为15度以下的晶粒的面积为50%以上时,能够确保足以抑制皱纹的延展性。然而,该倾斜为15度以下的晶粒的面积小于50%时,不能够得到这样的效果。在此,在上述合金层的表面观察到的晶粒的<100>结晶取向相对于拉丝方向的倾斜,是能够采用设置在TEM观察装置中的微小区域X射线法或电子背散射衍射 (EBSD, Electron Backscattered Diffraction)法等测定的。其中,EBSD 法具有观察个别的晶粒的取向,能够图示出在相邻的测定点间的结晶取向的角度差的特征,即使是如接合线那样的细线,也能够比较简便地、高精度地观察晶粒的倾斜因而更优选。另外,该倾斜为 15度以下的晶粒的面积,可以采用微小区域X射线法,以各个的晶粒的结晶取向的X射线强度为基础作为结晶取向的体积比率求出,另外还可以由采用EBSD法上述观察到的个别的晶粒的取向直接算出。为算出上述面积的比率,观察线表面的任意的面,即与接合线的拉丝方向垂直的方向的长度为接合线的直径的至少1/4的长度,接合线的拉丝方向的长度至少为100 μ m的面,将其观察面积设为100,算出该倾斜为15度以下的晶粒占有的面积的百分率。由上述任何一种方法得到的厚度、组成只要是在本发明的范围内,则能够得到本发明的作用效果。关于线表面的结晶取向,更优选上述合金层的表面晶粒之中,<111>结晶取向相对于拉丝方向的倾斜没有或者小。具体地,若使上述倾斜为15度以下的晶粒的面积为60% 以上、100%以下,则即使是进行300 μ m以上的高环路高度的特殊的接合时,也难以在与接合方向垂直的方向发生称作倾斜不良的环路倒塌的不良现象,因而优选,若更优选为70% 以上、100%以下,则其效果更提高因而更优选。这是因为该取向是<111>结晶取向或其附近时,材料的强度和/或弹性模量变高的缘故。本发明者们又反复研究的结果判明,为了抑制倾斜不良的发生率,减小线表面上的<111>结晶取向相对于拉丝方向的倾斜,使该倾斜为15度以下的晶粒的面积为40%以上时,能够确保足以抑制倾斜不良发生率的强度和弹性模量。然而,该倾斜为15度以下的晶粒的面积小于50%时,抑制倾斜不良发生率的效果不充分。在此,在上述合金层的表面观察到的晶粒的<111>结晶取向相对于拉丝方向的倾斜,是能够采用设置在TEM观察装置中的微小区域X射线法或电子背散射衍射(EBSD, Electron Backscattered Diffraction)法等测定的值,其中,EBSD法具有观察个别的晶粒的取向,能够图示相邻的测定点间的结晶取向的角度差的特征,即使是如接合线那样的细线,也能够比较简便且高精度地观察晶粒的倾斜因而更优选。另外,该倾斜为15度以下的晶粒的面积,可以采用微小区域X射线法,以各个的晶粒中的结晶取向的X射线强度为基础作为结晶取向的体积比率求出,另外采用EBSD法时,能够由上述观察到的个别的晶粒的取向直接算出。为算出上述面积的比率,观察线表面的任意的面,即观察在与接合线的拉丝方向垂直的方向接合线的直径的至少1/4的宽度、接合线的拉丝方向至少100 μ m长度的面, 将其观察面积设为100,算出该倾斜为15度以下的晶粒占有的面积的百分率,由上述任何一种方法得到的厚度、组成只要是在本发明的范围内,则能够得到本发明的作用效果。关于线表面的硬度,使上述线的表面的梅耶硬度为0. 2 2. OG Pa的范围时,即使是80 μ m级的环路高度这种低环路接合时,也能够抑制称作颈损伤的不良的发生因而更优选。该颈损伤是指球部与母线部的边界区域(颈部)的损伤,是在以极低的环路高度形成环路时,由于对颈部施加过度的负担而产生的不良。最近的闪存等的薄型电子设备,即使稍微但为了使存储器的容量大容量化,使用搭载了多枚薄的硅芯片的薄型器件。这样的薄型器件必然地不得不降低环路高度,因此,过去容易发生上述颈损伤。本发明者们知道上述颈损伤的发生密切地相关于线表面的硬度,发现通过降低该硬度,即使在低环路接合时对颈给予过度的负荷,表面也能够塑性变形,能够抑制颈损伤。 具体地,通过使上述接合线的表面的梅耶硬度为2. OGPa以下,能够得到上述效果。但是,上述接合线的表面的梅耶硬度超过2. OGPa的场合,成为通常的银合金般的硬度,在低环路接合时若对颈给予过度的负荷,则表面层不能够充分地塑性变形,不能够得到上述效果。另一方面,上述接合线的表面的梅耶硬度小于2. OGPa的场合,由于硬度过小因此有时在接合线的操作过程中线表面容易划伤,根据操作方法有时产生很多的表面伤。在此,所谓梅耶硬度,是使用钢球或超硬合金球的压头测量的硬度,是指使用压头在试验面上压出凹痕时的载荷除以永久凹痕的直径的投影面积所得的值,其值具有应力的次元。使用称作纳米压痕法的物质表面的解析方法时,也能够测定Inm左右深度的梅耶硬度,因此为确认本发明的梅耶硬度值优选采用纳米压痕法。另外,接合线的表面的梅耶硬度,是采用纳米压痕法测定具有合金层和被覆层的接合线的最表面得到的。再者,0. 2 2. OGPa的梅耶硬度大致相当于50 570Hv的维氏硬度。关于芯线中添加元素的种类和组成,本发明中涉及的芯线是由铜或铜合金构成的芯线,但在上述芯线中,在不损害本发明的作用效果的范围也可以添加种种的添加元素。作为能够添加到该芯线中的元素的例子,可举出Ca、B、P、Al、Ag、Se等。这些添加元素中,更优选含有B、P、Se之中的至少一种。该添加元素总计含有5 300质量ppm时,接合线的强度进一步提高。其结果,例如即使进行环路长度超过5mm的这种长环路的接合时也能够确保环路的直进性。这可以认为该添加元素有助于芯线中铜晶粒内的固溶强化或晶界的强化的缘故。但是,上述添加元素的浓度小于5质量ppm的场合,不能够得到上述强度进一步提高的效果。另一方面,上述添加元素的浓度超过300质量ppm的场合,会使球部过量地硬化,因此有时在球接合时损伤芯片的危险性提高而不好。关于分析芯线中的成分含有量的方法,切断接合线,一边采用溅射等从其断面部沿深度方向挖下一边进行分析的方法、该断面的线分析或点分析是有效的。前者的一边挖下一边测定的方法,测定深度增大时过于花费测定时间。后者的线分析或点分析,优点是确认断面全体的浓度分布和多个部位的再现性比较容易。在接合线的断面中,线分析比较简便,但希望使分析精度提高的场合,缩小射线分析的分析间隔,或者放大希望特别详细地分析的区域后进行点分析也有效。作为用于这些分析的分析装置,可以利用ΕΡΜΑ、EDX、AES、TEM等。另外,为调查平均的组成,可以采用下述方法使用酸等的药液从表面部阶段性地溶解接合线,由其溶液中含有的浓度求出溶解了的部位的组成。采用上述任何一种方法得到的厚度、组成只要是在本发明的范围内, 则能够得到本发明的作用效果。以上,描述了本发明的优选例,但本发明也可以适当变形。例如,也可以在上述芯线与上述被覆层之间形成扩散层。