加速度传感器的制造方法_2

文档序号:10228178阅读:来源:国知局
所述第一腔体上的敏感器件层500包括:均悬于所述第一腔体102的第一固定梳齿405、由所述第一固定梳齿405两端延伸至所述第一腔体102外边沿延伸的悬臂梁407、包含与所述第一固定梳齿405有间隙的啮合的第一可动梳齿404的第一质量块401、以及横跨所述第一腔体102并将所述第一质量块401分为质量不等两部分的扭转梁402,其中,所述悬臂梁407悬于所述第一腔体102上方并沿其内边沿、并与所述第一固定梳齿405整体成型。所述悬臂梁407的端部位于所述第一腔体的外边沿靠近所述扭转梁402的位置,且所述悬臂梁407和扭转梁402的两端部固定于所述第一腔体的外边沿上。例如,所述悬臂梁407和扭转梁402的两端部由锚定部403固定于所述第一腔体的外边沿上。
[0031]在此,所述第一固定梳齿405和第一可动梳齿404成排的位于所述第一质量块401中质量较重的部分、或者成排的位于所述第一质量块401中质量较轻的部分。其中,所述第一固定梳齿405和第一可动梳齿404之间具有间隙,以使得各第一固定梳齿405和第一可动梳齿404构成竖直轴向(z轴)的敏感电容。所述悬臂梁407位于成排的第一固定梳齿405的两端。当所生产的加速度传感器沿z轴加速移动时,根据牛顿第二定律和杠杆作用原理,所述第一可动梳齿404围绕所述扭转梁402所在轴向发生转动。故而改变了该第一可动梳齿404与第一固定梳齿405之间的正对面积,使得z轴向的敏感电容的变化与加速度变化成比例关系Ο
[0032]优选地,为了使所输出的ζ轴敏感信号滤除噪声信号,提高信噪比,所述第一固定梳齿405和第一可动梳齿404成排的对称于所述扭转梁402两侧。相应的,所述悬臂梁407所述第一固定梳齿405排的两端沿所述第一腔体102内边沿延伸,并由锚定部403固定在所述第一腔体102的外边沿上。
[0033]当所述加速度传感器沿ζ轴加速移动,由扭转梁402分割的第一质量块401中质量较重的部分和质量较轻的部分产生带动各自的第一可动梳齿404沿所述扭转梁402轴向转动,以输出差分的敏感信号。
[0034]在所述悬臂梁407上固设有氧化硅薄膜408。所述氧化硅薄膜408在几微米左右。
[0035]需要说明的是,所述氧化硅薄膜408的厚度仅描述到微米级,但该精度并非一定在微米级,也可以为更高精度。
[0036]具体地,所述氧化硅薄膜408是在所述敏感器件层500上生成氧化硅薄膜后,再将除悬臂梁图案所对应的悬臂梁407处以外的氧化硅薄膜腐蚀掉而得到的。
[0037]如图6所示,所述氧化硅薄膜408的固有压应力使悬臂梁407向下发生弯曲。当所述传感器未接收到ζ轴向的加速度时,连接在所述悬臂梁407上的第一固定梳齿405的顶部和底部、与所述第一质量块401上的第一可动梳齿404的顶部和底部形成高度差。
[0038]如图7所示,当竖直轴向加速度作用时,所述第一质量块401带动第一可动梳齿404绕所述扭转梁转动,第一可动梳齿404与第一固定梳齿405交叠面积发生改变。
[0039]若所述第一固定梳齿405和第一可动梳齿404为对称的成排而设,所述第一可动梳齿404与第一固定梳齿405在交叠面积发生改变时,输出差分敏感信号。例如,当竖直轴向加速度作用时,第一质量块401两侧的第一可动梳齿404围绕扭转梁402转动时,一侧由第一可动梳齿404与第一固定梳齿405构成的敏感电容的极板面积减小,同时另一侧由第一可动梳齿404与第一固定梳齿405构成的敏感电容的极板面积增加。如此,输出差分敏感信号。
[0040]若所述加速度传感器中还包含:Χ轴和y轴的加速度敏感电容,则覆盖在相应第二腔体103上的敏感器件层包括:垂直于其中一水平轴向的敏感方向、且由所述第二腔体103对称的两外边沿分别向腔内延伸的第二固定梳齿205(或305);悬于所述第二腔体103并包含第二可动梳齿204(或304)的第二质量块201 (或301),其中,所述第二固定梳齿205(或305)与所述第二可动梳齿204(或304)有间隙的啮合,并所述第二固定梳齿205(或305)与所述第二可动梳齿204(或304)所对应的两个敏感电容在相应敏感方向上输出差分敏感信号;以及由所述第二质量块201(或301)沿敏感方向对称延伸至所述第二腔体103外边沿的弹性梁202(或302)。其中,所述弹性梁202(或302)可延伸至所述第二腔体103内边沿处并由锚定部203(或303)接于所述第二腔体103外边沿。
