激光接收器的制造方法

文档序号:6213846阅读:279来源:国知局
激光接收器的制造方法
【专利摘要】本发明涉及一种激光器系统,该激光器系统包括与激光发射器(20、20')协作的激光接收器(10)。所述激光发射器(20、20')被设计成,提供激光平面(23、23'),并且包括控制单元(25),该控制单元(25)连接至通信信号接收器(21),以便操作并计算来自所述激光接收器(10)的传入通信信号。所述激光接收器(10)还包括:用于与所述激光发射器(20、20')通信的通信信号发送器(6),都连接至电路(3)的线性激光光传感器(1)和加速度传感器(4),该电路被设计成,根据计算并关联所述加速度传感器(4)的信号与所述激光光传感器(1)的信号,得到所述激光接收器(10)相对于所检测到的所述激光发射器(20、20')的激光束(22、22')的移动方向。所述激光发射器(20、20')的所述控制单元(25)设置有调节单元(24),并且根据所述激光接收器(10)的所操作并计算的传入通信信号,通过所述调节单元(24)执行调节。本发明还涉及包括激光发射器和这种激光接收器(10)的激光器系统,并且将这种系统用于引导并控制施工机械的使用。
【专利说明】激光接收器
[0001] 本发明涉及根据权利要求1所述的、包括与激光发射器协作的激光接收器的系 统、和根据权利要求17所述的对这种激光器系统的使用。
[0002] 激光接收器通常被用于建筑工地,以便定位参照激光束,具体地,旋转结构激光器 的激光束或线激光器的扇状激光束。被设计成在旋转所发射的激光束时提供激光平面的旋 转结构激光器是本领域技术人员公知的,并由此在本文未加以详细描述。生成扇状激光平 面的线激光器的实施方式在EP 1988360 Al中给出。由旋转结构激光器或线激光器生成的 参照光平面可以是水平的或者倾斜的。其在建筑工地出于不同目的而使用,即,用于引导施 工机械或者用于基于该平面执行各种测量,即,用于允许建筑工人快速布置可视标记线或 者调节高度。
[0003] 针对激光引导施工机械的示例在US 6, 691,437 Bl中给出。在该文献中公开了用 于与挖掘机一起使用的水平感测系统。激光接收器安装在该机器的铲斗柄上,以便基于入 射激光束击中激光接收器的光接收传感器来指示铲斗柄针对参照激光束的相对位置。该铲 斗柄还设置有倾斜仪,该倾斜仪包括陀螺倾度传感器和加速度计。加速度计感测重力加速 度,并且提供静态垂直参照,以便补偿陀螺倾度传感器的长期漂移。
[0004] 然而,由于眼安全规范,在建筑工地使用的激光发射器(即,旋转结构激光器和线 激光器)必须具有低功率射束。因此,一方面,这种常规激光发射器的激光束能够在附近的 墙壁指示精确可视的参照线,但另一方面,在远离光源的距离处趋于散焦并变得更加暗淡, 使得必须利用激光接收器来定位射束。
[0005] 常规的激光接收器包括激光光传感器和电路,其中,该光传感器包括光敏部件的 线性阵列并且连接至所述电路。该光敏部件在被激光束照射时提供电输出信号,该电输出 信号被传递至所述电路并且通过该电路计算。该计算的结果通过输出装置(像集成在激光 接收器中并且连接至所述电路的显示器一样)向用户呈现。这种激光接收器的示例在EP 2 199 739 Al、US 7,409,312 B以及TO 2008/008210 A2中给出。具体地讲,那些激光接收 器具有限定的零位置,例如,光传感器阵列的中心。对于激光束的定位来说,激光接收器的 零位置必须要稳定地匹配激光平面。某些激光接收器(像在US7, 409, 312 B中公开的激光 接收器一样)还设置有重力参照装置,而且可选地设置有GPS接收器,以便易于精确定位。 附加的激光测距装置还可以考虑到计算激光接收器的3D位置。WO 2008/008210 A2中描述 的方法公开了在激光接收器内集成测距仪,以确定针对激光发射器的距离。然而,这需要激 光接收器取向非常好地对准至激光发射器,这尤其在建筑工地通常是非常难的。
[0006] 参照激光平面的精确定位是一耗时过程,尤其是在其是通过旋转激光束生成的激 光平面时(具体地,在使用红外激光束的情况下)。常规手持式激光接收器必须沿垂直于激 光平面的方向缓慢扫描几次,以便针对每一次扫描捕获至少两次激光束撞击,即,光敏部件 线性阵列的最外侧光敏部件处的第一次撞击,和更靠近光敏部件线性阵列中心的零位置的 光敏部件处的第二次撞击。光敏部件阵列处的不同入射角指示激光接收器针对激光平面的 移动方向,该移动方向根据光敏部件的电子输出信号通过所述电路得到,并且通过相应的 输出在激光接收器的显示器上向用户指示,或者作为音频信号。为了使激光接收器处于一 位置,其中,激光束的连续撞击仅照射对准的光敏部件中心处的零位置,以使激光接收器同 坡度(on-grade),用户按遍及激光平面连续扫描的反复过程移动激光接收器。由此,可以 说,在建筑工地获知激光平面和/或激光接收器相对于激光发射器的位置和取向仍是一耗 时过程。
