模型预测控制器解分析过程的制作方法

文档序号:6292282阅读:177来源:国知局

专利名称::模型预测控制器解分析过程的制作方法
技术领域
:本发明涉及控制系统,更具体而言,涉及将过程的动态和稳态行为向更优化的操作条件驱动的方法。
背景技术
:多变量预测控制算法,例如来自AspenTechnologies,Inc的AspenTech⑧的DMCplusTM或来自HoneywellInternationalInc的RMPCT为计算的组合以将过程的动态和稳态行为向更优化的操作条件驱动。在控制方案中使用的稳态算法最普遍为线性规划(LP),但有时是二次规划(QP)。对于小的问题,理解LP和QP解相对而言是简单的。二维问题可以在纸上直观化并演示给操作者以获得对过程的理解。通过某些详细的建模背景,工程师和受过良好训练的操作者可以理解中等大小的问题(小于10维)。然而,更大、更交互的问题通常需要离线模拟。这可能需要花费大量时间来获得即使是定性的理解。典型地,多变量预测控制器(MPC)的操作者可以观察当前的约束并可以访问过程的开环模型。然而,为全面理解约束组解除(relief),操作者将需要对过程模型的详细了解和根据模型跟踪独立和依赖关系的能力。为此,需要离线模拟或分析工具。否则,操作者不能了解要改变约束多少或接下来哪一个约束变为有效。用于离线模拟的一个构思为使用在其中以约束的受控变量(CV)互换无约束操纵变量(MV)的矩阵枢转(pivot)。约束变得"独立",并且无约束变量变得"依赖"。矩阵枢转可以^皮符号化为如下<formula>formulaseeoriginaldocumentpage7</formula>然而,该方法不能提供关于操作者改变多少将影响控制器解的定量)答,需要能够实时地分析任何大小的过去或当前动态矩阵控制(DMC)解的简单效用,以便为操作者提供用于DMC控制器约束解除的有意义的、定量的指令。
发明内容本发明的实施例的方面涉及一种分析和描述来自MPC的解的方法,所述方法可以为操作者提供关于在MPC解中改变控制器限制的定量输入。本发明的实施例的另一方面涉及使用所述方法来提供控制系统的操作者可以即刻可得的、可访问的、以及理解的信息。本发明涉及一种分析来自多变量预测控制器的解的方法,包括从多变量预测控制器获得解,所述预测控制器具有导致了不同的变量约束状态的稳态优化器,其中所述解包括通过操纵变量预测的受控变量;以及对所述解进行操作以获得约束变量与无约束变量之间的关系,从而确定无约束变量如何响应约束变量的改变。所述解可以以矩阵的形式表示。本发明还涉及一种用于过程设备的控制系统操作方法,包括从包括与所述过程相关的操纵变量和受控变量的基础模型文件基于所述操纵变量与所述受控变量之间的稳态响应提取原始增益矩阵。通过有效(active)约束条件分类所述操纵变量和受控变量,其中所述分类基于约束条件、无约束条件或违背条件。基于所述有效约束条件分类计算每一个变量的可能的移动量。基于所述有效约束条件改变所述增益矩阵的阶以获得优化解的模型矩阵表示。通过在所述才莫型矩阵中枢转所述约束的受控变量与所述无约束的操纵变量形成结果矩阵,从而形成所述结果矩阵。使用所述结果矩阵和所述可能的移动量来计算所述无约束变量对所述约束变量的改变的响应。本发明还涉及一种过程的控制系统,包括存储装置,存储J^模型文件,所述基础模型文件包括与所述过程相关的操纵变量和受控变量;以及与所述存储装置相关的控制器,其从所述1^出才莫型文件基于所述操纵变量与所述受控变量之间的稳态响应提取原始增益矩阵。