例如,含有钯的区域是与上述被覆层连续,上述钯和/或构成芯线的铜扩散,含有小于50%钯的扩散层。通过存在这样的扩散层,接合线能够提高被覆层与芯线的粘附性。接着,对上述被覆层的表面具有包含金和钯的合金层的构成的接合线进行说明。 该合金层是在上述被覆层的上面进而具有1 80nm厚度的层。这起因于楔接合性受从接合线的最表面起3nm左右的区域的物性值控制。即,从线的最表面起至少Inm的区域,优选从接合线的最表面起3nm的区域,如果是金与钯的合金则在镀钯引线框上进行楔接合时,构成线的最表面的合金层中的金优先地向镀钯引线框上的钯扩散,在接合线与镀钯引线框两者之间容易形成新的合金层。由此,本发明涉及的接合线,与镀钯引线框的楔接合性提高, 例如2nd剥离强度良好。这起因于金与钯之间的相互扩散比钯自扩散快。但是,该合金层的厚度低于Inm时,作为接合线的基底的被覆层对上述楔接合性产生影响,因此不能够确保与镀钯引线框的楔接合性。另外,该合金层的厚度低于3nm时,作为接合线的基底的被覆层对上述楔接合性给予不良影响的危险性不是零,产生上述效果不稳定的危险性,因此更优选上述厚度为3nm以上。为了得到上述效果,上述包含金和钯的合金层的厚度的上限没有特别的限制。为了使上述合金层的厚度超过80nm,必须在后述的电镀时在大电流下,在无电解镀时长时间、在蒸镀时长时间地分别进行镀金或蒸镀金之后,再使后述的加热工序中的加热温度为超过700°C的高温,但由于难以确保稳定的品质,因此使该合金的厚度的上限为SOnm以下。再者,合金的厚度更优选使上限为50nm以下。原因是当使上限为50nm以下时,能够使该加热温度为600°C 650°C的缘故。另外,为了得到由上述含有金和钯的合金层产生的上述效果,该合金层中的金的组成(金浓度)必须是特定的范围。具体地,上述含有金和钯的合金层中的金浓度为15% 以上、75%以下,更优选为40%以上、75%以下时,能够进一步提高与上述的镀钯引线框的楔接合性。上述金浓度低于15%时不能够得到上述的效果。相反,上述金浓度超过75% 时,在线尖端形成球部时,由于含有金和钯的上述合金层中的金优先地熔融,形成走形的球部的危险性增大因而不好。如已述,这可以认为,利用电弧热输入加热熔融线尖端时,热导率低的金(317W/m· K),容易封住热,金优先地熔融,而热导率高的铜G01W/m· ,容易散出热,因此铜只一部分熔融。与此相对,若该合金层中的金浓度为75%以下,则由于接合线的合金层中金与钯均质地混合存在,因此在线尖端形成球部时,只金优先地熔融,没有形成走形的球部的危险性,不会损害球部的圆球性和尺寸精度。另外,上述金浓度为15%以上且小于40%时,球部的圆球性和尺寸精度更良好因而优选。因此,本发明涉及的接合线中,通过在由铜或铜合金构成的芯线的表面具有特定的厚度的含有钯的被覆层,在该被覆层的表面具有特定的厚度和特定的组成的含有金和钯的合金层,能够提供确保镀钯引线框上的良好的楔接合性、耐氧化性和耐硫化性,并且,以铜或铜合金为芯线的廉价的接合线。被覆层和合金层的厚度与组成的测定,采用一边由溅射法从接合线的表面向深度方向挖下一边进行分析的方法、在接合线的断面上的线分析或点分析的方法。在此,合金层的厚度是从表面沿深度方向进行组成分析、金的浓度为15%以上的部分的距离(深度)。另外,被覆层的厚度,是从成为上述合金层的厚度的界面沿深度方向进行组成分析、钯的浓度为50%以上的部分的距离(深度)。作为用于这些分析的装置,可以利用EPMA(电子探针显微分析;Electron Probe Micro Analysis)、EDX(能量分散型X射线分析;Energy Dispersive X-Ray Analysis)、AES (俄歇电子能谱法;Auger Electron Spectroscopy) > TEM(透射型电子显微镜;Transmiss Electron Microscope)等。采用上述任何一种的方法得到的厚度、组成只要是在本发明的范围内则能够得到本发明的作用效果。为了确保如上述的镀钯引线框上的良好的楔接合性和耐氧化性两者,并且也满足后述的环路特性,本发明者们发现使线表面的结晶取向、线表面的硬度或芯线中的添加元素的种类和组成为特定的范围的接合线是有效的。关于线表面的结晶取向,更优选上述合金层的表面晶粒之中,<111>结晶取向相对于拉丝方向的倾斜没有或者小。具体地,若使上述倾斜为15度以下的晶粒的面积为60% 以上、100%以下,则即使是进行300 μ m以上的高环路高度的特殊的接合时,在与接合方向垂直的方向也难以发生称作倾斜不良的环路倒塌的不良,更优选为70%以上、100%以下,这样的话能够进一步提高其效果。这是因为该取向是<111>结晶取向或其附近时,材料的强度和/或弹性模量变高的缘故。本发明者们又反复研究的结果判明,为了抑制倾斜不良的发生率,缩小线表面上的<111>结晶取向相对于拉丝方向的倾斜,使该倾斜为15度以下的晶粒的面积为60%以上时,能够确保足以抑制倾斜不良发生率的强度和弹性模量。 然而,该倾斜为15度以下的晶粒的面积小于60%时,抑制倾斜不良发生率的效果不充分。 在此,在上述合金层的表面观察到的晶粒的<111>结晶取向相对于拉丝方向的倾斜,是能够采用设置在TEM观察装置中的微小区域X射线法或电子背散射衍射(E BSD, Electron Backscattered Diffraction)法等测定的值。其中,EBSD法具有观察个别的晶粒的取向, 能够图示相邻的测定点间的结晶取向的角度差的特征,即使是如接合线那样的细线,也能够比较简便地高精度地观察晶粒的倾斜因而更优选。另外,该倾斜为15度以下的晶粒的面积,可以采用微小区域X射线法,以各个的晶粒中的结晶取向的X射线强度为基础作为结晶取向的体积比率求出,另外,可以由采用EBSD法上述观察到的个别的晶粒的取向直接算出。为算出上述面积的比率,观察线表面的任意的面,即观察与接合线的拉丝方向垂直的方向的长度为接合线的直径的至少1/4的长度、接合线的拉丝方向的长度至少为IOOym的面,将其观察面积设为100,算出该倾斜为15度以下的晶粒占有的面积的百分率。由上述任何一种方法得到的厚度、组成只要是在本发明的范围内,则能够得到本发明的作用效果。关于线表面的硬度,使上述线表面的梅耶硬度为0. 2 2. OGPa的范围时,即使是 80 μ m级的环路高度这种低环路接合时,也能够抑制被称作颈损伤的不良的发生因而更优选。该颈损伤是指球部与母线部的边界区域(颈部)的损伤,是在以极低的环路高度形成环路时,由于对颈部施加过度的负担而产生的不良。最近的闪存等的薄型电子设备,为了即使稍微也使存储器的容量大容量化,使用了搭载了多枚薄的硅芯片的薄型器件。这样的薄型器件必然地不得不降低环路高度,因此,过去容易发生上述颈损伤。本发明者们查明上述颈损伤的发生与线表面的硬度密切地相关,发现通过降低该硬度,即使在低环路接合时对颈给予过度的负荷,表面也能够塑性变形,能够抑制颈损伤。 