一种基于遗传算法的阵列天线方向图综合优化方法与流程

文档序号:11134279阅读:来源:国知局

技术特征:

1.一种基于遗传算法的阵列天线方向图综合优化方法,其特征在于,

天线阵模型建立步骤:N个COCO天线组成阵列,所述阵列包含N2个单极子天线,天线阵列采用均匀直线阵形式,天线阵元间距d≤λ,单元节边长为1/2介质波长:

<mrow> <mi>a</mi> <mo>=</mo> <msub> <mi>&lambda;</mi> <mi>g</mi> </msub> <mo>/</mo> <mn>2</mn> <mo>=</mo> <mfrac> <mi>&lambda;</mi> <mrow> <mn>2</mn> <msqrt> <msub> <mi>&epsiv;</mi> <mi>r</mi> </msub> </msqrt> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>

根据天线的工作中心频率f=1.8GHz,基片材料的介电常数εr=2.56,为使正反面微带段错落有致,产生适合的传输模式和辐射模式,需a≈b;同时介质板长度L是介质板宽度W的6.5倍,其中b为贴片单元间隔;

最优权值获取步骤:

步骤1、编码:从解数据的表现型到遗传空间的基因型串结构数据的映射称为编码,解空间Ω—分基因编码空间C;

步骤2、初始种群生成:产生一组随机编码解P(k)∈C,k∈[1,2N],其中N为天线阵元个数,由于遗传算法对应的解空间为各阵元的复数权值ωi,ωi分为实部和虚部,而遗传算法只能对实数进行运算,所以设置每一个初始染色体包含2N列,每列200个基因的数组,所述随机编码解构成原始种群,每个解为一个个体,种群个体数为2N;

步骤3、适应度值评估:对种群中的每一个个体所代表的解计算相应的适值,评估解的优劣,并且会对评估后的解按一定准则排序;

步骤4、选择:在P(k)和O(t)中按适值的大小优胜劣汰,选择2N个个体重新构成子代种群;按随机均匀分布法、锦标赛法或轮盘赌法挑选双亲;

步骤5、重组:通过交叉、变异、再生和迁移操作产生新的后代个体群O(t)∈C,t∈[1,M],M≤2N,新个体组合并以一定概率随机改变了父辈串的特征,将群体内的各个个体随机搭配成对;

步骤6、循环步骤3至步骤5,直到取得最优权值;

天线阵列方向图生成步骤:利用获取的最优权值对天线阵模型进行验证,从而生成天线阵列方向图。

2.如权利要求1所述的方法,其特征在于,在初始种群生成步骤中设置了种群的初始范围、种群的尺度和初始种群得分,种群的初始范围设置为[0,10]之间,对于相角设在[-π,π]内;种群的尺度设置为400;初始种群得分设置为(1,100)。

3.如权利要求2所述的方法,其特征在于,在适应度值评估步骤中采用最佳法,最佳个体比例设置在字段Quantity中,每个能产生子辈的个体指派给相同的比例值,而其他个体的比例值指派为0。

4.如权利要求3所述的方法,其特征在于,在选择步骤中选择染色体时采用剩余选择法,使它在选择过程中,分配其双亲由每个个体刻度值的整数部分决定,在剩余的小数部分采用轮盘赌选择方法。

5.如权利要求4所述的方法,其特征在于,在重组步骤中采用分散交叉方法;在一对选定的父辈中,采用高斯分布变异法,具有均值0的随机数加到父向量的每一项,这个分布的变化由参数“Scale”和“Shrink”决定,Scale设定为0.5,Shrink设定为0.8;再生方法为“Crossover Function”法,它指定下一代中不同于原种群的部分,它们由交叉产生;当迁移发生时,一个子种群中最好的个体代替另一子种群中最差的个体,运用的方法是双向迁移,即迁移在最后一个子种群处将卷绕回来。

6.如权利要求5所述的方法,其特征在于,在步骤6中添加停止条件参数,最大重复执行次数为8000代,停滞代数为4000代,适应度值小于或等于0.1。

7.如权利要求6所述的方法,其特征在于,排序准则是排列法、比率法或线性转换法。

当前第2页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1