一种受扰动和未知方向非线性系统的零误差跟踪控制方法与流程

文档序号:11249987阅读:2125来源:国知局

本发明涉及非线性系统(如机器人系统)控制技术领域,特别涉及一种受扰动和未知方向非线性系统的零误差跟踪控制方法。



背景技术:

随着工业自动化发展,目前在工程应用,例如工业机器人应用中,许多重要环节都是由机器人完成,工业自动化程度越来越高;但是如何控制机器人等非线性系统,确保输出误差渐近趋于零是保证制造质量的关键。

许多非线性系统,包括机器人、航空系统在内的许多系统数学模型通常是高阶非线性系统,而且非线性系统本身存在建模误差、不确定外界干扰等因素,如何设计跟踪控制器使系统输出信号较好地跟踪理想信号是一个具有挑战性的问题。

利用现有技术设计的跟踪控制器往往只能取得最终一致有界的结果,而不能确保系统误差渐近趋于零;而且在多输入多输出非线性系统中,如何处理控制增益矩阵方向未知问题也是一个比较棘手的问题。



技术实现要素:

为了解决以上描述的问题,本发明提供了一种基于受扰动和未知方向的非线性系统零误差跟踪控制方法,针对存在未知控制增益方向、外界干扰以及未知非线性不确定的非线性系统,如机器人系统,设计自适应跟踪控制器使系统输出跟踪误差渐近收敛到零。

步骤一、建立非线性系统数学模型:

其中xj=[xj1,…,xjm]∈rm是系统状态,y=x1是系统输出,f(x,p)=[f1(·),…,fm(·)]t∈rm是非线性不确定函数,g(x,p)∈rm×m是未知控制增益矩阵,d(x,p,t)=[d1(·),…,dm(·)]t∈rm是系统建模误差和外界干扰,u是系统控制器,p∈rr是未知参数矢量,t是时间变量;

所述非线性系统的非线性项满足以下不等式

||f(·)+d(·)||≤aφ(x)(2)

其中a为未知常数,φ(x)为光滑已知函数,当x有界时可以保证光滑已知函数φ(x)、外界扰动和未建模误差d(·)、非线性不确定函数f(·)、以及未知控制增益矩阵g(·)均有界除此之外未知控制增益矩阵g(·)无需对称,且是正定矩阵或者负定矩阵;

所述非线性系统满足以下不等式

其中λ为未知有界常数并且具有相同的符号,即:要么为正要么为负,λmax(t)和λmin(t)分别是矩阵g1的最大特征根和最小特征根;

步骤二、设计控制器u处理系统的非线性不确定性、系统建模误差和外界干扰、以及未知方向的控制增益矩阵;

n(χ)是nussbaum-type函数,其参数χ的变化率为:

为未知参数b的估计值,并通过自适应率自适应率得到

φ=φ(x)+l(8)

l为已知函数并定义为,

z为滤波误差并定义为,

e为跟踪误差并定义为,

e=x1-yd(11)

其中γχ、k0、ρ和σ为大于零的设计参数,为已知理想信号,k1,…,kn-1是设定参数而且满足k1+k2w+k3w2+…+kn-1wn-2+wn-1多项式是hurwitz多项式,其中w是hurwitz多项式中的变量;

步骤三、将控制器u算出的控制信号输入到被控非线性系统,使系统输出跟踪理想信号并确保跟踪误差渐近趋于零。

本发明的有益效果:

本发明受扰动和未知方向非线性系统的零误差跟踪控制方法,其使用的控制器引入了nussbaum-type函数和构造了特定的参数变化率使被控系统在存在未知不确定参数、未知控制增益方向、外界干扰等情况下,使系统输出信号能较好地跟踪理想信号,并确保跟踪误差信号渐近趋于零。

具体实施方式

下面结合实施例对本发明作进一步描述。

本发明受扰动和未知方向非线性系统的零误差跟踪控制方法,包括以下步骤:

步骤一、建立非线性系统的数学模型:

其中xj=[xj1,…,xjm]∈rm是系统状态,y=x1是系统输出,f(x,p)=[f1(·),…,fm(·)]t∈rm是非线性不确定函数,g(x,p)∈rm×m是未知控制增益矩阵,d(x,p,t)=[d1(·),…,dm(·)]t∈rm是系统建模误差和外界干扰,u是系统控制器,p∈rr是未知参数矢量,t是时间变量;

所述非线性系统的非线性部分满足以下不等式

||f(·)+d(·)||≤aφ(x)(2)