[0041 ]在此,所述第二可动梳齿204(或304)和第二固定梳齿205(或305)之间留有间隙,以使得所制造出的所述第二可动梳齿204(或304)和第二固定梳齿205(或305)构成相应的X轴或y轴方向的加速度敏感电容。同时,所述第二可动梳齿204(或304)和第二固定梳齿205(或305)成排设置。其中,所述第二固定梳齿205(或305)和第二可动梳齿204(或304)所构成的敏感电容可仅位于所述第二质量块201(或301)—侧。优选地,所述第二质量块201(或
301)呈轴对称,两排第二固定梳齿205(或305)根据量程彼此交错,所述第二可动梳齿204(或304)啮合在量程的中间。如此,使得在感应X轴或y轴方向的加速度时,所述第二固定梳齿205(或305)和第二可动梳齿204(或304)所构成的敏感电容能够输出差分的敏感信号。如图2、3所示。
[0042]在此,所述弹性梁202(或302)由所述第二质量块201(或301)的侧边蜿蜒而至所述第二腔体103的外边沿,并固定在所述第二腔体103的外边沿上。例如,所述弹性梁202(或
302)为直角弯折的蛇形曲线。
[0043]例如,如图2所示,在加速度没有变化时,位于图下方的两个第二固定梳齿和与其啮合的第二可动梳齿之间的间隔A1,和位于图上方的两个第二固定梳齿和与其啮合的第二可动梳齿之间的间隔A2相对应;位于图下方的两个第二固定梳齿和与其啮合的第二可动梳齿之间的间隔A3,和位于图上方的两个第二固定梳齿和与其啮合的第二可动梳齿之间的间隔A4相对应。其中,间隔A1和A4的长度相等,间隔A2和A3的长度相等,但是,间隔A1和A2的长度不等。
[0044]如图3所示,当感应到加速度变化时,位于图下方的两个第二固定梳齿和与其啮合的第二可动梳齿之间的间隔A1变大;位于图上方的两个第二固定梳齿和与其啮合的第二可动梳齿之间的间隔A2变大;位于图下方的两个第二固定梳齿和与其啮合的第二可动梳齿之间的间隔A3变小;和位于图上方的两个第二固定梳齿和与其啮合的第二可动梳齿之间的间隔A4变小。这使得图下方所形成的敏感电容减小,图上方所形成的敏感电容增加。如此实现了差分敏感信号的输出。
[0045]所述金属电极200的数量与所述加速度传感器所感应的轴向有关。各所述金属电极200位于所述敏感器件层500上。所述金属电极200与所述第一固定梳齿405和第一可动梳齿404所构成的敏感电容相连,所述金属电极200与所述第二固定梳齿205(或305)和第二可动梳齿204 (或304)所构成的敏感电容相连。如图1所示。
[0046]具体地,在所述敏感器件层500上淀积金属层,按照预设的布线图案,采用湿法腐蚀工艺刻蚀出用于与外部引脚相连的金属电极200、以及将所述金属电极和各敏感电容相连的金属布线。其中金属电极200可如图1所示的一字型排布。
[0047]实施例四
[0048]与实施例三不同之处在于,所述单晶硅基底100的各腔体内还设有止挡部411(或207、307)。其中,止挡部411位于所述扭转梁402—侧质量较轻的第一质量块部分处。所述第二质量块201 (或301)与相应止挡部207(或307)之间具有间隙。
[0049]例如,所述扭转梁402将第一质量块401平分,在所述第一质量块401中质量较轻的部分包含镂空区域,所述第一腔体102中的止挡部411对应所述镂空区域而设。
[0050]与实施例三中不同的是,所述第一质量块401、或第二质量块201(或301)分别与相应止挡部之间的空隙大小与相应敏感电容所感应的最大量程有关。
[0051 ]例如,对于ζ轴加速度敏感电容来说,所述第一质量块401和止挡部411之间的间隙应确保:第一可动梳齿404所能移动的距离应小于其与相邻第一固定梳齿405之间的距离,以及确保当第一可动梳齿404沿扭转梁402转动时与第一固定梳齿405仍构成电容
当前第2页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1