[0007] 因此,本发明的一目的是,提供一种具有激光接收器和激光发射器的激光器系统, 其允许更有效地定位激光束,具体地,更有效地定位旋转结构激光器的激光平面。
[0008] 本发明的一个目的是,改进激光接收器与激光发射器的协作(尤其是定位和搜索 协作),具体地,与发射参照激光平面的激光发射器协作。
[0009] 这些目的中的一个或更多个通过实现独立权利要求书的特征来实现。按另选或有 利的方式开发本发明的特征在从属的专利权利要求中进行了描述。
[0010] 本发明的另一些方面在和该申请同一日期提交的并且具有欧洲申请号 12159573. 0的欧洲专利申请中加以保护。由此,欧洲专利申请第12159573. 0号的内容同此 并入本申请中。
[0011] 根据本发明的激光接收器被设计用于检测激光束的激光,具体地,皆被设计成提 供激光平面的旋转结构激光器的参照激光束或线激光器的扇状激光束。激光接收器具有连 接至激光光传感器并且连接至输出装置的电路。具有零位置的激光光传感器在被参照激光 束照射时向所述电路提供电输出信号。该电路被配置为计算光传感器的输出信号。该激光 接收器还包括加速度传感器,该加速度传感器被设计成,提供指示该激光接收器的移动和 至少指示其移动方向的电输出信号,并且同样连接至该电路。该电路被设计成,按至少得到 激光接收器相对于所检测激光束的移动方向的这种方式,计算并关联激光光传感器的输出 信号和加速度传感器的输出信号。随着该电路连接至输出装置,可得到有关激光接收器针 对激光束的移动的信息以及根据光传感器的输出信号并且根据加速度传感器的输出信号 得到的信息。而且,在激光接收器的突然移动扩大了预定加速度水平或者预定移动距离的 情况下,可以给出告警信号(音频信号和/或可视信号),其中,该预定值可以是预先编程的 值的集合,或者可以由用户随意设置。这种告警信号或停止激光发射器和/或其它单元的 停止信号例如可以在激光发射器与激光接收器之间的光学联系丢失时有利地给出。
[0012] 利用加速度传感器的信息结合用于得到激光接收器针对激光束的移动方向的激 光光传感器的信息,每次扫描必须被激光光传感器捕获的射束撞击数可以被缩减至一。因 此,可以增加用于移动激光接收器通过激光平面的扫描速度。
[0013] 由此,本发明使得能够更有效地分别定位激光束和激光平面。
[0014] 该激光接收器的激光光传感器优选地包括光敏部件线性阵列,其中,零位置处于 所述阵列的中心。
[0015] 有利的是,光敏部件可以是雪崩光电二极管和/或PSD传感器。
[0016] 在一优选实施方式中,该激光接收器的激光光传感器包括至少另一光敏部件线性 阵列,其中,这两个阵列彼此平行地布置并且彼此按预定的距离隔开,以使所发射的激光束 的撞击在不同的时间击中所述至少两个阵列,允许利用经过时间方法,由激光接收器的连 接电路来计算激光接收器与激光发射器之间的距离,举例来说,如在DE19716710 B4中所描 述的。
[0017] 根据所述激光接收器的另一实施方式,可以将多个光敏部件线性阵列布置在圆柱 的侧面上,以便易于检测激光束并且利用经过时间方法来确定所述距离。
[0018] 为了允许操作员将参照激光平面的所检测的高度以高精度传递到像墙壁这样的 目标表面上,该激光接收器可以包括处于接收器外壳一侧上的高度标记(即,以激光束的 形式),该侧优选地不是激光光传感器接收激光束的一侧。
[0019] 根据本发明的另一优选实施方式,该加速度传感器被设计为三轴加速度传感器, 以按三个不同方向检测激光接收器的移动或加速度。优选的是,该三个空间轴垂直地布置, 以使激光接收器的移动可容易地按笛卡尔坐标系得到。基于由所述加速度传感器得到的 信息,可以自动消除在调节或重新调节激光平面时因激光接收器的非铅锤取向而产生的故 障。
[0020] 为了提高位置信息的精度,激光接收器可以设置有像倾斜传感器、罗盘和/或GPS 接收器这样的另一设备。
[0021] 具体地,所述电路还被设计成,根据计算并关联加速度传感器的输出信号与所述 激光光传感器的输出信号,得到激光接收器相对于所述激光束的移动加速度和/或移动速 度,并且/或者估计激光接收器相对于所述激光束的移动结束位置。
[0022] 在另一实施方式中,所述电路还可以递送由不同的传感器得到的独立信息,S卩,基 于来自加速度传感器的输出信号(即,激光接收器的移动和移动方向/移动加速度/移动 速度/移动结束位置)和来自光敏部件的输出信号(即,确认或未确认已经发现激光束并 且在其击中所述阵列的情况下)等。另外,如上面已经提到的,表示这些信息的相互关系的 信息可以由所述电路递送,即,激光接收器相对于激光束或者相对于从GPS接收器得到的 坐标系的移动方向等。
