电池动态电化学阻抗谱的测试装置的制作方法

文档序号:17788194发布日期:2019-05-31 19:43阅读:133来源:国知局
电池动态电化学阻抗谱的测试装置的制作方法

本申请涉及电池测试领域,特别是涉及一种电池动态电化学阻抗谱的测试装置。



背景技术:

电池电化学阻抗谱测量是对电池阻抗分解,获取电池健康状态的重要手段。随着电池应用领域的推广和使用寿命的延长,通过电化学阻抗谱获取电池老化信息,成为电池继续应用工况设定和梯次利用检测的重要手段。

当前对电池电化学阻抗谱的测量主要集中在电池静态工况下的电化学阻抗测量。然而,已有研究表明,即使电池在相同健康状态、相同荷电状态,电池在充电过程中的电化学阻抗与放电过程中的电化学阻抗也不相同,即电池在实际使用过程中,动态电化学阻抗谱才是反映电池在当前工况下电化学阻抗的更可靠手段。目前,对电池动态电化学阻抗谱的测量仍然采用与传统静态电化学阻抗谱测量相同的方法,测量精度较差。



技术实现要素:

基于此,有必要针对现有电池动态化学阻抗谱的测量精度差的问题,提供一种电池动态电化学阻抗谱的测试装置。

一种电池动态电化学阻抗谱的测试装置,包括:

第一控制器;

动态工况发生器,与所述第一控制器电连接,所述第一控制器控制所述动态工况发生器发送工况信号;

交变电流发生器,与所述第一控制器电连接,所述第一控制器控制所述交变电流发生器产生测试电流信号;

交变电压采集器,与所述第一控制器电连接,所述第一控制器控制所述交变电压采集器采集交流电压信号;

时钟同步发生器,分别与所述交变电流发生器和所述交变电压采集器电连接,用于将所述交变电流发生器和所述交变电压采集器进行时钟同步;以及

处理器,分别与所述交变电流发生器和所述交变电压采集器电连接,用于计算待测电池的动态电化学阻抗谱。

在其中一个实施例中,所述时钟同步发生器与所述动态工况发生器电连接,用于将所述动态工况发生器和所述交变电流发生器进行钟同步。

在其中一个实施例中,还包括:

第二控制器,与所述第一控制器电连接,用于向所述第一控制器发送动态工况参数或电化学阻抗谱测量参数。

在其中一个实施例中,还包括:

显示器,与所述处理器电连接,用于实时显示测量得到的动态电化学阻抗谱。

在其中一个实施例中,所述时钟同步发生器包括:

第一振荡器,分别与所述交变电流发生器和所述交变电压采集器电连接,用于将所述交变电流发生器和所述交变电压采集器进行时钟同步;以及

第二振荡器,分别与所述动态工况发生器和所述交变电流发生器电连接,用于将所述动态工况发生器和所述交变电流发生器进行钟同步。

在其中一个实施例中,所述处理器包括:

获取单元,分别与所述交变电流发生器和所述交变电压采集器电连接,用于获取所述测试电流信号和所述交流电压信号;以及

计算单元,与所述获取单元电连接,用于计算待测电池的动态电化学阻抗谱。

在其中一个实施例中,所述测试电流信号的频率范围为0.1mhz-1mhz,所述测试电流信号的振幅为0.02c-0.5c。

在其中一个实施例中,当需要测量待测电池的电化学阻抗时,所述动态工况发生器分别向所述待测电池和参照电池施加相同的充电电流或放电电流。

在其中一个实施例中,所述待测电池为铅酸蓄电池、镍镉蓄电池或锂蓄电池中的一种。

一种电池动态电化学阻抗谱的测试装置,包括:

第一控制器;

动态工况发生器,与所述第一控制器电连接,所述第一控制器控制所述动态工况发生器发送工况信号;

电池模拟器,与所述动态工况发生器电连接,所述动态工况发生器向所述电池模拟器施加充电电流或放电电流;

交变电流发生器,与所述第一控制器电连接,所述第一控制器控制所述交变电流发生器产生测试电流信号;

交变电压采集器,与所述第一控制器电连接,所述第一控制器控制所述交变电压采集器采集交流电压信号;