所述控制器通过下述步骤使用优化解来描述无约束变量如何响应约束变量的改变,所述步骤为通过有效约束条件分类所述操纵变量和受控变量,其中所述分类基于约束条件、无约束条件或违背条件;基于所述有效约束条件分类计算每一个变量的可能的移动量;基于所述有效约束条件改变所述增益矩阵的阶以获得优化解的模型矩阵表示;使用所述模型矩阵从所述操纵变量预测受控变量;通过在所述模型矩阵中枢转所述约束的受控变量与所述无约束的操纵变量形成结果矩阵来形成所述结果矩阵;以及^f吏用所述结果矩阵和所述可能的移动量计算所述无约束变量对所述约束变量的改变的响应。当与详细的描述和附图结合时,本发明的这些和其他方面将变得显而易见。现在将结合附图描述本发明,其中图l是示出了根据本发明的过程的基本步骤的流程图。具体实施例方式在这里描述的本发明的优选实施例涉及动态矩阵控制器(DMC)。然而,本发明旨在更广泛地应用到一般的多变量预测控制器(MPC)以及其中希望在各种应用中优化过程限制的控制方案。这里使用的术语操作者旨在表示任何终端用户。例如,终端用户可以为操作者、过程工程师、值班班长(shiftlead)、控制工程师、或管理者。为了示范本发明的基本功能性,提出一个简单的问题。以最简单的形式,提供用于DMC控制器的约束敏感性分析工具,其不具有变换、斜坡(ramp)、最小移动MV。基本功能包括约束变量分析,其确定在下一个约束变得有效之前约束可以被移动多少,并识别下一个约束。还完成无约束变量分析,其确定哪些约束正使控制器向上(或向下)移动某些无约束变量(例如,进给量(feed)),并确定所有有效约束对该变量的敏感性(闭环增益)。完成不可行性分析,其确定可以移动哪些约束变量以及移动多少以便使解变得可行。测试或基于Excd的界面将用于分析结果。图形用户界面是有效的。为了增加分析更复杂问题的能力,提供MV的自动识别和计算和CV变换,并将结果并入到分析中。此外,可以启动下列能力识别并处理最小移动MV的能力、识别并处理斜坡变量和斜坡连接关系(ramp-linkedrelationship)的能力、可用的约束解除机制的经济优先级、处理外部目标的能力、通过优先级分类分析不可行性的能力、用循环配对的图形描述(无约束的MV对约束CV)表达解的能力、以及从历史数据单步调试(stepthrough)顺序解的能力。该技术将用于组合应用,在所述组合应用中一个优化函数用于多个组合的控制器。GUI和超文本标记语言(HTML)界面是可能的。在最高级别,工具还将提供识别和解释QP目标函数的能力,提供分析多个分级组用于解除不可行性的能力,提供分析和并入有效增益倍增因子的能力。还可以提供链接到商业数据库,例如,AspenTech⑧的AspenWatch或HoneywellInternationalInc.的ProcessHistoryDatabase,更具体而言,参考图l的流程图,本发明完成的过程开始于以向操作者提供与变量有关的信息。第一步骤为从文件或数据库读取控制器定义。这提供了操纵、前馈和受控变量的数目和名称。接下来,读入模型文件并为每一个独立(MV或前馈)-依赖(CV)变量对提Wt型"增益,,。通常,模型是动态的,所以仅仅使用模型的稳态部分(即,增益)用于该计算。在过程的变化中,才莫型可以为非线性控制器中的变量之间的线性化关系。模型也可以为实时优化问题中的变量之间的线性化关系。下面以4MVX7CV矩阵示出了MV与CV之间的稳、态响应的实例。<table>tableseeoriginaldocumentpage10</column></row><table>读入所有变量的目标值和约束状态,并将变量分类为约束和无约束的。将违背变量(violatedvariable)分类为无约束的,将非有效操纵变量分类为约束的。数据应该是一致的,即,全都来自相同的执行周期。可以从文件或从计算机数据库读取状态。数据可来自当前或历史上的控制器执行。对于每一个变量,沿每一方向计算可允许的稳态移动(AM)直到达到下一个约束。对于所有变量完成该计算。该计算基于有效约束指示而变化。