[0023] 这种信息可以由集成在激光接收器中并且连接至电路的输出装置(像扬声器这 样或者通常为显示器)递送至用户。其还可以无线地或者借助于有线连接发送至数据分析 装置的外部单元和/或控制装置和/或发送至激光发射器,具体地,旋转结构激光器。为此, 该激光接收器设置有通信装置。
[0024] 要明白的是,这些通信装置被优选地设计用于远程通信,S卩,无线通信。
[0025] 被配置为与上述不同实施方式中描述的激光接收器通信的激光发射器包括:用于 接收来自激光接收器的通信信号的通信装置,和用于操作激光接收器的传入通信信号的控 制单元。那些通信信号优选地为根据激光接收器的加速度传感器和/或激光光传感器的电 输出信号,由激光接收器的电路得到的"命令信号",或者那些通信信号是加速度传感器的 电输出信号。
[0026] 为了操作传入通信信号,激光发射器的控制单元设置有调节单元,该调节单元用 于调节参照激光束的聚焦和/或由激光发射器生成的参照光平面的倾斜和/或由所发射的 激光束生成的参照光平面的海拔和/或由激光发射器发射的激光的强度。
[0027] 在一优选实施方式中,激光接收器的电路和/或激光发射器的控制单元被设计 成,基于在被提供具有不同的倾角和/或不同的偏移的至少两个激光平面的所述激光发射 器的所述激光束照射时所提供的、所述激光光传感器的输出信号和所述加速度传感器的输 出信号,确定所述激光接收器相对于所述激光发射器的三维位置。
[0028] 另一已知但更复杂的方法是,使用集成在激光发射器和激光接收器两者中的、用 于定位的无线通信装置。允许这种定位的无线通信标准装置例如是Zigbee或本地无线电 定位(LPR)。而且,还可以应用无线定位确定方法,如GPS。
[0029] 后一发射器优选为发射旋转激光束的旋转结构激光器或发射扇形激光束的线激 光器。
[0030] 对于旋转结构激光器的情况来说,激光发射器的控制单元设置有调节单元,该调 节单元用于调节参照激光束的旋转速度。这在搜索激光束或激光接收器时非常有利。由此, 旋转速度例如可以从最大降低至固定。
[0031] 像这样配置的激光器系统考虑到容易调节激光平面,即,针对激光接收器,沿向上 或向下方向移动激光平面或者倾斜激光平面。
[0032] 有利的是,该调节和激光接收器与激光发射器之间的距离和/或激光接收器的所 计算3D位置和/或激光接收器的移动有关地出现,并且具体地,与激光接收器的移动方向 和/或加速度有关地出现。
[0033] 根据激光接收器的位置和移动,激光束的旋转速度的调节可以按主动方式设置, 并且适于指示激光接收器的移动的信号变化(例如,通过增加旋转速度),或者适于通过将 激光平面重新定向成其中激光接收器已经离开激光平面的方向而开始搜索激光接收器。 [0034] 具体地,后一情况在设置有激光接收器并且引导由旋转结构激光器生成的激光平 面的施工机械意外丢失针对参照激光束的联系(即,因松软地层或不均匀地层而造成的) 时有益。
[0035] 为此,该激光发射器的控制单元设置有搜索功能,以便在与激光接收器的光学联 系丢失的情况下,对该激光束重新取向。另外,该搜索功能例如可以使得能够自动增加激光 束的旋转速度和/或沿向上或向下方向的移动和/或所生成的激光平面的倾斜移动。
[0036] 而且,激光束的光强度和聚焦可以自适应,优选的是,根据激光接收器的最后计算 的3D位置或者激光接收器与激光发射器之间的最后估计距离。
[0037] 该旋转结构激光器还可以设置有这样的装置,即,该装置用于通过射束遮蔽或者 通过限制激光束在预定的端点之间的摆动来限制激光平面的范围。该实施方式在与搜索功 能结合时也特别有用。其考虑到针对位置的更高分辨率和激光接收器的确定,并且还考虑 到在关注区域内更快速地扫描激光束。
[0038] 除了激光束的旋转速度的自适应以外,还可以将类似的搜索功能集成在发射扇形 激光束并且与根据本发明的激光接收器协作的线激光器中。
[0039] 对于激光接收器与激光发射器的通信来说,激光接收器与激光发射器被集成在激 光器系统中,其中,该激光接收器包括至少一通信信号发送器,并且该旋转结构激光器包括 至少一个通信信号接收器和用于操作传入通信信号的控制单元。
[0040] 在所述激光器系统的更优选实施方式中,该激光接收器和旋转结构激光器设置有 通信信号收发器,以使激光接收器和旋转结构激光器既可以发送也可以接收通信信号。具 有通信信号收发器,该激光接收器和旋转结构激光器还可以与外部数据分析单元或控制单 元进行通信。
[0041] 该激光接收器,并且还可选地,该激光发射器还可以设置有罗盘,该罗盘用于帮助 沿方位角方向搜索激光接收器,利用其,该激光接收器典型地针对参照激光束的方向,在 45°垂直角方向内对准。而且,还可以应用无线定位确定方法,如GPS。