具体地,通过使上述接合线的表面的梅耶硬度为2. OGPa以下,能够充分得到上述效果。但是,上述接合线的表面的梅耶硬度超过2. OGPa的场合,成为通常的银合金般的硬度,在低环路接合时若对颈给予过度的负荷,则表面层不能够充分地塑性变形,不能够充分得到上述效果。另一方面,上述接合线的表面的梅耶硬度小于2. OGPa的场合,硬度过小,因此有时在接合线的操作过程中线表面容易划伤,根据操作方法有时产生很多的表面伤。在此,所谓梅耶硬度,是使用钢球或超硬合金球的压头测量的硬度,是指使用压头在试验面上压出凹痕时的载荷除以永久凹痕的直径的投影面积所得的值,其值具有应力的次元。使用称作纳米压痕法的物质表面的解析方法时,也能够测定Inm左右深度的梅耶硬度,因此确认本发明的梅耶硬度值优选采用纳米压痕法。另外,接合线的表面的梅耶硬度,是采用纳米压痕法测定具有合金层和被覆层的接合线的最表面得到的硬度。再者,0. 2 2. OGPa的梅耶硬度大致相当于50 570Hv的维氏硬度。关于芯线中的添加元素的种类和组成,本发明中涉及的芯线是由铜或铜合金构成的芯线,但在上述芯线中,在不损害本发明的作用效果的范围也可以添加种种的添加元素。 作为能够添加到该芯线中的元素的例,可举出Ca、B、P、Al、Ag、k等。在这些添加元素中, 更优选含有B、P、k之中的至少一种。该添加元素总计含有5 300质量ppm时,接合线的强度进一步提高。其结果,例如即使进行环路长度超过5mm的长环路的接合时也能够确保环路的直进性。这可以认为该添加元素有助于芯线中的铜晶粒内的固溶强化或晶界的强化的缘故。但是,上述添加元素的浓度小于5质量ppm的场合,不能够充分得到上述强度更加提高的效果。另一方面,上述添加元素的浓度超过300质量ppm的场合,会使球部更硬化, 因此有时球接合时损伤芯片的危险性提高从而不优选。为了分析芯线中的成分含有量,采用切断接合线,一边采用溅射等从其剖面部沿深度方向挖下一边进行分析的方法,或者在该断面的线分析或点分析的方法。作为用于这些分析的分析装置,可以利用EPMA、EDX、AES、 TEM等。另外,平均的组成的分析,可以采用使用酸等的药液从表面部阶段性地溶解接合线, 由其溶液中含有的浓度求出溶解了的部位的组成的方法。采用上述任何一种方法得到的厚度、组成只要是在本发明的范围内,则能够得到本发明的作用效果。以上描述了本发明的优选例,但本发明也可以适当变形。例如,也可以在以上述芯线与上述被覆层之间形成扩散层。例如,含有钯的区域,是与上述被覆层连续,上述钯和/ 或构成芯线的铜扩散、含有小于50%的钯的扩散层。通过存在这样的扩散层,接合线能够提高被覆层与芯线的粘附性。以下,对于本发明的接合线的制造方法说明一例。首先,对于在上述被覆层的表面具有含有银和钯的合金层的构成的接合线的制造方法进行说明。为了制造上述组成的接合线,秤量高纯度的铜(纯度99. 99%以上)或这些高纯度的铜和添加元素原料作为起始原料后,通过在高真空下或者氮和Ar等的惰性气氛下将其加热、熔化,得到铜或铜合金的锭。使用金属制的模将该锭进行拉丝直到最终所需要的芯线的直径。本发明中涉及的含有钯的被覆层,在拉丝到最终的芯线的直径后施加。作为形成含钯的被覆层的方法,可以利用电镀、无电解镀、蒸镀法等。其中,工业上最优选利用能够稳定地控制膜厚的电镀。然后,在上述被覆层的表面形成含有银和钯的合金。其方法可以是任何的方法。例如,形成上述被覆层后,进而在其表面形成作为表皮层的银膜,通过在一定的炉内温度下在电炉中在一定的速度下连续地牵引线来促进合金化的方法,能够切实地控制该合金的组成和厚度因而优选。具体地,为了防止氧化和硫化并且切实地进行上述合金化,优选在180°C 210°C进行15 M小时的加热。作为在上述被覆层的表面上进而形成银膜的方法,可以利用电镀、无电解镀、蒸镀法等。该场合也由于上述的理由,在工业上最优选利用电镀。用于上述合金化的加热时,考虑到银容易被硫化,使炉内的气氛为氮、Ar等的惰性气氛,而且,与以往的接合线的加热法不同,使该气氛中含有的硫浓度为900ppm以下。 更优选使惰性气体中混入至少IOOppm的氢等的还原性气体,这样的话,防止线硫化的效果更加提高因此优选。为了尽量避免从装置外部带入硫等的杂质气体,最优选在气氛炉(第一气氛炉)的外侧再设置1层的第二气氛炉,这样的话,例如即使从外部向第二气氛炉中混入微量的杂质气体,这些杂质气体也不容易到达第一氛围炉中,因此优选。另外,炉内的适宜的温度也根据线的组成、牵引线的速度而不同,但大致为230°C 720°C的范围时,能够得到稳定的品质的接合线因而优选。另外,在拉丝工序中牵引线的速度,例如为40 80m/ 分左右时能够进行稳定的操作因而优选。在本申请发明的接合线的制造方法中,<100>结晶取向相对于拉丝方向的倾斜为 15度以下的晶粒的面积为50%以上、100%以下的制造方法,难以采用通常的制造方法进行制造,而采用特殊的方法进行制造。
具体地,按上述的要领得到锭后,与上述同样地在上述锭上形成含钯的被覆层。再与上述同样地在被覆层的上面形成银膜。使用金属制的模对形成了上述被覆层和银膜的锭进行拉丝直到最终的芯线的直径时,当线径为80 μ m以上的粗细时,使上述模的减面率为11 19%左右地进行拉丝,当线径小于80 μ m的粗细的拉丝时,以使上述减面率为7 17%左右的比通常大的减面率进行拉丝。由此,能够使银膜上的具有方向性的织构(沿拉丝方向结晶取向一致的织构)发达。但是,由于当以大的减面率进行拉丝时产生断线的危险性提高,因此为了防止接合线的断线,更优选拉丝速度为与例如4 Sm/分那样的比通常低的速度。本接合线在拉丝后也与上述同样地进行促进合金化的热处理。拉丝后促进合金化的热处理工序中的温度,若为低温,则<100>结晶取向相对于拉丝方向的倾斜为15度以下的晶粒的面积的比例提高,若为高温,则该面积的比例降低。该面积的降低起因于在该工序中进行加热促进再结晶化的话,则上述的织构的方向性容易丧失。具体地,上述炉内温度为230°C 280 V时,上述面积的比例变为100 %,上述炉内温度为680°C 720°C的范围时, 上述面积的比例变为50%左右,上述面积的比例可以利用热处理的温度控制。在本申请发明的接合线的制造方法中,<111>结晶取向相对于拉丝方向的倾斜为 15度以下的晶粒的面积为50%以上、100%以下的制造方法,难以采用通常的制造方法进行制造,而采用特殊的方法进行制造。具体地,按上述的要领得到锭后,与上述同样地在上述锭上形成含钯的被覆层,再与上述同样地在被覆层上形成银膜。