时钟同步发生器,分别与所述交变电流发生器和所述交变电压采集器电连接,用于将所述交变电流发生器和所述交变电压采集器进行时钟同步;以及

处理器,分别与所述交变电流发生器和所述交变电压采集器电连接,用于计算待测电池的动态电化学阻抗谱。

本申请提供一种电池动态电化学阻抗谱的测试装置。所述电池动态电化学阻抗谱的测试装置包括第一控制器、动态工况发生器、交变电流发生器、交变电压采集器、时钟同步发生器和处理器。所述第一控制器控制所述动态工况发生器施加动态工况。所述时钟同步发生器分别与所述交变电流发生器和所述交变电压采集器电连接,用于将所述交变电流发生器和所述交变电压采集器进行时钟同步。所述第一控制器控制所述交变电流发生器发送测试交流信号。所述第一控制器控制所述交变电压采集器采集交流电压信号。所述处理器根据所述测试交流信号和所述交流电压信号计算待测电池的动态电化学阻抗谱。所述测试装置通过向所述待测电池和参照电池设置相同的动态工况并采集所述待测电池和所述参照电池之间的交流电压信号,可以降低由于电池输入输出非线性和多因素耦合造成的误差,进而提高所述待测电池的动态电化学阻抗谱的测量精度。

附图说明

图1为本申请一个实施例提供的电池动态电化学阻抗谱的测试装置结构图;

图2为本申请一个实施例提供的电池动态电化学阻抗谱的测试装置结构图;

图3为本申请一个实施例提供的电池动态电化学阻抗谱的测试装置结构图;

图4为本申请一个实施例提供的传统动态电化学阻抗谱的测试结果图;

图5为本申请一个实施例提供的动态电化学阻抗谱的测试结果图。

主要元件附图标号说明

电池动态电化学阻抗谱的测试装置100

待测电池10

第一电极11

第二电极12

参照电池20

第三电极21

第四电极22

动态工况发生器31

交变电流发生器32

交变电压采集器33

第一控制器41

时钟同步发生器42

第一振荡器421

第二振荡器422

处理器43

获取单元431

计算单元432

第二控制器51

显示器52

电池模拟器60

具体实施方式

为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图对本申请的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本申请。但是本申请能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本申请内涵的情况下做类似改进,因此本申请不受下面公开的具体实施的限制。

需要说明的是,当元件被称为“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。

除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。

请参见图1,本申请一个实施例中提供一种电池动态电化学阻抗谱的测试装置100。所述电池动态电化学阻抗谱的测试装置100包括第一控制器41、动态工况发生器31、交变电流发生器32、交变电压采集器33、时钟同步发生器42和处理器43。

所述动态工况发生器31、所述交变电流发生器32以及交变电压采集器33分别与所述第一控制器41电连接。所述第一控制器41控制所述动态工况发生器31施加动态工况。所述时钟同步发生器42分别与所述交变电流发生器32和所述交变电压采集器33电连接,用于将所述交变电流发生器32和所述交变电压采集器33进行时钟同步。所述第一控制器41控制所述交变电流发生器32发送测试交流信号。所述测试电流信号的频率范围为0.1hz-1mhz,所述测试电流信号的振幅为0.02c-0.5c。所述第一控制器41控制所述交变电压采集器33采集交流电压信号。所述处理器43根据所述测试交流信号和所述交流电压信号计算待测电池的动态电化学阻抗谱。

所述动力电池可以为铅酸蓄电池、镍镉蓄电池或锂蓄电池中的一种。当需要测量待测电池10的电化学阻抗时,所述动态工况发生器31与所述待测电池10和所述参照电池20分别电连接,用于向所述待测电池10和所述参照电池20设置相同的动态工况。所述动态工况包括充电电流或放电电流。所述交变电流发生器32与所述待测电池10电连接,用于向所述待测电池10提供测试交流信号。所述待测电池10具有第一电极11和第二电极12。所述参照电池具有第三电极21和第四电极22。所述交变电压采集器33与所述第一电极11和所述第三电极21分别电连接,用于采集所述待测电池10和所述参照电池20之间的交流电压信号。

具体的,所述的动态工况发生器31通过第一动态工况输出线束与所述第二电极12和所述第四电极22相连。所述的动态工况发生器31通过第二动态工况输出线束与所述第一电极11相连。所述的动态工况发生器31通过第三动态工况输出线束与所述第三电极13相连。在工作过程中,所述动态工况发生器31将同样的动态工况施加到所述待测电池10和所述参照电池20上。所述的动态工况包括充电工况、放电工况,还包括任意设定的动态工况。为实现所述的同样的动态工况,所述第一动态输出线束上的电流方向与所述第二动态输出线束上的电流方向相反,所述第二动态输出线束上的电流方向与所述第三动态输出线束上的电流方向相同。并且,所述第二动态输出线束上的电流值等于所述第三动态输出线束上的电流值,所述第一动态输出线上的电流值为第二动态输出线束上的电流值的两倍。作为一个实施例,所述动态工况发生器31分别向待测电池10和所述参照电池20施加1c充电电流。为实现这一动态工况,所述第一动态输出线上的电流大小为2c,方向由电池流向所述动态工况发生器31,所述第二动态输出线束的电流大小和所述第三动态输出线束的电流大小均为1c,方向由所述动态工况发生器31流向电池。