[0042] 如上所述,根据上面公开的任一个实施方式的包括激光接收器和激光发射器的激 光器系统可以被设计用于控制施工机械。在该情况下,根据上面公开的任一个实施方式的 激光接收器接合至施工机械并且可与该施工机械一起移动。
[0043] 而且,本发明的主旨是使用根据上面公开的本发明的任一个实施方式的激光器系 统,以控制并引导建筑工地的施工机械。
[0044] 对于这些实施方式来说,该激光接收器是用于施工机械的引导系统的组成部分, 具体地,其可以无人照管地或者在遥控下操作。如果设置有加速度传感器的激光接收器失 去了与激光平面的光学联系,则该激光器的操作模式可以(自动地)被切换成搜索模式,并 且开始搜索激光接收器和施工机械。例如,基于来自加速度传感器的、有关激光接收器的移 动方向的信息,可以增加激光束的扫描速度,以便可选地重新定位激光接收器和施工机械。 而且,可以省略针对操作人员的告警信号,或者可以通过针对施工机械的适当的引导系统 使得能够将施工机械重新定向至达到参照激光束。如果多个施工机械利用同一参照激光束 引导,则可以发送用于中断其它施工机械的操作的信号。
[0045] 而且,为了同时允许距离测量,该激光接收器优选地设置有距离测量装置,典型地 设置有电子距离测量装置。
[0046] 下面,参照在附图中示意性地示出了的可能实施方式的实施例对本发明进行更详 细说明,其中:
[0047] 图Ia示出了本发明激光接收器的实施方式;
[0048] 图Ib示出了本发明激光接收器的另选的实施方式;
[0049] 图2示出了包括旋转结构激光器和本发明激光接收器的本发明的激光器系统的 实施方式;
[0050] 图3示出了具有相关组件的本发明激光器系统的旋转结构激光器;
[0051] 图4例示了用于引导施工机械的本发明激光器系统的应用;
[0052] 图5例示了如何可以基于激光光传感器和加速度传感器的输出信号、与激光发射 器有关地确定激光接收器的3维位置;以及
[0053] 图6a、图6b例示了具有倾斜的激光接收器的情况。
[0054] 图7a、图7b例示了在激光接收器位移时的情况。
[0055] 图Ia示出了本发明激光器系统的激光接收器10的实施方式的例示图。激光接收 器10包括具有按线性阵列设置的多个光敏部件2的激光光传感器1,该光敏部件2在被参 照激光束22照射时提供电输出。该激光光传感器和光敏部件2分别连接至电路3。具体 地,参照激光束22可以源自被设计成在旋转所发射激光束22时提供激光平面的旋转结构 激光器,或者源自发射展开的扇状激光束(未不出)的线激光器。激光接收器10包括还连 接至电路3的加速度传感器4。该加速度传感器4被设计成在移动激光接收器时提供电输 出信号。该电输出信号还指示激光接收器10的移动和移动方向。激光接收器的电路3被 配置为,计算并关联来自光传感器1和加速度传感器4的传入电信号,以提供指示激光接收 器10相对于激光束22的移动的关联信号。该电路3还连接至输出装置8。在该示例中,输 出装置8是显示器,并且在显示器8上向用户5 (图2)指示激光接收器10相对于激光束22 的移动方向。采用扬声器(未示出)形式的另一输出装置同样可以集成在激光接收器中。
[0056] 而且,激光接收器的电路3被配置为,根据加速度传感器4的电输出信号,得到激 光接收器10的移动加速度和/或移动速度和/或所估计的移动结束位置。
[0057] 根据本发明的优选实施方式,激光接收器10的激光光传感器1的光敏部件2被设 置为光电二极管形式,具体地,采用雪崩光电二极管或PSD传感器的形式。用"c"指示的零 位置处于光敏部件2的线性阵列中心。如在图Ib中示出的,还可以并行地布置光敏传感器 2的两个阵列,并且按预定的距离彼此间隔开,使得可以将它们用于利用经过时间方法进行 距离测量。另一可能性是,使用光敏部件的多个线性阵列,这些线性阵列按它们可从各个面 (360° (未示出))随意取得激光束的方式设置在激光接收器中所集成的圆柱的侧面上。
[0058] 该【具体实施方式】中的加速度传感器4被具体设计为三轴加速度传感器,以在三个 不同的空间方向检测激光接收器10的移动或加速度。这易于确定激光接收器10相对于激 光平面23的移动方向。照例,该加速度传感器还操作为指示激光接收器相对于铅锤位置 (plump-position)的倾度的重力传感器。
[0059] 优选的是,激光接收器10设置有通信装置6,其被优选地设计为用于远程(即,无 线)通信。根据应用需求,通信装置6可以是通信信号发送器或通信信号收发器。通信装 置6连接至电路,以使与激光接收器的移动、激光接收器相对于激光平面23的移动相关的 得到的信息、或者与激光接收器10与激光束22同坡度移动相关的得到的信息可以被发送 至像发射所检测的激光束22的激光发射器一样的另一单元、和或外部数据分析单元、或者 控制单元、像操作人员所使用的操纵杆单元等,以便控制激光发射器或施工机械。