对于无约束的变量,S表示直到变量遇到约束之前的改变。例如,无约束变量在操作者高限制与操作者低限制之间。可允许的向上移动(AM叩)等于操作者高限制(OPHIGH)减去稳态目标。这可以祐束示为AMup=OPHIGH-稳态目标。可允许的向下移动(AMdown)等于稳态目标减去操作者低限制(OPLO)。这可以械束示为AMdown=稳态目标-OPLO。对于违背变量,S被计算为直到变量变为可行之前的改变的量。例如,如果变量超过操作者高限制,AMdown=稳态目标-OPHIGH。对约束变量,S表示直到达到下一个约束之前的改变。例如,如果工程限制(工程Hi)是超过操作限制的下一个限制,那么,对于约束在操作者高限制的变量,AMup-工程Hi誦OPHIGH。在计算可允许的稳态移动时,有可能单变量具有多组限制,包括例如,操作者、工程师、设备、安全、范围等等。用户可以选择或取消选择考虑哪些限制用于计算可允许的改变。例如,用户可以取消选择工程限制,并4吏用测量的范围计算可允许的移动。接下来的步骤是创建约束变量对无约束变量(代替MV对CV)的影响的闭环矩阵。对于每一个无约束/违背变量,显示影响其的约束变量。这些是对选择的无约束变量具有非零矩阵元的约束。可以通过才艮据约束^改变增益矩阵的阶来完成。向顶部移动无约束MV,向左边移动约束CV。产生的矩阵由四部分构成,包括(a)无约束MV到约束CV的模型;(b)约束MV到约束CV的模型;(c)无约束MV到无约束CV的模型;(d)约束MV到无约束CV的模型。模型矩阵可以被象征性地显示为<table>tableseeoriginaldocumentpage11</column></row><table>代数地,从MV才莫型预测CV。以矩阵的形式,关系如下<formula>formulaseeoriginaldocumentpage11</formula>如果等式是标量,其表示具有两个未知量的两个等式,可以互换已知量和未知量。可以以矩阵形式实现相同的等式,以如下互换或枢转约束cv与无约束MV。定性地,产生的公式和矩阵示出了无约束变量如何响应约束变量的改变,如下所示。纖<table>tableseeoriginaldocumentpage12</column></row><table>枢转该实例矩阵以示出其中MV3、MV4、CV2、CV6被约束的形式,<table>tableseeoriginaldocumentpage12</column></row><table>该矩阵中的每一个元表示对应于约束变量的单位改变的无约束变量的改变量。非常接近零的矩阵元被认为是零。创建闭环矩阵的替代方式为模拟控制器并一次一个地以小量£扰动每一个约束。对于每一个约束-无约束变量对,改变或无约束变量对E的比率为闭环矩阵的增益。结果为,对于每一个无约束/违背变量,显示了影响其的约束变量。然后使用该闭环矩阵中的信息来为操作者计算关于这样的总体三类信息的所有信息,该三类信息涉及上述的约束变量、无约束变量以及违背变量。对于每一个约束i,过程可以计算直到达到另一约束之前沿两个方向其可以被移动多远(CMi)。移动的量和下一个约束,皮记录并显示用于操作者的使用。具体而言,可以找到约束i的可允许的移动(AM)的最小值和无约束变量j的可允许的移动(AMj)/闭环增益GPij的比率。使用该计算,使用正确的符号是很重要的。例如,如果计算约束可以向上移动多远,那么如果增益元为负则应该使用无约束变量的可允许的向下移动。还可以计算每一个约束的限制弛豫(limitrelaxation)值。通过将通常是来自计算本身的结果的约束的影子值(shadowvalue)乘以CM,即直到下一个约束之前的移动,来计算该值。还可以使用来自另一程序例如规划和调度或实时优化的影子值来代替来自控制器优化的影子值。