使用金属制的模对形成了上述被覆层和银膜的锭进行拉丝直到最终的芯线的直径时,当线径为150 μ m以上的粗细时,使上述模的减面率为20 22%左右地进行拉丝,当线径为80 μ m以上且不到150 μ m的粗细时,使上述模的减面率稍大为18 19%左右地进行拉丝,当为线径小于80 μ m的粗细的拉丝时,作为上述减面率再次使用20 22%的高的值。由此,能够使银膜上的具有方向性的织构(沿拉丝方向结晶取向一致的织构)发达。但是,由于以大的减面率进行拉丝时产生断线的危险性提高,因此, 为了防止接合线的断线,更优选拉丝速度为例如1 3m/分的比通常低的速度。本接合线在拉丝后也与上述同样地进行促进合金化的热处理。拉丝后促进合金化的热处理工序中的温度,若为低温则<100>结晶取向相对于拉丝方向的倾斜为15度以下的晶粒的面积的比例提高,若为高温则该面积的比例降低。该面积的降低起因于若在该工序中进行加热促进再结晶化的话,则上述的织构的方向性容易丧失。具体地,上述炉内温度为680°C 720°C时, 上述面积的比例变为50%,上述炉内温度为720°C 740°C的范围时,上述面积的比例变为大于50%且小于70%,上述炉内温度为740°C 750°C的范围时,上述面积的比例变为70% 以上,上述面积的比例可以利用热处理的温度控制。在本申请发明的接合线的制造方法中,被覆层的表面的梅耶硬度为0. 2 2. OGPa 的范围的接合线的制造方法,难以采用通常的制造方法进行制造,而采用特殊的方法,使线表面的银与钯的合金格外地柔软地进行制造。具体地,可以采用上述的任一种方法进行拉丝直到目的的线径,完成用于上述的合金化的热处理后,再将该接合线连同绕线架设置在被控制成氩气氛的电炉中,在150 200°C进行20 M小时的加热来制造,当为低于150°C 的温度或低于20小时的时间的加热时,不能够使银与钯的合金如上述硬度那样格外地柔软。当为大于200°C的温度或大于M小时的时间的加热时,可促进相邻的线间的扩散,有时线彼此粘住。
接着,对于在上述被覆层的表面具有含有金和钯的合金层的构成的接合线的制造方法进行说明。为了制造上述组成的接合线,秤量高纯度的铜(纯度99.99%以上)或这些高纯度铜和添加元素原料作为起始原料后,通过在高真空下或者氮、Ar等的惰性气氛下将其加热、熔化,得到铜或铜合金的锭。使用金属制的模将该锭进行拉丝直到最终所需要的芯线的直径。本发明中涉及的含钯的被覆层,在拉丝到最终的芯线的直径后施加。作为形成含钯的被覆层的方法,可以利用电镀、无电解镀、蒸镀法等。其中,在工业上最优选利用能够稳定地控制膜厚的电镀。然后,在上述被覆层的表面形成含有银和钯的合金层。其方法可以是任何的方法。例如,形成上述被覆层后,再在其表面上形成作为表皮层的金膜,在一定的炉内温度下在电炉中,在一定的速度下连续地牵引线来促进合金化的方法,能够切实地控制该合金的组成和厚度因而优选。具体地,为了防止氧化并且切实地进行上述合金化,优选在 160°C 190°C进行16 25小时的加热。作为在上述被覆层的表面上进而形成金膜的方法,可以利用电镀、无电解镀、蒸镀法等。该场合由于上述的理由在工业上也最优选利用电镀。用于上述合金化的加热时,考虑到原料的污染,使炉内的气氛为氮、Ar等的惰性气氛, 而且,与以往的接合线的加热法不同,使该气氛中含有的氧浓度为5000ppm以下。更优选使惰性气体中混入至少500ppm的氢等的还原性气体,这样的话防止线的原料的污染的效果更加提高因而优选。另外,炉内的适宜的温度也根据线的组成、牵引线的速度而不同,但大致为210°C 700°C的范围时,能够得到稳定的品质的接合线因而优选。另外,在拉丝工序中牵引线的速度,例如为20 40m/分时能够进行稳定的操作因而优选。在本申请发明的接合线的制造方法中,<111>结晶取向相对于拉丝方向的倾斜为 15度以下的晶粒的面积为50%以上、100%以下的制造方法,难以采用通常的制造方法进行制造,而采用特殊的方法进行制造。具体地,按上述的要领得到锭后,与上述同样地在上述锭上形成含钯的被覆层,再与上述同样地在被覆层的上面形成金膜。在使用金属制的模对形成了上述被覆层和金膜的锭进行拉丝直到最终的芯线的直径时,线径150 μ m以上的粗细时,使上述模的减面率为 14 21%左右地进行拉丝,线径小于150 μ m的粗细时以使上述减面率为15 19%左右的比通常大的减面率进行拉丝。由此,能够使金膜上的具有方向性的织构(沿拉丝方向结晶取向一致的织构)发达。但是,由于以大的减面率进行拉丝时,产生断线的危险性提高, 因此,为了防止接合线的断线,更优选拉丝速度为例如2 4m/分的比通常低的速度。本接合线在拉丝后也与上述同样地进行促进合金化的热处理。拉丝后促进合金化的热处理工序中的温度,若为低温则<111>结晶取向相对于拉丝方向的倾斜为15度以下的晶粒的面积比例提高,若为高温则该面积的比例降低。该面积的降低起因于若在该工序中进行加热促进再结晶化的话,则上述的织构的方向性容易丧失。具体地,上述炉内温度为210°C 260°C 时,上述面积的比例变为100%,上述炉内温度为600°C 700°C的范围时,上述面积的比例变为50%左右,上述面积的比例可以利用热处理的温度控制。在本申请发明的接合线的制造方法中,被覆层的表面的梅耶硬度为0. 2 2. OGPa 的范围的接合线的制造方法,难以采用通常的制造方法进行制造,而采用特殊的方法使线表面的含有金和钯的合金格外地柔软地进行制造。具体地,可通过采用上述的任一种方法进行拉丝直到目的的线径,完成用于上述的合金化的热处理后,再将该接合线连同绕线架设置在被控制成在氮中混入了 4%氢的气氛的电炉中,在130 180°C进行M 观小时的加热来制造。当为低于130°C的温度或低于M小时的时间的加热时,不能够使含有金和钯的合金如上述硬度那样格外地柔软。当为大于180°C的温度或大于观小时的时间的加热时,会促进相邻的线间的扩散,有时线彼此粘住,因此需要注意。实施例以下,对实施例进行说明。首先,对于关于在上述被覆层的表面具有含有银和钯的合金层的构成的接合线的制造例及其评价进行说明。作为接合线的原材料,用于芯线的铜、作为芯线中的添加元素的B、P、Se、Ca、Al、 用于被覆层的钯、作为用于表皮层的银,分别准备纯度99. 99质量%以上的坯料。秤量上述的铜、或铜和添加元素原料作为起始原料后,通过在高真空下将其加热熔融得到铜或铜合金的直径为IOmm左右的锭。然后,进行锻造、轧制、拉丝,制作了规定的直径的线。然后,在各线的表面电镀形成含钯的被覆层。在此,上述被覆层的厚度由电镀的时间控制。然后再在上述被覆层的表面电镀形成银膜,通过在保持在300 800°C的炉内以60m/分的速度连续地牵弓I该线,在上述被覆层的表面形成了银与钯的合金层。在此,合金层的厚度由上述银膜的单位面积重量,即电镀时间来控制。这样地得到直径20 μ m的接合线。