其中a为未知常数,φ(x)为光滑已知函数,当x有界时可以保证光滑已知函数φ(x)、外界扰动和未建模误差d(·)、非线性不确定函数f(·)、以及未知控制增益矩阵g(·)有界,除此之外未知控制增益矩阵g(·)无需对称,且是正定矩阵或者负定矩阵;

所述非线性系统满足以下不等式

其中λ为未知有界常数并且具有相同的符号,即:要么为正要么为负,λmax(t)和λmin(t)分别是矩阵g1的最大特征根和最小特征根;

步骤二、使用控制器u处理系统的非线性不确定性、系统建模误差和外界干扰、以及未知方向的控制增益矩阵;

n(χ)是nussbaum-type函数,其参数χ的变化率为:

为未知参数b的估计值,并通过自适应率得到

φ=φ(x)+l(8)

l为已知函数并定义为,

z为滤波误差并定义为,

e为跟踪误差并定义为,

e=x1-yd(11)

其中γχ、k0、ρ和σ为大于零的设计参数,为已知理想信号,k1,…,kn-1是设定参数而且满足k1+k2w+k3w2+…+kn-1wn-2+wn-1多项式是hurwitz多项式,其中w是hurwitz多项式中的变量;

步骤三、将控制器u算出的控制信号输入被控非线性系统,跟踪理想信号并确保跟踪误差渐近趋于零。

下面对本发明自适应跟踪控制方法能使系统跟踪误差渐近趋于零进行证明:

第一步,引入引理1:对于任意非零向量x∈rm和对称矩阵γ而言,定义因此对于对称矩阵γ而言,至少存在一个特征根在区间(-∞,ρ]和至少一个特征根在区间[ρ,∞)。

因此对矩阵g1而言,给定任意非零向量x∈rm,定义进一步得到

其中根据引理1可以得到:

除此之外,当x=0时,选定一个基于区间之间的非零常数在此情况下公式(12)仍然成立;因此可以得出结论:对于任意向量x∈rm,有

xtg1x=α(t)xtx(14)

其中

第二步,引入引理2:在时间区间[0,tf)上,若lyapunov函数v(t)满足以下不等式

其中c0和l是未知正的常数,α(t)是未知时变函数并且在一个不包含零的闭区间;若不等式(15)成立,那么v(t),χ,和在区间[0,tf)上有界。

第三步,对公式(10)求导,可得

根据公式(11)可得

其中当i=n时,有因此将公式(1)代入公式(16)中,可以得到

第四步,选取lyapunov函数为

对其求导可以得到

其中δ=f+d+l。根据非线性系统满足的条件(2)可以得到

||δ||≤||f+d||+||l||≤aφ(x)+||l||≤bφ(·)(21)

其中b=max{a,1}是虚拟未知参数,φ(·)=φ(x)+||l||是可计算的系统核心函数。利用young不等式,

因此,公式(20)可以表示为

第五步,将控制器带入到不等式(23)中,可以得到

因为矩阵g可以分解为对称矩阵和斜对称矩阵的和,即对于任意给定向量x∈rm,有因此非线性项可以表示为

根据引理1和公式(14),可以得到

其中并且λ有相同的符号(零除外)。因此公式(24)可以表示为

在不等式(27)的右边加减一项可得

其中是未知参数的估计值误差,因为n(χ)函数的参数χ的变化率为因此有

第六步,为了对未知参数估计值进行自适应估计,选取lyapunov函数为

对其求导可得定义总的lyapunov函数为v=v1+v2,对其求导可得

构造自适应率

其中σ>0是设计参数。将自适应率(32)带入到不等式(31)中,可以得到

因为因此不等式(33)可以表示为

其中对不等式(34)在区间[0,t]上进行积分运算,可以得到

其中因此根据引理2可以得到v(t),χ,和在区间[0,tf)上有界。若能保持所有信号在[0,tf)上有界,则可以将其结果拓展到tf→∞。

根据自适应率的表达式(32)以及初始条件可以得到因此根据nussbaum-type函数的参数自适应率表达式(6),可以得到对其进行积分可以得到

因此根据函数χ(t)的有界性,可以得到z∈l2,根据系统稳定性证明可以得到z∈l∞,结合barbalat引理,可以得到

根据公式(10),可以得到真实误差渐近趋于零,即:

通过上述证明可知,本发明受扰动和未知方向非线性系统的零误差跟踪控制方法,其控制器能使非线性系统在存在未知不确定参数、未知控制增益方向、外界干扰等情况下,系统的输出信号较好地跟踪理想信号,并确保系统跟踪误差渐近趋于零。

最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1