[0060] 假使通信装置6是收发器,激光接收器10的电路3优选地被配置为操作传入信 息。该传入信息可以从像数据分析单元一样的外部单元、控制单元或者从激光发射器20接 收,并且电路3可以借助于输出装置向用户5指示那些信息,或者将该信息与通过激光接收 器本身生成的信息关联,并且在输出装置上指示该关联的结果,或者经由通信装置发送它 们。
[0061] 图2示出了本发明激光器系统100的一实施方式,该激光器系统包括根据本发明 的激光接收器10,并且在该示例中包括被设计成在旋转所发射的激光束22时提供激光平 面23的旋转结构激光器20,与上面图1有关地,对激光接收器10的一个示例性实施方式进 行描述。根据本发明,图2所例示的激光接收器10是小型手持式激光接收器10。
[0062] 利用激光接收器10的加速度传感器4的信息,用户(S卩,建筑工人5)仅需要通过 由旋转激光束22所生成的激光平面23扫描本发明激光接收器10 -次,以得到激光接收器 10相对于激光束22的移动方向。因此,可以增加被用于将激光接收器10移动通过激光平 面23的扫描速度。由此,本发明使得能够更有效地分别定位激光束22和激光平面23。其 同样可应用于该激光束由采用扇状激光束的线激光器所发射的激光束的情况(未示出)。
[0063] 在本发明激光器系统100的所示的实施方式中,激光发射器20和激光接收器10 设置有通信装置6、21,其具体被设计用于远程(即,无线)通信。该激光接收器10至少包 括通信信号发送器,并且该激光器20至少包括通信信号接收器,以使激光接收器10可以向 激光发射器20发送信息。采用旋转结构激光器形式的激光发射器20还包括连接至通信信 号接收器的控制单元25 (参见图3),以便操作传入通信信号。控制单元25还设置有调节单 元24,该调节单元用于调节以下中的至少一个:参照激光束22的旋转端头速度和/或端头 移动方向、根据所发送激光束22生成的参照光平面的倾斜、根据所发送激光束22生成的参 照光平面23的海拔、所发射激光束22的聚焦以及该激光束22的光强度。控制单元25连 接至激光器20的通信装置21,以考虑到关联所述调节与来自激光接收器的激光光传感器1 和加速度传感器4的通信信号,具体地,关联激光接收器10的移动与激光接收器的移动方 向。由此,旋转结构激光器20可以加速旋转激光束22的端头速度,以便允许随着更快的旋 转更快地定位激光束22,意味着,建筑工人5可以更快地扫描激光接收器10并且可以以更 高的速率重复扫描。
[0064] 根据希望的应用,激光发射器20和激光接收器10两者的通信装置还可以按通信 信号收发器形式来设置。首先,通信装置6、21用于激光器20与激光接收器10之间的通信。 然而,外部数据分析单元或控制单元等还可以与激光接收器10或激光发射器20通信。 [0065] 有利的是,激光器20的控制单元25可以设置有搜索功能,以便在激光器20与激 光接收器10之间的光学联系丢失的情况下重新定位激光接收器10。如果激光发射器20与 激光接收器10的通信装置21、6是通信信号收发器,则这是最有利的。
[0066] 图4例示了用于引导施工机械30的本发明激光器系统100的应用。如上所示并 描述的激光接收器10接合至施工机械30并且可与其一起移动。激光接收器10可以如所 示地安装在施工机械30的顶部上,或者施工机械30的任何其它区域,以使激光接收器10 的激光光传感器1可以光学方式取得参照激光束22。在所示示例中,激光发射器20是发射 垂直扩展激光束22'的线激光器20',其生成具有扩展角α的垂直激光平面23'。激光发 射器20和激光接收器10都设置有通信信号收发器6、21,以使它们可以彼此发送和接收信 肩、。
[0067] 对于本发明激光器系统100的所示实施方式来说,该激光接收器10是用于施工机 械30的引导系统的必不可少的部分,具体地,其可以无人照管地或者在遥控下进行操作。 如果根据本发明设置有加速度传感器4的激光接收器10丢失了与激光束22'的光学联系, 则该激光器20'的操作模式可以(自动地)被切换成搜索模式,并且开始搜索激光接收器 10和施工机械30。为了重新定位激光接收器10和施工机械30,基于紧接在光学联系丢失 之前来自激光接收器10的加速度传感器4的、有关激光接收器10针对激光平面23'的移 动方向的信息,该搜索模式可以包括旋转结构激光器的所发射的参照激光束22'的增大的 旋转速度和/或向上或向下改变由旋转激光束22'生成的激光平面23'的海拔或者取向的 修改(具体地,所生成激光平面23'的倾斜)。