再者,一部分的试样,为了控制<100>结晶取向相对于拉丝方向的倾斜为15度以下的晶粒的面积,在线径 80 μ m以上的粗细时使上述模的减面率为13 18%左右地进行拉丝,线径小于80 μ m的粗细的拉丝时,以使上述减面率为8 12%左右的比通常大的减面率进行拉丝。另外,一部分的试样,为了控制被覆层的表面的梅耶硬度,将该接合线连同绕线架设置在被控制成氩气氛的电炉中,在150 200°C实施20 M小时的加热。制造好的该接合线中的芯线的直径、被覆层和合金层的厚度,对接合线的表面一边溅射一边由AES进行分析,另外,对该接合线进行断面研磨,一边由EDX分析组成一边进行测定。以钯的浓度为50%以上,并且,银的浓度低于10%的区域作为被覆层,位于被覆层的表面的含有银和钯的合金层中银浓度为10 70%的范围的区域作为合金层。将被覆层与合金层的厚度和组成分别记载于表1 5。为了评价由被覆层带来的防止接合线氧化的效果,将接合线连同绕线架在湿度为 85%、温度为85°C的高温高湿炉中放置72小时,进行不断促进线表面氧化的加速试验。加热后,从高温高湿炉中取出接合线,使用光学显微镜观察表面氧化的程度。此时,线表面的全面氧化时用X表示,线表面的一部分氧化时用Δ表示,线表面没有被氧化时用〇表示, 示于表1、5中的「长期保管(氧化)」的栏中。为了评价由被覆层带来的防止接合线硫化的效果,将接合线连同绕线架在大气气氛下在温度保持在195°C的高温炉中放置155小时,进行不断促进线表面硫化的加速试验。 如上述地在大气气氛中高温下放置时,即使是大气中含有的极微量的硫也能够加速硫化反应。加热后从高温炉中取出接合线,使用市售的色彩计(S 7 >々CR-3000)观察表面硫化的程度,明度(L*)为30以下时视为硫化,超过30且为40以下时为实用上没有障碍的水平,超过40为优选的水平。此时线表面观察到硫化部时用X表示,实用上没有障碍的水平时用Δ表示,线表面没有硫化时用〇表示,示于表1、5中的「长期保管(硫化)」的栏中。接合线的连接,使用市售的自动焊线机。在即将接合前通过电弧放电在接合线的尖端制作球部,其直径为34 μ m使得为接合线的直径的1.7倍。制作球部时的气氛为氮。球部的实际的直径,各球部都使用SEM测定各20个,其最大值与最小值的差超过球径的平均值的10%时偏差剧烈、为不良,记为X,超过5%且为10%以下时为中间程度记为Δ,超过3%且为5%以下时没有实用上的不良视为良好记为〇,为3%以下时为极好记为◎,示于表1、5中的「氮中FAB圆球性」的栏中。另外,使用SEM观察球部,在其外观看到气泡时,则将其情况示于表1、5中的「氮中FAB气泡抑制」的栏中。另外,对各球部进行剖面研磨各10个,并使用光学显微镜观察, 剖面部没有观察到气泡时为极良好用◎◎表示,10个中只1 2个的球部观察到气泡时为良好用◎表示,10个中只3 4个球部观察到气泡时为实用上没有问题的水平用〇表示,10 个中只5个的球部观察到气泡时为实用上能够容许的水平用Δ表示,10个中6个以上的球部观察到气泡时为低劣用X表示,示于表1、5中的「氮中FAB气泡抑制」的栏中。作为接合线的接合的对方,分别使用形成在Si芯片上的厚度1 μ m的Al电极和表面镀银或钯的引线框的引线。将制作的球部与加热到^KTC的上述电极进行球接合后,将接合线的母线部与加热到^KTC的上述引线进行楔接合,通过再制作球部而连续地反复接合。 使环路长为4. 9mm。再者,一部分的试样进行环路长约Imm的上述逆打接合,另外的一部分的试样进行环路高约304. 8 μ m(12mil)、环路长约2mm的上述高环路接合,另外的一部分的试样进行环路长约3mm、环路高度76. 2ym(3mil)的低环路接合,又一部分的试样进行环路长5. 3mnK210mil)的长尺接合。关于接合线的楔接合性,采用在楔接合部正上方捏住楔接合了的状态的接合线向正上方举起直到切断,读取其切断时得到的断裂载荷的所谓的剥离强度测定法,测定40根的断裂载荷(剥离强度)。剥离强度的标准偏差超过6mN时,偏差大而需要改善,因此记为X,超过5mN且为6mN以下时为实用上能够容许的水平记为Δ,为5mN以下时实用上没有大问题,因此记为〇,示于表1、5的「Ag-L/F 2nd接合」(镀银引线框的引线的场合)和 「Pd-L/F 2nd接合」(镀钯引线框的引线的场合)的栏中。在此,使用光学显微镜观察是否由于毛细管使环路产生损伤。观察的环路的根数为20根,1根也没有伤时为极好用◎◎表示,只1 2根的环路观察到伤的场合为良好用◎ 表示,只3 4根环路观察到伤的场合为实用上没有问题的水平用〇表示,只5根的环路观察到伤的场合为实用上能够容许的水平用Δ表示,6根以上的环路观察到伤的场合为低劣用X表示,示于表1、5中的「伤抑制」的栏中。在上述被覆层的表面观察到的晶粒的<100>结晶取向相对于拉丝方向的倾斜,在采用EBSD法观察个别的晶粒的取向后算出。该算出时,各试样都各观察3个视场的、在与接合线的拉丝方向垂直的方向具有8 μ m的宽度、在接合线的拉丝方向具有150 μ m的长度的面。将其值记载于表2 4的「<100>结晶取向相对于拉丝方向的倾角为15度以下的晶粒的面积」的栏中。在上述被覆层的表面观察到的晶粒的<111>结晶取向相对于拉丝方向倾斜,在采用EBSD法观察个别的晶粒的取向后算出。该算出时,各试样都各观察3个视场的、在与接合线的拉丝方向垂直的方向具有8μπι的宽度、在接合线的拉丝方向具有150 μ m的长度的面。将其值记载于表2 4的「<111>结晶取向相对于拉丝方向的倾角为15度以下的晶粒的面积」的栏中。
进行上述的逆打接合后的接合线表面上的皱纹,各试样都使用光学显微镜各观察 20根的环路,1根也没有皱纹时为极好用◎◎表示,只1 2根的环路观察到皱纹的场合为良好用◎表示,只3 4根环路观察到皱纹的场合为实用上没有问题的水平用〇表示,5根以上的环路观察到皱纹的场合为低劣用X表示,记载于表2 4的「逆打皱纹抑制」的栏中。进行上述的高环路接合后的接合线表面上的倾斜不良,各试样都使用光学显微镜各观察20根的环路,1根也没有观察到倾斜不良时为极好用◎◎表示,只1 2根的环路观察到倾斜不良的场合为良好用◎表示,只3 4根环路观察到倾斜不良的场合为实用上没有问题的水平用〇表示,5根以上的环路观察到倾斜不良的场合为低劣用X表示,示于表 2 4的「高环路倾斜抑制」的栏中。线表面的梅耶硬度采用纳米压痕法按Inm左右的深度精度测定,将其值记载于表 3 4的「线表面的梅耶硬度」的栏中。进行上述的低环路接合后的有无颈部的损伤,各试样都使用光学显微镜各观察20 根的环路,1根也没有损伤时为良好用◎表示,20根中1 2根观察到损伤的场合为实用上没有问题的水平用〇表示,20根中3根以上的环路观察到损伤的场合为低劣用X表示,记载于表3 4的「76.2ym(3mil)级低环路颈损伤」的栏中。关于进行上述的长尺接合后的环路的折曲,使用投影机测定各试样的20根环路。 