可用于高温镍氢电池的负极储氢材料的制作方法

文档序号:6831074阅读:500来源:国知局
专利名称:可用于高温镍氢电池的负极储氢材料的制作方法
技术领域
本发明属于功能材料领域。具体地涉及用于制备有高温性能要求的镍氢电池的负极储氢材料。
背景技术
近年来由于无绳可充电的电动工具快速发展,给人们的工作带来了极大的方便,因此对二次可充电的电池需求量也大大增加。过去用于电动工具的可充电电池主要是镍镉电池,但镍镉电池容量较低,又具有严重的环境污染,属淘汰产品,镍氢电池以其高容量、长寿命、无污染等优异特性,且与镍镉电池的电压类似,因而成为最佳的替代品。与一般电子产品不同,电动工具在使用过程中要求大电流放电,另外为了缩短充电时间也要求镍氢电池应具有大电流充电功能,而在大电流充、放电过程中在电池内阻上消耗的能量就要增加,从而导致电池温度的升高(通常要升高到40~55℃左右),现有技术中的镍氢电池产品,电池的容量随着温度的升高下降较快,镍氢电池主要是由氢氧化镍正极、储氢合金负极、隔膜、氢氧化钾电解液所组成。整个电池的性能与每一部件的性能都息息相关,电池的容量随着温度的升高下降的一个主要的原因是负极材料的容量随温度增加下降较快,因此急需具有好的高温性能的负极储氢材料,特别是当前人们正在努力开发电动汽车用的可充电镍氢电池,电动汽车用可充电镍氢电池更需要储氢材料具有好的大电流充、放电特性和高温使用性能,并且比电动工具用电池性能的要求更为苛刻(充、放电电流更大、温升更高),因此研究开发具有良好高温电化学充放电特性的储氢材料就变得极为迫切。