[0068] 如上所示,响应于激光接收器10相对于激光平面23的移动而调节/定位激光平 面23可以利用本发明激光器系统100自动化,在激光发射器2或激光接收器10现场至多 需要一个人5。如果激光接收器10按无人照管的方式移动,例如,安装在具有无人照管操作 的施工机械30上,则甚至可能不需要操作人员。
[0069] 对于其中根本未知丢失激光接收器10/施工机械30的位置的情况来说,可以具体 通过射束遮蔽来限制激光平面23'的角范围。由此,激光接收器10/施工机械30可以按重 复过程来重新定位,并且可以缩减用于重新定位激光接收器10/施工机械30的时间。
[0070] 在一另选实施方式中,激光接收器10的电路3和/或激光发射器20、20'的控制 单元25被设计成,基于在由激光发射器20、20'的激光束22、22'照射时所提供的、激光光 传感器1的输出信号和加速度传感器4的输出信号,确定激光接收器10相对于激光发射器 20、20'的3维位置,该激光束22、22'提供具有不同倾角和/或不同偏移值的至少两个激光 平面。该实施方式的优点在于,万一针对激光发射器的联系失去,也将获知激光接收器的最 后位置,使得射束遮蔽或以限制的角范围摆动激光束不是必需的。
[0071] 在图5、图6a、图6b、图7a、图7b中,示出了可以怎样基于激光光传感器1和加速 度传感器4的输出信号,来确定激光接收器10相对于激光发射器取向的3维位置,而不需 要激光发射器或激光接收器中的附加组件。激光发射器的激光出孔被指示为R,激光发射器 的坐标系用X-、Y-以及Z-方向给出。由激光发射器通过其原点R生成的激光平面通常可 以用下式来描述:
[0072] a · x+b · y+z = 0,
[0073] 其中,ζ坐标给出在基于发射器的坐标系内从激光发射器的激光出孔R测量的相 对高度h。在图5中,示出了由激光发射器的旋转射束以原点R生成的水平面(零平面,水 平的)110、和激光接收器对水平面110的交点P1。该旋转激光束例如在激光接收器被固定 在杆上时,按具有激光发射器的坐标系下的固定坐标Xr和Yr的位置P1、照射激光接收器的 线性光传感器。为了确定发射器坐标系中的3D位置(x、y、z)和准确方位角(由接收器的 XK、YK确定的),发射具有已知倾角的第二激光平面120,在零位置之外生成固定定位激光接 收器的光传感器与所述第二激光平面120的交点Ρ2。在激光接收器的光传感器处的第一交 点(图5中:Pl)与第二交点(图5中:Ρ2)之间的距离Ii i (图5中h2),通常被称作相对高 度比。利用激光接收器的光传感器来测量由激光发射器的旋转激光束生成的已知的激光平 面120的交点P2与水平面(零平面)110的所述相对高度4。由此,假使该接收器居中至 激光发射器的零平面110 (其意指光传感器的零位置c被生成水平面110的激光束照射), 该接收器的3D位置(x、y、z)坐标可以在生成两个不同的已知激光平面时,根据下列方程来 确定。而且据此,可以确定接收器在发射器的坐标系下的准确的方位角。
[0074] a1 · Χκ+b! · Y^h1 = O
[0075] a2 · xE+b2 · yE+h2 = O
[0076] 其中,%、匕是激光平面的已知参数(从激光发射器的具有角分范围下的准确度的 倾度传感器/坡度传感器得到的),而h是接收器处的所测量高度(ζ方向)。
[0077] 针对坐标位置L和Xr求解该方程=> CL -IU -(U ?ι
[0_
[0079] %七0方程组1 :在接收器的零位置处于水平面时的坐标位置
[0080] 针对该方程的奇点存在,例如:零平面叫=O和Id1 = O :
[0081] a2 · IDfa1 · b, = O
[0082] 或者 a2 · Id1 = B1 · b2。
[0083] 为了使该方程有效,激光接收器必须相对于水平面110是稳定的,例如,在该接收 器针对水平面110保持同坡度时。如果该接收器保持同坡度,则平面120针对平面110通 过用户输入来调节,或者通过接收器信号自动地调节,以确定接收器位置。
[0084] 移开接收器并且重复上述过程,在两个或更多个位置生成接收器在激光发射器的 坐标系下的3D位置。这些位置之间的相对测量例如可以针对打桩应用来进行。
[0085] 在激光发射器侧上可以有另几种实现,例如,提供交替平面的单一激光发射器或 者形成为双射束旋转器的发射器,该双射束旋转器具有例如以180度隔开的2个波束角并 且横跨不同平面。该激光器系统还可以设置有被形成为双波长激光器的激光发射器,并且 设置有包括至少两个不同的线性激光光传感器的激光接收器,每一个线性激光光传感器都 敏感于由激光发射器发射的波长之一,以使每一个线性光传感器能够分离由激光发射器发 射的、具有相应波长的激光平面。由此,由激光发射器发射的并且具有特定波长的每一个所 述激光平面都在接收器处被滤波并由此可以被标识。