在此将其平均值除以环路长度所得的值作为线折曲率,小于4%时为极好用◎表示,4 5%时为实用上没有问题的水平用〇表示,超过5%时判断为不良用X表示。示于表4的 「5. 3mm(210mil)级长尺折曲」的栏中。接着,对于在上述被覆层的表面具有含有金和钯的合金层的构成的接合线涉及的制造例及其评价进行说明。作为接合线的原材料,用于芯线的铜、作为芯线中的添加元素的B、P、Se、Ca、Al、用于被覆层的钯、表皮层使用的金,分别准备纯度99. 99质量%以上的坯料。秤量上述的铜、 或铜与添加元素原料作为起始原料后,通过在高真空下将其加热熔融得到铜或铜合金的直径IOmm左右的锭。然后,进行锻造、轧制、拉丝制作规定的直径的线。然后,在各线的表面上电镀形成含钯的被覆层。在此,上述被覆层的厚度由电镀的时间控制。然后再在上述被覆层的表面上电镀形成金膜,通过在保持在300 800°C的炉内以30m/分的速度连续地牵引该线,在上述被覆层的表面上形成金与钯的合金层。在此,合金层的厚度由上述金膜的单位面积重量,即电镀时间来控制。这样地得到芯线的直径为20 μ m的接合线。再者,一部分的试样,为了控制<111>结晶取向相对于拉丝方向的倾斜为15度以下的晶粒的面积,在线径150 μ m以上的粗细时使上述模的减面率为16 20%左右地进行拉丝,线径小于150 μ m 的粗细的拉丝时,以使上述减面率为13 15%左右的比通常大的减面率进行拉丝。另外, 一部分的试样,为了控制被覆层的表面的梅耶硬度,将该接合线连同绕线架设置在被控制成氩气氛的电炉内,在150 200°C实施20 M小时的加热。制造好的该接合线的芯线的直径、被覆层和合金层的厚度,一边对接合线的表面溅射一边由AES进行分析,另外,对该接合线进行断面研磨,一边由EDX分析组成一边进行测定。以钯的浓度为50%以上,并且,金的浓度低于15%的区域为被覆层,位于被覆层的表面上的包含金与钯的合金层中金浓度为15 75%的范围的区域作为合金层。将被覆层与合金层的厚度和组成分别记载于表6 10中。为了评价由被覆层带来的防止接合线氧化的效果,将接合线连同绕线架在湿度 85%、温度85°C的高温高湿炉中放置72小时,进行不断促进线表面氧化的加速试验。加热后,从高温高湿炉中取出接合线,使用光学显微镜观察表面氧化的程度。此时,线表面全面氧化时用X表示,线表面没有氧化时用〇表示,示于表6、10中的「长期保管(氧化)」的栏中。为了评价由被覆层带来的防止接合线硫化的效果,将接合线连同绕线架在大气气氛下在温度保持在195°C的高温炉中放置155小时,进行不断促进线表面硫化的加速试验。 如上述地在大气气氛中高温下放置时,即使是大气中含有的极微量的硫也能够加速硫化反应。加热后从高温炉中取出接合线,使用市售的色彩计(S 7 >々CR-3000)观察表面硫化的程度,明度(L*)为30以下时视为硫化,超过30且为40以下时为实用上没有障碍的水平,超过40为优选的水平。此时线表面观察到硫化部时用X表示,实用上没有障碍的水平时用Δ表示,线表面没有硫化时用〇表示,示于表6、10中的「长期保管(硫化)」的栏中。接合线的接合,使用市售的自动焊线机。在即将接合前通过电弧放电在接合线的尖端制作球部,其直径为34 μ m是接合线的直径的1. 7倍。制作球部时的气氛为氮。球部的实际的直径,各球部使用SEM各测定20个,其最大值与最小值的差超过球径的平均值的10%时偏差剧烈、为不良X,超过5%且为10%以下时为中间程度Δ,超过 3%且为5%以下时实用上没有不良视为良好〇,为3%以下时为极好◎,示于表6、10中的 「氮中FAB圆球性」的栏中。另外,使用SEM观察球部,在其外观看到气泡时,在表6、10中的「氮中FAB气泡抑制」的栏中表示为X,外观没有气泡时表示为〇。作为接合线的接合的对方,分别使用形成在Si芯片上的厚度1 μ m的Al电极和表面镀金或钯的引线框的引线。将制作的球部与加热到^KTC的上述电极进行球接合后,将接合线的母线部与加热到^KTC的上述引线进行楔接合,通过再制作球部而连续地反复接合。 使环路长为4. 9mm。再者,一部分的试样进行环路高约304. 8 μ m(12mil)、环路长约2mm的上述高环路接合,另外一部分的试样进行环路长约3mm、环高度76. 2 μ m(3mil)的低环路接合,再另一部分试样进行环路长5.3mnK210mil)的长尺接合。关于接合线的楔接合性,采用在楔接合部正上方捏住楔接合了的状态的接合线向正上方举起直到切断,读取其切断时得到的断裂载荷的所谓的剥离强度测定法,测定40根的断裂载荷(剥离强度)。剥离强度的标准偏差超过5mN时,偏差大而需要改善,因此记为X,超过3mN且为5mN以下时实用上没有大问题,因此记为〇,为3mN以下时偏差极小良好记为◎,示于表6、10的「Ag-L/F 2nd接合」(镀金引线框的引线的场合)和「Pd-L/F2nd 接合」(镀钯引线框的引线的场合)的栏中。在此,使用光学显微镜观察是否由于毛细管使环路产生损伤。观察的环路的根数为20根,1根也没有伤时为极好用◎◎表示,只1 2根的环路观察到伤的场合为良好用◎ 表示,只3 4根环路观察到伤的场合为实用上没有问题的水平用〇表示,只5根的环路观察到伤的场合为能够实用上容许的水平用Δ表示,6根以上的环路观察到伤的场合为低劣用X表示,示于表6、10中的「伤抑制」的栏中。在上述被覆层的表面观察到的晶粒的<111>结晶取向相对于拉丝方向的倾斜,在采用EBSD法观察个别的晶粒的取向后算出。该算出时,各试样都观察各3个视场的、在与接合线的拉丝方向垂直的方向具有8 μ m的宽度、在接合线的拉丝方向具有150 μ m的长度的面。将其值示于表7 9的「<111>结晶取向相对于拉丝方向的倾角为15度以下的晶粒的面积」的栏中。进行上述的高环路接合后的在接合线表面上的倾斜不良,各试样使用光学显微镜各观察20根的环路,1根环路也没有观察到倾斜不良时为极好用◎◎表示,只1 2根的环路观察到倾斜不良的场合为良好用◎表示,只3 4根环路观察到倾斜不良的场合为实用上没有问题的水平用〇表示,5根以上的环路观察到倾斜不良的场合为低劣用X表示,示于表7 9的「高环路倾斜抑制」的栏中。线表面的梅耶硬度采用纳米压痕法按Inm左右的深度精度测定,将其值示于表 8 9的「线表面的梅耶硬度」的栏中。进行上述的低环路接合后的有无颈部的损伤,各试样使用光学显微镜各观察20 根的环路,1根也没有损伤时为良好用◎表示,20根中1 2根观察到损伤的场合为没有问题的水平用〇表示,20根中3根以上的环观察到损伤的场合为低劣用X表示,示于表8 9的「76. 2ym(3mil)级低环路颈损伤」的栏中。关于进行上述的长尺接合后的环路的折曲,使用投影机测定各试样的20根环。