所述交变电流发生器32通过第一交变电流输出线束与所述第一电极11相连。所述交变电流发生器32通过第二交变电流输出线束与所述第三电极12相连。所述交变电流发生器32用于将电化学阻抗谱的激励交变电流施加到所述待测电池10上。即所述交变电流发生器32用于向所述待测电池10提供测试电流信号。

所述时钟同步发生器42首先对所述交流电流发生器32、所述交变电压采集器33进行时钟同步。以保证不同部件输出、输入信号具有相同时钟。在所述测试装置100运行时,所述第一控制器41通过控制所述动态工况发生器31将相同的动态工况同时施加到所述待测电池10和所述参照电池20。当所述待测电池10在动态工况下运行至目标工况点时,所述第一控制器41通过控制所述交变电流发生器32将交流阻抗对应的交流电流激励施加到所述待测电池10。所述交流阻抗对应的交流电流激励为所述测试电流信号。同时,所述第一控制器41通过控制交变电压采集器33采集所述待测电池10和所述参照电池20之间的电势差。所述电势差作为交流电压型号。所述处理器43通过获取所述电流激励和所述电势差,经运算获取被测电芯的动态电化学阻抗谱。

所述参照电池20与待测电池10具有相同的外特性。所述相同的外特性为在相同电流或电压输入条件下,所述参照电池20的电压输出特性或电流输出特性与所述待测电池10的电压输出特性或电流输出特性相同。所述参照电池20既包括外特性与所述待测电池10相同的真实电池,比如,所述参照电池20为与所述待测电池10同型号、同批次的真实电池。所述参照电池20还包括外特性与所述待测电池10相同的虚拟电池。比如,可以模拟电池输出特性的电池模拟器60通过测量和记录电池动态工况下的响应特性模拟出的与所述待测电池10具有相同的响应特性的虚拟电池。所述参照电池20与所述待测电池10在单个电极上通过动态工况电流输出线束连接在一起。所述单个电极连接,包括正极与正极连接,也包括负极与负极连接。作为一个实施例,所述待测电池10与所述参照电池20在负极上通过动态工况电流输出线束连接在一起,即所述待测电池10电池负极与所述参照电池20负极连接。

本实施例中,所述测试装置100通过向所述待测电池10和所述参照电池20设置相同的动态工况并采集所述待测电池10和所述参照电池20之间的交流电压信号,可以降低由于电池输入输出非线性和多因素耦合造成的误差,进而提高所述待测电池10的动态电化学阻抗谱的测量精度。

请参见图2,在一个实施例中,所述电池动态电化学阻抗谱的测试装置100还包括第二控制器51和显示器52。

所述第二控制器51与所述第一控制器41电连接,用于向所述第一控制器41发送动态工况参数或电化学阻抗谱测量参数。所述显示器52与所述处理器43电连接,用于实时显示测量得到的动态电化学阻抗谱。所述第二控制器51可以是微处理器或者单片机。所述显示器52可以是电脑或者其他带显示屏的设备。

本实施例中,操作人员通过所述第二控制器52可以任意设定工况或电化学阻抗谱测量参数,进而实现测量任意工况下和任意电化学阻抗激励信号下的电化学阻抗谱,并将所述电化学阻抗谱显示到所述显示器中,以便于操作人员观看。

在其中一个实施例中,所述时钟同步发生器42包括:第一振荡器421和第二振荡器422。

所述第一振荡器421分别与所述交变电流发生器32和所述交变电压采集器33电连接。所述第一振荡器421用于实现所述交变电流发生器32和所述交变电压采集器33之间的时钟同步。所述第二振荡器422分别与所述动态工况发生器31和所述交变电流发生器32电连接,用于将所述动态工况发生器31和所述交变电流发生器32进行钟同步。由于测量的电化学阻抗谱为向量。所述电化学阻抗谱具有幅值和相位。为了准确测量所述幅值和所述相位,所述测试交流信号和交流电压信号需要严格同步,因此所述第一振荡器421的同步误差可以小于1微秒。为了保证在一个工况下施加所述测试电流信号,要保证所述动态工况发生器31和所述交变电流发生器32时钟同步。为了节约成本又不影响测量精度,所述第二振荡器422的同步误差小于0.1秒即可。