[0086] 在另选的实施方式中,激光接收器提供两个隔开的光学部件/光传感器。利用经 过时间方法,可以确定针对激光发射器的距离。知道了针对激光发射器的距离,贯穿激光接 收器的单一非水平面足够计算其3D位置。
[0087] 假使接收器未居中至水平面110(或者换句话说,生成水平面的激光束不匹配光 传感器的零位置,激光接收器和激光发射器不同坡度),如果接收器在开始测量时未针对激 光发射器居中,则可以通过计算附加的未知偏移高度H tl来确定激光接收器10的3D位置。 该未知偏移高度Htl(接收器的零位置c与激光发射器的水平面之间的距离)可以通过生成 第三激光平面来确定。即使第三激光平面显著高出或低于水平面,使得接收器10的检测第 三激光平面的光学传感器1未贯穿水平面110传播,也可以通过移动接收器来确定接收器 的零位置c针对激光发射器的水平面的高度偏移H tl,只要其捕获第三平面的激光束即可,确 定其与第三平面的交点并接着利用下列一组的3个方程:
[0088] B1 · X^b1 · Υε+^^Ηο) = 0
[0089] a2 · xE+b2 · yE+(h2+H0) = 0
[0090] a3 · xE+b3 · yE+(h3+H0) = 0
[0091] 由此,当接收器10的零位置c未处于水平面110时,坐标位置L和为=>
【权利要求】
1. 一种激光器系统(100),所述激光器系统包括:激光接收器(10),所述激光接收器与 激光发射器(20、20')协作, ? [1]所述激光接收器(10)被设计成,利用激光光传感器(1)检测激光发射器(20、 20')的激光束(22、22'),所述激光光传感器(1)具有零位置(z)并且在被激光束(22、22') 照射时提供电输出信号,所述激光接收器(10)还包括被设计成接收并且计算所述激光光 传感器(1)的所述电输出信号的电路(3)以及用于利用通信信号与所述激光发射器(20、 20')进行通信的通信信号发送器(6); ?所述激光发射器(20、20')被设计成,提供激光平面(23、23'),并且包括控制单元 (25),所述控制单元(25)连接至通信信号接收器(21),以便操作并计算来自所述激光接收 器(10)的传入通信信号, 其特征在于 ?所述激光接收器(10)具有加速度传感器(4),所述加速度传感器被设计成,提供指示 所述激光接收器(10)的移动的电输出信号, -其中,所述电路(3)被设计成,根据计算并关联所述加速度传感器的输出信号与所述 激光光传感器(1)的输出信号,得到所述激光接收器(10)相对于所述激光束(22、22')的 移动方向,并且 -其中,所述激光接收器被设计成,将所述输出信号和/或所述计算和关联处理所得到 的结果传送至所述激光发射器(20、20'),接着被所述激光发射器(20、20')的所述控制单 元(25)操作并计算为传入通信信号;并且 ?其中,所述激光发射器(20、20')的所述控制单元(25)设置有调节单元(24),并且根 据所操作并计算的传入通信信号,由所述调节单元(24)执行调节,其中,调节包括调节以 下中的至少一个: -由所发射的激光束(22、22')生成的参照光平面(23、23')的倾斜; -由所发射的激光束(22、22')生成的所述参照光平面(23、23')的海拔; -所述激光束(22、22')的聚焦和散焦; -调节所发射的激光束(22、22')的激光的强度; _调节旋转激光束的旋转端头速度; -发射告警信号。
2. 根据权利要求1所述的激光器系统(100),其特征在于 所述激光接收器(10)和所述激光发射器(20、20')皆设置有通信收发器(6、21),以便 发送和接收通信信号。
3. 根据权利要求1或2所述的激光接收器(10), 其特征在于 所述激光光传感器(1)包括布置为线性阵列的多个光敏部件(2),其中,所述零位置 (z)处于所述阵列的中心。
4. 根据权利要求1至3中的一项所述的激光器系统(100),其特征在于 所述激光接收器(10)的所述电路(3)还被设计成,根据计算并关联所述加速度传感 器的所述输出信号与所述激光光传感器(1)的所述输出信号,得到所述激光接收器(10)相 对于所述激光束(22、22')的移动加速度和/或移动速度,并且/或者估计所述激光接收器 (10)相对于所述激光束(22、22')的移动结束位置。
5. 根据权利要求4所述的激光器系统(100), 其特征在于 所述激光发射器(20、20')的所述控制单元(25)被设计成,关联所述调节与所述激光 接收器(10)的移动,并且具体地,关联所述调节与所述激光接收器(10)的移动的方向和/ 或所述激光接收器(10)的所述移动的加速度和/或所述激光接收器(10)的所述移动的速 度和/或所述激光接收器(10)的所述移动的估计的相对结束位置。