在此将其平均值除以环路长度所得的值作为线折曲率,小于4%时为极好用◎表示,4 5% 时为实用上没有问题的水平用〇表示,5 6%时为能够实用的水平用Δ表示,超过6%时判断为不良用X表示,示于表8的「5. 3mm(210mil)级长尺折曲」的栏中。芯片损伤的评价,对20个球接合部进行断面研磨,电极产生龟裂时判断为不良用X表示,没观察到龟裂时为良好用〇表示,示于表8的「芯片损伤」的栏中。以下,对表1 表10的评价结果进行说明。如表1的实施例1 63和表6的实施例136 192所记载,在铜芯线的表面上形成10 200nm的厚度的钯被覆层,在该被覆层的表面还具有1 80厚度的银与钯、或金与钯的合金层的接合线,是确保耐氧化性(「长期保管(氧化)」的栏)和球部的圆球性 (「氮中FAB圆球性」的栏),并且能够得到镀钯引线框上的良好的楔接合性(「Pd-L/F 2nd 接合」的栏的接合线。与这些相反,如比较例1所示,在铜线的上面不特别设置被覆层而只有芯线时,长期保管或2nd接合性低劣。另外,如比较例2所示,铜芯线的表面的被覆层为银的场合,氮中的球部的圆球性差。另外,如比较例3 5所示,在铜芯线的上面只设置钯的被覆层的场合,镀钯引线框上的楔接合性低劣。另外,如比较例6所示,即使在铜芯线的上面以10 200nm的范围内的厚度形成钯的被覆层,而再在其表面上形成的银与钯的合金层的厚度比3nm薄的场合,镀钯引线框上的楔接合性也低劣。另外,如比较例7所示,在铜芯线的上面以10 200nm的范围内的厚度形成钯的被覆层,再在其上面形成的银与钯的合金层比80nm厚的场合,由于难以确保稳定的品质、该合金层被氧化或硫化,因此评价的任何的一种特性都低劣,另外,如比较例8所示,在铜芯线的上面以10 200nm的范围内的厚度形成钯的被覆层,再在其上面形成的银与钯的合金层中的银浓度低于10 %的场合,镀钯引线框上的楔接合性低劣。另外,如比例较9所示,在铜芯线的上面以10 200nm的范围内的厚度形成钯的被覆层,再在其上面形成的银与钯的合金层中的银浓度高、超过75%的场合,氮中的球部的圆球性差。另外,如比较例10所示,在铜芯线的上面形成的钯的被覆层的厚度超过10 200nm的范围时,即使再在其表面上形成的银与钯的合金层的厚度是3 SOnm的范围,但在氮中形成小径的球部时也发生气泡(「氮中FAB气泡抑制」的栏)。如比较例11所示,在铜线的上面不特别设置被覆层而只有芯线时,长期保管或2nd接合性低劣。 另外,如比较例12所示,铜芯线的表面的被覆层为银的场合,氮中的球部的圆球性很差,在长期保管中产生硫化的问题。另外,如比较例13所示,铜芯线的表面的被覆层为金的场合, 氮中的球部的圆球性很差。另外,如比较例14 16,铜芯线的上面只设置钯的被覆层的场合,镀钯引线框上的楔接合性差。另外,如比较例17所示,在铜芯线的上面以10 200nm 的范围内的厚度形成钯的被覆层,再在其表面上形成的金与钯的合金层的厚度比3nm薄的场合,镀钯引线框上的楔接合性不充分。另外,如比较例18所示,即使在铜芯线的上面以 10 200nm的范围内的厚度形成钯的被覆层,而再在其上面形成的金与钯的合金层的厚度比SOnm厚的场合,也难以确保稳定的品质,镀钯引线框上的楔接合性(「Pd-L/F 2nd接合」 的栏)差,并且,由于该合金层被氧化,因此不是能够满足球部的圆球性(「氮中FAB圆球性」 的栏)的接合线。另外,如比较例19所示,在铜芯线的上面以10 200nm的范围内的厚度形成钯的被覆层,再在其表面上形成的金与钯的合金层中的金浓度低于15%的场合,镀钯引线框上的楔接合性不充分。另外,如比较例10所示,在铜芯线的上面以20 200nm的范围内的厚度形成钯的被覆层,再在其表面上形成的金与钯的合金层中的金浓度超过75 %的高的场合,氮中的球部的圆球性差。另外,如比较例21所示,在铜芯线的上面形成的钯的被覆层的厚度超过10 200nm的范围时,即使再在其表面上形成的金与钯的合金层的厚度是 3 SOnm的范围,在氮中形成小径的球部时也发生气泡(「氮中FAB气泡抑制」的栏)。接着,对在上述被覆层的表面具有含有银和钯的合金层的构成的接合线的例进行说明。如表1的实施例1 12、16 27、31 42、46 57所述,在铜芯线的表面上形成 10 200nm的厚度的钯被覆层,在该被覆层的表面还具有1 30nm厚度的银与钯的合金层的接合线,是确保耐氧化性(「长期保管(氧化)」的栏)或球部的直球性(「氮中FAB圆球性」的栏),而且能够得到镀钯引线框上的良好的楔接合性(「Pd-L/F 2nd接合」的栏) 的接合线。与这些相反,如比较例1所示,在铜线的上面不特别设置被覆层而只有芯线时, 长期保管或2nd接合性低劣。另外,如比较例2所示,铜芯线的表面的被覆层为银的场合, 氮中的球部的圆球性差。另外,如比较例3 5所示,在铜芯线的上面只设置钯的被覆层的场合,镀钯引线框上的楔接合性低劣。另外,如比较例6所示,即使在铜芯线的上面以10 200nm的范围内的厚度形成钯的被覆层,而再在其表面上形成的银与钯的合金层的厚度比 Inm薄的场合,镀钯引线框上的楔接合性也低劣。另外,如比较例7所示,在铜芯线的上面以10 200nm的范围内的厚度形成钯的被覆层,再在其上面形成的银与钯的合金层比30nm 厚的场合,由于难以确保稳定的品质,该合金层被氧化或硫化,因此评价的任何的一种特性都低劣,另外,如比较例8所示,在铜芯线的上面以10 200nm的范围内的厚度形成钯的被覆层,再在其上面形成的银与钯的合金层中的银浓度低于10%的场合镀钯引线框上的楔接合性低劣。另外,如比例较9所示,在铜芯线的上面以10 200nm的范围内的厚度形成钯的被覆层,再在其上面形成的银与钯的合金层中的银浓度高、超过70%的场合,氮中的球部的圆球性差。另外,如比较例10所示,在铜芯线的上面形成的钯的被覆层的厚度超过10 200nm的范围时,即使再在其表面上形成的银与钯的合金层的厚度是3 30nm的范围,但在氮中形成小径的球部时也发生气泡(「氮中FAB气泡抑制」的栏)。如实施例16 63所示,上述含有银和钯的合金中的银浓度为20%以上时,毛细管抑制发生损伤的效果更大(「损伤抑制」的栏),并且,即使氮中形成小径的球部也可抑制气泡的发生(「氮中FAB气泡抑制」的栏)。此外如实施例31 63所示,上述银浓度为30% 以上时,上述的效果更高。如表2的实施例64 91所示,在上述接合线的表面观察到的<100>结晶取向相对于拉丝方向的倾斜为15度以下的晶粒的面积为50% 100%时,逆打接合线时在环的表面发生的皱纹的抑制效果增高(「逆打皱纹抑制」的栏)、该面积为70%以上时其效果更高。如表2的实施例4 6所示,在上述接合线的表面观察到的<111>结晶取向对于拉丝方向的倾斜为15度以下的晶粒的面积为60% 100%时,高环路接合时抑制发生倾斜不良的效果增高(「高环路倾斜抑制」的栏),该面积为70%以上时其效果更高。