请参见图3,本申请一个实施例中,提供一种电池动态电化学阻抗谱的测试装置100。所述测试装置100包括:第一控制器41、动态工况发生器31、电池模拟器60、交变电流发生器32、交变电压采集器33、时钟同步发生器42和处理器43。

所述动态工况发生器31与所述第一控制器41电连接,所述第一控制器41控制所述动态工况发生器31发送工况信号。所述电池模拟器60与所述动态工况发生器31电连接,所述动态工况发生器31向所述电池模拟器60施加充电电流或放电电流。所述交变电流发生器32与所述第一控制器41电连接,所述第一控制器41控制所述交变电流发生器32产生测试电流信号。所述交变电压采集器33与所述第一控制器41电连接,所述第一控制器41控制所述交变电压采集器33采集交流电压信号。所述时钟同步发生器42分别与所述交变电流发生器32和所述交变电压采集器33电连接。所述时钟同步发生器42用于将所述交变电流发生器32和所述交变电压采集器33进行时钟同步。所述处理器43分别与所述交变电流发生器32和所述交变电压采集器33电连接。所述处理器43用于计算待测电池10的动态电化学阻抗谱。

本实施例中的所述第一控制器41、所述动态工况发生器31、所述交变电流发生器32、所述交变电压采集器33、所述时钟同步发生器42和所述处理器43与上述实施例中的所述第一控制器41、所述动态工况发生器31、所述交变电流发生器32、所述交变电压采集器33、所述时钟同步发生器42和所述处理器43的结构以及连接关系相同,此处不再赘述。

所述电池模拟器60通过测量和记录电池动态工况下的响应特性模拟出的与所述待测电池10具有相同的响应特性的虚拟电池。所述相同的响应特性为在相同电流或电压输入条件下,所述虚拟电池的电压或电流输出特性与所述待测电池10的电压或电流输出特性相同。

所述处理器43包括获取单元431和计算单元432。所述获取单元431分别与所述交变电流发生器32和所述交变电压采集器33电连接,用于获取所述测试电流信号和所述交流电压信号。所述计算单元432与所述获取单元431电连接,用于计算待测电池10的动态电化学阻抗谱。

本实施中,所述电池模拟器60通过测量和记录电池动态工况下的响应特性模拟出的与所述待测电池10具有相同的响应特性的虚拟电池。所述测试装置100通过向所述待测电池10和所述虚拟电池设置相同的动态工况。并且,所述测试装置100采集所述待测电池10和所述虚拟电池之间的交流电压信号,可以降低由于电池输入输出非线性和多因素耦合造成的误差,进而提高所述待测电池10的动态电化学阻抗谱的测量精度。

请参见图4和图5,在一个实施例中,所述时钟同步发生器42首先对所述动态工况发生器31、所述交流电流发生器32和所述交变电压采集器33进行时钟同步,保证不同部件输出、输入信号具有相同时钟。在所述测试装置100运行时,所述动态工况发生器31将1c的充电电流同时施加到所述待测电池10和所述参照电池20。当所述待测电池10在动态工况下运行至目标状态时,所述交变电流发生器32将1hz、0.2c的交流电流激励施加到待测电池10。同时,所述第一控制器41控制所述交变电压采集器33采集所述待测电池10和所述参照电池20正极之间的电势差,并反馈至所述处理器43。所述处理器43通过对所述交变电流发生器32发出的测试电流信号、所述交变电压采集器33的电压响应进行分析、计算,获取被测电芯的动态电化学阻抗谱。所述计算公式为:

其中,所述z代表电化学阻抗;vm代表电势差的幅值;w’代表电势差的频率;代表电势差的相位;im代表测试交流信号的幅值;w代表测试交流信号的频率;代表测试交流信号的相位。

所述显示器52实施显示所述处理器43计算得的动态电化学阻抗谱,所述动态电化学阻抗谱如图5所示。相同参数下,通过传统动态测试方法得到的动态电化学阻抗谱图4所示。经对比可知,本申请提供的电池动态电化学阻抗谱测试结果更加稳定,重复性更好。

以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。

以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1