一种自由运动移动多传感器配置及多目标跟踪算法_2

文档序号:8942478阅读:来源:国知局
[0070] 图6.受限移动传感器配置选择过程(a k= 1,β k= 0· 1,γ k= 5);
[0071] 图 7.目标跟踪效果图(a k= 1,β k= 1,γ k= 2);
[0072] 图8·受限移动传感器配置选择过程(α k= 1,β k= 1,γ k= 2);
[0073] 图9.目标的速度跟踪估计过程;
[0074] 图10.移动传感器模态变化过程;
[0075] 图11.传感器总功耗对比曲线(200MC)。
【具体实施方式】
[0076] 以下结合附图对本发明作进一步说明。
[0077] 本发明提出了一种状态受限移动多传感器配置及多目标跟踪方法,其具体实施方 式如下:
[0078] 步骤L建立系统模型;
[0079] 步骤I. 1建立目标动态模型
[0080] 考虑二维平面内N个移动传感器跟踪M个目标的情形,目标具有如下动态:
[0081] (1).
[0082] ^是目标i的状态向量,I和分别表示k时刻目 标i在X轴和y轴方向上的坐标,?和1?,,表示对应坐标轴上的速度。Ai是目标i的状态 转移矩阵,B1是噪声矩阵,K是服从标准高斯分布的过程噪声,其协方差为M。
[0083] 步骤1. 2建立传感器模型
[0084] 假定在每一时刻各个传感器的状态都是可观测的,传感器的感知半径足够大,且 运动很容易被改变。传感器的动态模型如下:
[0085] (2)
[0086] (3)
[0087] 这里,j = 1,2,…,N,N为正整数表示第N个移动传感器。
表示 传感器j的位置状态向量,C和<分别表示k时刻传感器j在X轴和y轴方向上的坐标。 Fk表示k时刻传感器的状态转移矩阵。H k+1表示k+Ι时刻传感器的观测矩阵。是k+1 时刻对传感器j的量测,I/和C/+1均是零均值高斯白噪声。
[0088] (4)
[0089] (5)
[0090] 这里,1是速度强度输入,是一个正值常数。τ kx,Tky分别表示传感器在X轴和y 轴方向上的速度的方向输入,并且需要满足Il每Il2= :U方向输入的值只能在Ρ,±:1,±λ^/2} 中选取,其中-1和1分别代表着X轴和y轴的正方向和负方向。将传感器瞬时方向输入归 类为九个方向即为传感器输入的九个模态。
[0091] 如图1所示,例如,
表示传感器向向右上方移 动,(h,x,ik,y) = (0,_1)表示传感器垂直向下移动。传感器的模式和移动方向的对应关 系如表1所示。
[0092] 表1传感器模式和移动方向对应表
[0094] 步骤1. 3建立量测模型
[0095] ##表示k时刻用传感器j在输入模态为P的情况下对目标i的量测
[0096]
(^)
[0097] 其中,Cf是第j个传感器的观测矩阵,f是零均值、受目标i与传感器j之间距 离影响的量测噪声。
[0098] 步骤1. 4建立量测不确定性模型
[0099] 第j个传感器在输入模态为P的状态下对目标i量测的不确定性用协方差阵 〃表示。通常,传感器在测量目标时,往往会受到外界干扰的影响,随着传感器与目标距 离的增加,受到的干扰程度就会加重,由此得到的量测噪声协方差就会增大。因此,假定量 测噪声协方差为传感器j与目标i之间距离的函数:
[0100]
[0101]
[0102]
[0103] CN 105159314 A VL 丫/11 贝
[0104]
[0105] 这里,Ik是一个单位矩阵,L是常数矩阵,Dk,.(i,j)表示传感器j和目标i的状态 差矩阵,^是第j个传感器的常协方差阵,Il · M2表示2-范数。该公式表明量测噪声协 方差是距离的线性函数。
[0106] 步骤2标准的制定
[0107] 步骤2.1目标失检率的表示
[0108] 传感器观测目标的能力很大程度取决于目标与传感器相对状态的变换。用检测概 率来表示传感器观测的能力,并且被看作一个领域。这说明目标被观测到的概率不是统一 的。为了表示这个领域,我们用钟状函数表示:
[0109]
[0110]
[0111] 其中,dk(i,j)是在k时刻目标i和传感器j的加权马氏距离。Pd由实际需要可取 [0, 1]之间的任一常数。a,b,C都为常数。31<在k时刻与目标有关的常数矩阵。目标的失 检率可以表示为1-巧〇?)。