如表3的实施例92 96、99 102、104所示,上述接合线的表面的梅耶硬度为 0.2 2. OGPa的范围时,即使进行低环路接合也能够抑制颈损伤(「76. 2 μ m(3mil)级低环路颈损伤」的栏)。如表4的实施例109 117、121 1 所示,上述芯线含有B、P、Se内的至少一种总计5 300质量ppm的铜合金时,即使进行长尺接合时也能够抑制环的折曲 (「5.3mnK210mil)级长尺折曲」的栏)。如表5的实施例125 135所示,即使在上述被覆层与上述芯线之间产生扩散层, 或含于上述芯线中的铜扩散到上述被覆层中,也能够确保本申请发明的效果。接着,对上述被覆层的表面具有包含金与钯的合金层的构成的接合线的例进行说明。如表6的实施例136 192所述,在铜芯线的表面具有10 200nm厚度的钯被覆层,再在该被覆层的表面还具有1 80nm厚度的金与钯的合金层的接合线,是确保耐氧化性(「长期保管(氧化)」的栏)、耐硫化性(「长期保管(硫化)」的栏)、和球部的圆球性(「氮中FAB圆球性」的栏),而且能够得到镀钯引线框上的良好的楔接合性(「Pd-L/ F 2nd接合」的栏)的接合线。与这些相反,如比较例1所示,在铜线的上面不特别设置被覆层而只有芯线时,长期保管或2nd接合性低劣。另外,如比较例11所示,铜芯线的表面的被覆层为金的场合,氮中的球部的圆球性差。另外,如比较例12所示,在铜芯线的上面以 10 200nm的范围内的厚度形成钯的被覆层,再在其表面上形成的金与钯的合金层的厚度比Inm薄的场合,镀钯引线框上楔接合性不充分。另外,如比较例13所示,在铜芯线的上面以10 200nm的范围内的厚度形成钯的被覆层,再在其表面上形成的金与钯的合金层的厚度比SOnm厚的场合,难以确保稳定的品质,镀钯引线框上楔接合性(「Pd-L/F 2nd接合」的栏)差,并且,由于该合金层被氧化,因此不是能够满足球部的圆球性(「氮中FAB圆球性」 的栏)的接合线。另外,如比较例14所示,铜芯线的上面以10 200nm的范围内的厚度形成钯的被覆层,再在其表面上形成的金与钯的合金层中的金浓度低于15%的场合,镀钯引线框上的楔接合性不充分。另外,如比较例15,铜芯线的上面以20 200nm的范围内的厚度形成钯的被覆层,再在其表面上形成的金与钯的合金层中的金浓度超过75%的高的场合,氮中的球部的圆球性差。另外,如比较例16所示,在铜芯线的上面形成钯的被覆层的厚度超过10 200nm的范围时,再在其表面上形成的金与钯的合金层的厚度即使是3 SOnm的范围,而在氮中形成小径的球部时也发生气泡(「氮中FAB气泡抑制」的栏)。如实施例136 168、250、251、253、256所示,上述包含金与钯的合金中的金浓度, 为15%以上、低于40%时,则球部的圆球性进一步提高(「氮中FAB圆球性」的栏)。如实施例169 192、252、254、255、257 260所示,上述包含金与钯的合金中的金浓度为40%以上时,楔接合特性进一步提高(「Pd-L/F 2nd接合」的栏)。如表7的实施例193 216所示,在上述接合线的表面观察到的<111>结晶取向相对于拉丝方向的倾斜为15度以下的晶粒的面积为50% 100%时,高环路接合时抑制发生倾斜不良的效果增高(「高环路倾斜抑制」的栏),该面积为70%以上时其效果更高。如表8的实施例217 222、225 2 所示,上述接合线的表面的梅耶硬度为 0.2 2. OGPa的范围时,即使再进行低环路接合而颈损伤也得到抑制(「76. 2 μ m(3mil)级低环路颈损伤」的栏)。如表9的实施例2;34 M2J46 249所示,上述芯线含有B、P、Se内的至少一种总计5 300质量ppm的铜合金时,即使进行长尺接合时,环的折曲也得到抑制 (「5.3mnK210mil)级长尺折曲」的栏)。另一方面,如实施例243所示,对上述芯线进行超过300质量ppm的添加时,产生芯片损伤(「芯片损伤」的栏)。如表10的实施例250 260所示,即使在上述被覆层与上述芯线之间产生扩散层,或含于上述芯线中的铜扩散到上述被覆层中,也能够确保本申请发明的效果。[表1]
权利要求
1.一种半导体用接合线,其特征在于,具有由铜或铜合金构成的芯线;形成于该芯线的表面的具有10 200nm的厚度的含有钯的被覆层;和形成于该被覆层的表面的具有1 80nm的厚度的含有贵金属和钯的合金层,所述贵金属为金或银,所述合金层中的所述贵金属的浓度为10体积% 75体积%。
2.根据权利要求1所述的半导体用接合线,其特征在于,所述贵金属为金,所述合金层中的金的浓度为15体积% 75体积%。
3.根据权利要求2所述的半导体用接合线,其特征在于,所述合金层的表面晶粒之中, <111>结晶取向相对于拉丝方向的倾斜为15度以下的晶粒的面积为40% 100%。
4.根据权利要求2或3所述的半导体用接合线,其特征在于,所述合金层中的金的浓度为40体积% 75体积%。
5.根据权利要求1所述的半导体用接合线,其特征在于,所述贵金属为银,以1 30nm 的厚度形成所述合金层,所述合金层中的银的浓度为10体积% 70体积%。
6.根据权利要求5所述的半导体用接合线,其特征在于,所述合金层中的银的浓度为 20体积% 70体积%。
7.根据权利要求6所述的半导体用接合线,其特征在于,所述合金层的表面晶粒之中, <100>结晶取向相对于拉丝方向的倾斜为15度以下的晶粒的面积为50% 100%。
8.根据权利要求6所述的半导体用接合线,其特征在于,所述合金层的表面晶粒之中, <111>结晶取向相对于拉丝方向的倾斜为15度以下的晶粒的面积为60% 100%。
9.根据权利要求1 8的任一项所述的半导体用接合线,其特征在于,所述接合线的表面的梅耶硬度为0. 2 2. OGPa的范围。
10.根据权利要求1 9的任一项所述的半导体用接合线,其特征在于,所述芯线含有总计为5 300质量ppm的B、P、Se中的至少一种。
全文摘要
本发明提供即使对于镀钯的引线框也能够确保良好的楔接合性、耐氧化性优异的以铜或铜合金为芯线的半导体用接合线。该半导体用接合线的特征在于,具有由铜或铜合金构成的芯线、在该芯线的表面的具有10~200nm的厚度的含有钯的被覆层和在该被覆层的表面的具有1~80nm的厚度的含有贵金属和钯的合金层,所述贵金属为银或金,所述合金层中的所述贵金属的浓度为10体积%~75体积%。
文档编号H01L21/60GK102422404SQ20108001919
公开日2012年4月18日 申请日期2010年7月16日 优先权日2009年7月30日
发明者宇野智裕, 寺岛晋一, 小田大造, 山田隆 申请人:新日铁高新材料株式会社, 日铁新材料股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1