通过可以使用该工具可以获得下列目标的解。对于约束分析,可以确定下列问题的答案。*在另一约束变得有效之前,约束可以被改变多少?*下一个有效约束是什么?对于无约束变量分析,可以确定下列问题的答案。*如果希望增加或减少变量,哪些约束影响改变?*这些约束的敏感性(闭环增益)如何?*基于可能的影响的幅度,或总的LP优化目标功能的成本,约束的优先级如何?对于不可行性分析,可以确定下列问题的答案。*为了使解变得可行,可以改变哪些变量,改变多少?可以理解,本发明为操作者和工程师提供了关于改变控制器限制对MPC控制器解的影响的定量输入。在本发明之前,工程师仅仅通过进行多个离线MPC模拟才可以得到有关约束依赖和解除机制的信息。使所有操作者可以立刻得到、访问和理解这些信息可以允许对改变迅速响应并由此允许更优化的过程操作。可以对这里所描述的本发明做出各种修改,可以在权利要求所限定的本发明的精神和范围内做出装置和方法的许多不同实施例,而不背离这样的精神和范围。旨在将包含在随附的说明书中的所有内容仅仅理解为示例性的而不是限制。权利要求1.一种分析来自多变量预测控制器的解的方法,包括从多变量预测控制器获得解,所述预测控制器具有导致不同的变量约束状态的稳态优化器,其中所述解包括从操纵变量预测的受控变量;以及对所述解进行操作以获得约束变量与无约束变量之间的关系,从而确定无约束变量如何响应约束变量的改变。2.根据权利要求l的方法,其中以矩阵表示所述解,并且对所述解的操作包括在所述矩阵中枢转所述约束的受控变量与所述无约束的操纵变3.根据权利要求l的方法,其中通过模拟所述控制器并以预定的量扰动每一个约束形成的矩阵表示所述解,其中将无约束变量的改变与所述预定的量的比率限定为每一个约束和无约束变量对的增益。4.根据权利要求l的方法,还包括使用所述约束与无约束变量之间的关系来计算为达到无约束或约束变量的下一个约束,约束变量需要改变的量。5.根据权利要求4的方法,还包括为每一个变量确定一组限制并选择限制以用于计算所述改变的量。6.根据权利要求l的方法,其中每一个变量具有限制,并且还包括计算每一个变量的限制弛豫的值。7.根据权利要求l的方法,还包括使用所述约束与无约束变量之间的关系来确定约束的改变可以影响无约束变量的程度。8.根据权利要求l的方法,还包括使用所述约束与无约束变量之间的关系来确定将违背变量的约束移动到可行性范围所需要的改变的量。9.一种用于过程设备的控制系统操作方法,包括从包括与所述过程相关的操纵变量和受控变量的基础模型文件基于所述操纵变量与所述受控变量之间的稳态响应提取原始增益矩阵;通过有效约束条件分类所述操纵变量和受控变量,其中所述分类基于约束条件、无约束条件或违背条件;基于所述有效约束条件分类来计算每一个变量的可能的移动量;基于所述有效约束条件改变所述增益矩阵的阶以获得优化解的才莫型矩阵表示;通过在所述模型矩阵中枢转所述约束的受控变量与所述无约束的操纵变量形成结果矩阵来形成所述结果矩阵;以及使用所述结果矩阵和所述可能的移动量来计算所述无约束变量对所述约束变量的改变的响应。10.根据权利要求9的方法,其中计算无约束变量的可能的移动量产生操作者高限制、操作者低限制或步长限制。11.根据权利要求9的方法,其中每一个变量具有限制组,并且计算所述可能的移动量包括从所述限制组中选择限制以用于所述计算。12.根据权利要求9的方法,其中计算约束变量的可能的移动量包括确定接下来将达到哪一个约束条件。13.根据权利要求9的方法,其中计算违背变量的可能的移动量包括确定什么移动将使所述变量返回到限制。14.根据权利要求9的方法,其中改变所述增益矩阵的阶包括向所述矩阵的顶部移动无约束的操纵变量和向所述矩阵的左边移动约束的受控变量。15.