[0112] 图2给出了传感器观测能力分布在坐标系上的函数表示,它形似一个钟形,说明 在传感器一定的距离范围内它的观测能力相等,但随着距离增加传感器的观测能力逐渐减 弱直至为0。图3给出了传感器失检率,形似倒钟形,在离传感器的一定范围内目标的失检 率保持一致,但随着距离增大,目标失检率随之增大直到失检率为1。
[0113] 步骤2. 2标准指标的选择
[0114] 基于确定的最优标准对传感器进行选择和配置。这里,给出一个最优标准的指标: PMD-PaC,它被定义为目标失检率,目标跟踪精度和传感器使用费用的总和,即
[0115]
[0116] 该指标也可以用下式表示:
[0117]
[0118]
[0119]
[0120] 这里,对y P表示用第j个传感器在输入模态P下观测目标i使用△/(<)费用所得 到的状态估计。4""'表示在k时刻用第j个传感器在输入模态P下观测目标i的传感器 功耗。勹表示第j个传感器在输入模态P下观测目标i时的目标跟踪精度。a k,β k 和γ k分别表示目标跟踪精度,传感器使用费用和目标失检率的权重系数,权重系数取正值 即可,它们与传统的权重系数即在[0, 1]区间内取值且相加等于1不同。ωχ,ω#Ρ ω ,分 别表示状态Xk,费用bk和传感器与目标距离dk(i,j)的折换系数,因为它们所使用的单位不 同。
[0121] 步骤2. 3 PMD-PaC系数选择
[0122] 传感器总功耗由传感器对目标的跟踪精度和传感器本身决定。重要性系数 ak,e k,yk在步骤2. 2中已说明。折算系数ω d,ωχ,COb我们用目标的失检率,目标跟踪精 度和费用标准差矩阵的逆来获取,即
[0123]
(13)
[0124] 其中,
表示标准 差。
[0125] 步骤2. 4指标的计算
[0126] 传感器使用费用是一个常数值,它可以取任意一个正值。因此,我们只要考虑求出 目标的失检率和目标跟踪精度。其中目标失检率的表示已经在(9),(10)式中给出,而目标 跟踪精度疗2#表示用第j个传感器在输入模态P状态下观测第i个目标的估计误差协方 差并且可以利用式(1)-(6)进行递归得到:
[0127]
[0128]
[0129]
[0130]
[0131]
[0132]
[0133] 这里,其中的一个元素Z5/。Jk在步骤3 中说明。
[0134] 步骤3传感器的配置
[0135] 用线性规划来描述传感器的配置以及对其模式的选择,即
[0136]
(20)
[0137]
[0138] 这里,Jk表示k时刻用N个传感器对M个目标进行观测的所有传感器的总PMD-PaC 的目标函数。该w是传感器选择变量,Sf=1_表示在k时刻选择传感器j的P输入模态观 测目标i,且<〃的取值只能是0或1中的一个。
[0139] 然而,只考虑线性规划问题(20),其可以解决传感器选择与跟踪过程的耦合,却不 能完全解决传感器模态选择与跟踪过程的耦合,因为当出现一个传感器j同时对多个目标 i,W,i",i" ^,…进行观测时,有可能会出现一个传感器同时工作在多个模态的情况, 这是不可能实现的,为此,在线性规划问题(20)获得所有的选择变量之后,还需要进一 步优化。这时采用如下方式来选取:
[0140]
(21)
[0141] 其中,U,y,i",i" ',···}表示被传感器j观测到目标的索引集。
[0142] 图4给出了在三个目标、四个传感器情况下,传感器选择配置及多目标跟踪算法 流程图。流程图考虑了传感器及其模态的选择问题,然后再依据相应的传感器量测更新目 标状态。在这里,首先根据在k-Ι时刻各个目标的状态估计获得目标的状态预 测,在预测步1^-1之后,分别选择传感器1的(<,1|1.;) = (1,1)模态观测目 标1,选择传感器3的
模态观测目标2和3。然后使用来自这两个传感器 的量测
来更新三个目标的状态,获得k时刻的目标状态估计对.匁.?。
[0143] 为了更好地阐释说明本发明,在实验中,在χ-y平面内设定了四个自由移动传感 器、三个匀速转弯运动目标的情景来验证本发明,检测范围为[-1000
当前第2页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1