6. 根据前述权利要求中的一项所述的激光器系统(100), 其特征在于 所述激光接收器(10)的所述加速度传感器被设计为三轴加速度传感器。
7. 根据前述权利要求中的任一项所述的激光器系统(100), 其特征在于 所述激光发射器(20、20')是 ?被设计成在旋转所发射的激光束(22)时提供激光平面(23)的旋转结构激光器(20); 或者 ?被设计成像激光平面(23')一样以展开的扇形的形式发射激光束(22')的线激光器 (20,)。
8. 根据前述权利要求中的任一项所述的激光器系统(100), 其特征在于 所述激光发射器(20、20')是旋转结构激光器(20),并且所述调节单元(24)被设置用 于调节所述旋转激光束(22)的旋转速度。
9. 根据前述权利要求中的任一项所述的激光器系统(100), 其特征在于 所述激光发射器(20、20')设置有用于具体地通过射束遮蔽或者通过限制所述激光束 (22、22')在预定的端点之间的摆动来限制所述激光平面(23、23')的范围的装置。
10. 根据前述权利要求中的一项所述的激光器系统(100), 其特征在于 所述激光接收器(10)的所述电路(3)和/或所述激光发射器(20、20')的所述控制单 元(25)被设计成,基于在被提供具有不同的倾角和/或不同的偏移的至少两个激光平面的 所述激光发射器的所述激光束照射时所提供的、所述激光光传感器(1)的输出信号和所述 加速度传感器(4)的输出信号,确定所述激光接收器(10)相对于所述激光发射器(20、20') 的三维位置。
11. 根据权利要求10所述的激光器系统(100), 其特征在于 所述激光接收器(10)的所述电路(3)和/或所述激光发射器(20、20')的所述控制单 元(25)被设计成,确定所述激光接收器(10)相对于与发射水平面(110)的所述激光发射 器(20、20')的激光束正交的线的倾角(k),所述倾角(K)包括第一分量(K 1)和第二分 量 O 2)。
12. 根据权利要求11所述的激光器系统(100), 其特征在于 所述激光接收器(10)的所述电路(3)和/或所述激光发射器(20、20')的所述控制单 元(25)被设计成,利用所确定的具有第一分量(k1)和第二分量(K 2)的所述倾角(k), 确定所述激光接收器相对于所述激光发射器(20、20')的水平取向,由此,所述倾角(k)与 由所述激光接收器(10)的所述加速度传感器(4)所检测到的重力参照倾度相结合。
13. 根据前述权利要求10至12中的一项所述的激光器系统(100), 其特征在于 所述激光器系统(100)设置有被形成为双波长激光器的激光发射器,并且设置有包括 至少两个不同的线性激光光传感器(1)的激光接收器,其中每一个线性激光光传感器都敏 感于由所述激光发射器发射的波长之一,以使每一个线性光传感器(1)能够分离由所述激 光发射器所发射的相应波长的激光平面。
14. 根据权利要求10至13中的一项所述的激光器系统(100), 其特征在于 所述激光器系统(100)设置有用于确定所述激光接收器(10)与所述激光发射器(20、 20')之间的距离的电子装置,其中,所述电子装置是来自包括以下装置的组中的至少一个: GPS、激光测距仪、像ZigBee或激光定位雷达系统LPR系统这样的无线通信装置,以使为确 定所述激光接收器(10)的所述三维位置所需的平面的数量减少一。
15. 根据前述权利要求10至14中的一项所述的激光器系统(100), 其特征在于 所述激光器系统(100)设置有用于利用经过时间方法确定所述激光接收器(10)与所 述激光发射器(20、20')之间的距离的电子装置,以使为确定所述激光接收器(10)的所述 三维位置所需的平面的数量减少一。
16. 根据前述权利要求中的一项所述的激光器系统(100), 其特征在于 所述激光发射器(20、20')的所述控制单元(25)设置有搜索功能,以便在与所述激光 接收器(10)的光学联系丢失的情况下对所述激光束(22、22')重新取向。
17. 根据前述权利要求中的一项所述的激光器系统(100), 其特征在于 所述激光接收器(10)接合至施工机械(30)并且能够与所述施工机械(30) -起移动, 并且所述系统被设计用于控制所述施工机械(30)。
18. 将根据权利要求17所述的激光器系统(100)用于引导并控制建筑工地上的施工机 械(30)。
【文档编号】G01C15/00GK104428626SQ201380012510
【公开日】2015年3月18日 申请日期:2013年3月15日 优先权日:2012年3月15日
【发明者】C·L·E·迪穆兰, 安东·克尔 申请人:莱卡地球系统公开股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1