超临界二氧化碳岩石压裂试验系统的制作方法

文档序号:12357487阅读:155来源:国知局



背景技术:
页岩气的开发需要对储层实施压裂改造,将压裂介质携砂后高压泵入储层,在低渗透致密岩层中实施压裂形成三维裂缝网络,有效提高储层岩石渗透率而达到开发资源的目的。超临界二氧化碳是当二氧化碳温度超过31.26℃,压力超过7.38MPa时的一种特殊状态,超临界二氧化碳分子间作用力很小,流动性极强而密度较高,如果采用超临界二氧化碳作为压裂介质,可以最大限度沟通储层中的裂缝网络。对于如何通过在实验室模拟重现地应力状态下岩样在超临界二氧化碳作用下的破裂效果是个难题,主要在于几个方面的问题难以解决:如何实现液态二氧化碳向超临界二氧化碳的转变;如何实现超临界二氧化碳的伺服供给;如何实现超临界二氧化碳的携砂。



技术实现要素:
本发明提供一种能够实现岩石样品在地应力条件下被超临界二氧化碳致裂的岩石力学试验系统。其特征是采用液态二氧化碳源、高压计量柱塞泵以及数控高精度加热装置组成超临界二氧化碳伺服供给部分来实现超临界二氧化碳的等流量或等压力供给;采用密闭保温携砂装置、表面活性剂加注装置以及反排装置组成密闭携砂部分来实现超临界二氧化碳携砂进入并撑开裂缝;采用液压油源、三轴压力室、高刚度作动器、岩样上下垫板以及岩石试样组成岩样加压部分为岩石试样施加轴向应力和围压以模拟真实地应力状态。

超临界二氧化碳岩石压裂试验系统,由超临界二氧化碳伺服供给部分、密闭携砂部分以及岩样加压部分共三部分构成,所述超临界二氧化碳伺服供给部分由液态二氧化碳源1,安全阀门2,压力表3,高压计量柱塞泵4,止回阀5,压力传感器6,压力自动转换阀7,蓄能器8,安全阀门9,二氧化碳加热装置10,温度传感器11和安全阀门12组成;所述密闭携砂部分由密闭保温携砂装置13,温度传感器14,压力传感器15,表面活性剂加注装置16,阀门17,反排装置18,压裂操控装置19,安全阀门20和超临界二氧化碳注入口21组成;所述岩样加压部分由岩石试样22,试样上下垫板23,压力室24,围压输入口25,压力作动器26,加载操控装置27和液压油源28组成。

基本原理与技术:针对液态二氧化碳增压泵送的需要,采用两台高压计量柱塞泵并联来实现液态二氧化碳的等压力或等流量连续伺服供给,将液态二氧化碳增压至超过7.38MPa;针对液态二氧化碳增压后还需要提升温度才能使得液态二氧化碳进入超临界态,采用二氧化碳加热装置配合温度传感器对增压后的液态二氧化碳均匀加热至超过31.26℃,最终使得液态二氧化碳进入超临界态;针对超临界二氧化碳储层压裂过程中压裂介质需要携砂进入裂缝以撑开裂缝,采用密闭保温携砂装置配合温度传感器和压力传感器使得超临界二氧化碳在保证压力温度恒定的情况下携带细砂进入岩石试样;针对岩石试样地应力状态的模拟需要,采用圆筒形压力室沿试样轴向及周边施加轴压及围压,围压由液压油注入口进入压力室沿试样周边来施加,轴压采用压力作动器沿试样轴向来施加;针对超临界二氧化碳储层压裂过程模拟的需要,采用沿岩石试样轴线布置一定直径的钻孔,将超临界二氧化碳沿钻孔注入岩样来实施压裂。

超临界二氧化碳岩石压裂试验系统,由超临界二氧化碳伺服供给部分、密闭携砂部分以及岩样加压部分共三部分构成。

超临界二氧化碳伺服供给部分由液态二氧化碳源1,安全阀门2,压力表3,高压计量柱塞泵4,止回阀5,压力传感器6,压力自动转换阀7,蓄能器8,安全阀门9,二氧化碳加热装置10,温度传感器11和安全阀门12组成。液态二氧化碳源1的二氧化碳在常温下高压保存于钢瓶中,高压计量柱塞泵4必须满足伺服供给的输出流量和输出压力要求,蓄能器8能够配合高压计量柱塞泵4以保证液态二氧化碳的稳定供给,二氧化碳加热装置10需要能够保证能够将液态二氧化碳均匀加热至设定温度。

密闭携砂部分由密闭保温携砂装置13,温度传感器14,压力传感器15,表面活性剂加注装置16,阀门17,反排装置18,压裂操控装置19,安全阀门20和超临界二氧化碳注入口21组成。密闭保温携砂装置13必须保证在完全密闭条件下能够将超临界二氧化碳和细砂混合后输出,反排装置18可以保证携砂后 的超临界二氧化碳单向稳定输出,压裂操控装置19能够全面控制液态二氧化碳在供给过程中的压力、温度和流量。

岩样加压部分由岩石试样22,试样上下垫板23,压力室24,围压输入口25,压力作动器26,加载操控装置27和液压油源28组成。压力室24的壁厚应满足岩石试样22的围压加载需要,围压输入口25应能够伺服输入岩石试样22围压加载所需压力,压力作动器26应能够伺服输出岩石试样22轴压加载所需压力,试样上下垫板23的尺寸应大于岩石试样22直径,加载操控装置27的频率响应能够满足岩石试样22的轴向及围压伺服加载需要。

附图说明

附图是超临界二氧化碳岩石压裂试验系统组成图。

1:液态二氧化碳源;2:安全阀门;3:压力表;4:高压计量柱塞泵;5:止回阀;6:压力传感器;7:压力自动转换阀;8:蓄能器;9:安全阀门;10:二氧化碳加热装置;11:温度传感器;12:安全阀门;13:密闭保温携砂装置;14:温度传感器;15:压力传感器;16:表面活性剂加注装置;17:阀门;18:反排装置;19:压裂操控装置;20:安全阀门;21:超临界二氧化碳注入口;22:岩石试样;23:试样上下垫板;24:压力室;25:围压输入口;26:压力作动器;27:加载操控装置;28:液压油源。

具体实施方式 1.将岩石试样22放置于试样上下垫板23之间并置于压力室24中,启动加载操控装置27控制液压油源28中的液压油通过围压输入口25进入压力室24对岩石试样22施加围压至设定值,之后加载操控装置27控制压力作动器26沿岩石试样22轴向施加轴向荷载至设定值。

2.打开安全阀门2,通过压力表3获取液态二氧化碳当前压力值,之后高压液态二氧化碳通过安全阀门2进入高压计量柱塞泵4,通过压裂操控装置19启动高压计量柱塞泵4对液态二氧化碳增压至设定值,通过压力自动转换阀7增压后液态二氧化碳的连续供给,打开安全阀门9,增压后的液态二氧化碳进入二氧化碳加热装置10进行均匀加热至设定温度值,最终使得液态二氧化碳进入超临界态。

3.打开安全阀门12,超临界二氧化碳通过安全阀门12进入密闭保温携砂装置13后与细砂混合,在此过程中可以打开阀门17并开启表面活性剂加注装置16以实现超临界二氧化碳和细砂的均匀混合,携砂后的超临界二氧化碳通过反排装置18输出。

4.打开安全阀门20,携砂后的超临界二氧化碳通过超临界二氧化碳注入口21输入岩石试样22的轴向钻孔,三轴应力状态下的岩石试样22在超临界二氧化碳作用下最终破裂。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1