根据权利要求9的方法,其中改变所述增益矩阵的阶产生这样的矩P车,所述矩阵具有(i)无约束的操纵变量到约束的受控变量的模型,(ii)约束的操纵变量到约束的受控变量的模型,(iii)无约束的操纵变量到无约束的受控变量的模型,以及(iv)约束的操纵变量到无约束的受控变量的模型。16.根据权利要求9的方法,其中使用所述结果矩阵包括确定在达到另一约束之前约束变量可以被改变多远。17.根据权利要求9的方法,其中使用所述结果矩阵包括确定影响每一个无约束变量的所有约束变量。18.根据权利要求9的方法,其中使用所述结果矩阵包括确定每一个约束的改变对于相关的无约束变量的影响有多大。19.根据权利要求9的方法,其中使用所述结果矩阵包括为每一个约束计算实现可行性所必要的移动。20.—种过程的控制系统,包括存储装置,存储基础模型文件,所述M模型文件包括与所述过程相关的操纵变量和受控变量;以及与所述存储装置相关的控制器,其从所述J^出模型文件基于所述操纵变量与所述受控变量之间的稳态响应提取原始增益矩阵,其中所述控制器通过下述步骤使用优化解来描述无约束变量如何响应约束变量的改变通过有效约束条件来分类所述操纵变量和受控变量,其中所述分类基于约束条件、无约束条件或违背条件;基于所述有效约束条件分类来计算每一个变量的可能的移动量;基于所述有效约束条件改变所述增益矩阵的阶以获得优化解的模型矩阵表示;通过在所述才莫型矩阵中枢转所述约束的受控变量与所述无约束的操纵变量形成结果矩阵来形成所述结果矩阵;以及^使用所述结果矩阵和所述可能的移动量来计算所述无约束变量对所述约束变量的改变的响应。21.根据权利要求20的控制系统,其中所述控制器通过评估优化函数结果的可能改变来计算无约束变量的可能的移动量。22.根据权利要求21的控制系统,其中所述优化函数结果为操作者高限制、操作者低限制或步长限制。23.根据权利要求20的控制系统,其中所述控制器通过确定接下来将达到哪一个约束条件来计算约束变量的可能的移动量。24.根据权利要求20的控制系统,其中所述控制器通过确定什么移动将使所述变量返回到限制来计算违背变量的可能的移动量。25.根据权利要求20的控制系统,其中所述控制器通过向所述矩阵的顶部移动无约束的操纵变量并向所述矩阵的左边移动约束的受控变量来改变所述增益矩阵的阶。26.根据权利要求20的控制系统,其中所述控制器改变所述增益矩阵的阶产生以这样的矩阵,所述矩阵具有(i)无约束的操纵变量到约束的受控变量的模型,(ii)约束的操纵变量到约束的受控变量的模型,(m)无约束的操纵变量到无约束的受控变量的模型,以及(iv)约束的操纵变量到无约束的受控变量的模型。27.根据权利要求20的控制系统,其中所述控制器通过使用所述结果矩阵来确定在达到另一约束之前约束变量可以被改变多远。28.根据权利要求20的控制系统,其中所述控制器通过使用所述结果矩阵来确定影响每一个无约束变量的所有约束变量。29.根据权利要求20的控制系统,其中所述控制器通过使用所述结果矩阵来确定每一个约束的改变对于相关的无约束变量的影响有多大。30.根据权利要求20的控制系统,其中所述控制器通过使用所述结果矩阵来为每一个约束计算实现可行性所必要的移动。全文摘要本发明涉及模型预测控制器解分析过程。通过为操作者提供与改变控制器限制对MPC控制器解的影响相关的定量输入来分析和描述来自多变量预测控制器(MPC)的解。所述信息允许操作者对改变的迅速响应和更优化的过程操作。文档编号G05B17/00GK101517498SQ200780034805公开日2009年8月26日申请日期2007年9月19日优先权日2006年9月22日发明者A·R·普努鲁,D·巴雷特-佩顿,K·F·埃米希霍尔茨,R·K·旺,T·J·彼得森申请人:埃克森美孚研究工程公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1