发明内容
本发明的目的是通过成分改善得到一种在高温下(30-80℃)比目前市售产品电化学充放电容量高得多的负极储氢材料,该负极储氢材料的组成(原子比)为A1B5,其特征在于组成负极储氢材料中的,A为La、Ce、Pr、Nd、Dy元素;B为Ni、Co、Mn、Al元素;该材料的成分(重量%)为La 20.34-21.53%;Ce 7.09-7.50%;Pr 0.92-0.98%;、Nd2.47-2.61%;Dy 0.50-2.50%;Co 10.43-10.46%;Mn 5.19-5.20%;Al1.91-1.92%;其余为Ni。
采用本发明负极储氢材料和与现有负极储氢材料相比较具有高温电化学容量高,适用温度范围宽等特点以满足对高温性能有要求的镍氢电池产品。
目前对于镍氢电池而言,所用的负极储氢材料主要是混合稀土MmNi5-型储氢合金,合金电化学容量一般在300mAh/g左右,为了提高负极储氢合金的容量,目前正在开发的有Zr-基AB2型拉夫斯相合金、Ti-Zr基AB型合金和A2B型Mg2Ni镁基合金,但由于活化慢或循环寿命差等原因除少部分AB2型合金外,其他合金均未达到实际应用。
AB5储氢合金是由易生成稳定氢化物的元素A(如Mm,Ca,Zr)与其他元素B(如Ni,Al,Mn,Si,Zn,Cr,Fe,Cu,Co等)组成的金属间化合物,属CaCu5型六方结构,其电化学充放电容量主要来源于吸放氢过程中,来自于电解液中的氢离子在储氢合金电极上发生氧化还原过程中的电子转移,已知镍-金属氢化物电池电化学电池通常用下面的充放电反应表示充电在负极,当给负电极施加一个电极势时,电解液中的水被分解成氢原子,被吸入到合金中,氢氧根离子被留在电解液中(1)在正极,充电反应为与镍镉电池相同的氢氧化亚镍的氧化(2)放电在负极,氢被释放并与氢氧根离子结合成水,同时贡献出一个电子形成电流。
(3)
在正极,氢氧化镍被还原成低价态氢氧化亚镍。
(4)该类材料在吸氢后,氢是以原子态存在于合金晶格中的间隙位置上。该类材料在吸氢时,最初形成含氢量较低的α相固溶体,随着吸氢量的增加,α相转变为含氢量高的β相。作为一个气固反应,α与β相间相互转变过程的吸放氢压力通常是一定值。当全部转变为β相后,平衡氢压继续升高。该过程通常由压力-浓度-等温线(P-C-T曲线)来表示(见附图1),由于电池通常工作在一个大气压下,因此对于镍氢电池应用,只有在吸放氢压力低于一个大气压时,氢原子才会进入到储氢合金当中,对电化学容量形成贡献,否则将会形成氢分子变成气体析出,附图l为储氢合金的理想P-C等温线(Tl<T2<T3)。由附图l可见,随温度升高P-C-T曲线平台升高,吸氢压力增高,且平台变短,这就意味着合金的可逆吸放氢容量随温度升高而降低。实际使用的储氢合金吸收和放出的P-C等温线表现出一些滞后现象,同时平台有一些倾斜。储氢合金的吸氢压力与温度的关系符合Van’t-Hoff方程,1nP=ΔHRT-ΔSR,]]>并在吸氢时放热,放氢时吸热。根据Van’t Hoff方程可知,在高温下容量较好的储氢合金,其高温下的吸氢压力必然相对较低,因而生成氢化物的稳定性则提高。
目前镍氢电池用储氢合金主要由Mm、Ni、Co、Mn、Al组成,典型成份为MmNi3.55Co0.75Mn0.4Al0.3,其中Mm为主要成分为La、Ce、Pr、Nd的混合稀土,由图2可见该合金随温度增加电化学容量下降很快,通过我们的研究发现,在合金中添加重稀土元素镝(Dy,重量百分比为0<Dy<2.5wt%)可使合金的高温性能明显的改善,从而得到一种可满足高温镍氢电池使用的储氢材料。因此本发明所提出的高温镍氢电池用负极储氢材料成分组成(原子比)为(Mm1-xDyx)1Ni3.55Co0.75Mn0.4Al0.3(0<x≤0.065),其中混合稀土Mm的成份组成如表1所示。
图2给出了在(30-80℃)温度范围内不同Dy含量时的电化学充放电测试结果,可见Dy的加入可使合金的高温电化学充放电容量明显提高,所得到的最好结果为50℃时的电化学充、放电容量大于310mAh/g,70℃时充、放电容量达到260mAh/g以上,80℃时最高充、放电容量可达223mAh/g。因此将使得该负极储氢材料应用在高温下会有更强的优势。


在本发明说明书中,附图标记说明如下附图1为储氢合金的理想P-C等温线(T1<T2<T3);附图2为储氢合金的高温容量(30-80℃)测试结果。
具体实施例方式
根据表2中合金A1B5各元素的重量百分比进行配料,将配好的合金原料于抽真空后并通入氩气保护的感应炉中进行熔炼并铸锭,待得到铸态储氢合金后于室温研磨成小于200目的合金粉待用。然后将小于200目的负极合金粉和镍粉按1∶1的比例混合,并加入适量的聚乙烯醇溶液作为粘结剂,然后冷压成直径为(d=15mm)的圆饼做为负电极使用,所用的正电极为与镍氢电池相同的[Ni(OH)2-NiOOH]电极,正电极的容量设计为远高于负电极的容量,以使负电极材料在充电时达到充分饱和,[Hg/HgO/6M KOH]为参比电极。在电极性能测试过程中,首先在30℃采用60mA/g的电流对负极储氢材料进行充分化成,化成制度如下采用60mA/g的电流充电400分钟,充电后停顿15分钟,然后以60mA/g的电流放电到负电极电位相对于参比电极的电极电位为-0.5伏为止,再进行下一轮充、放电循环。负极容量随着化成的进行容量将达到一个最大值,并且相对稳定下来,则化成结束。该最大值即为材料在30℃下的储氢容量,然后升高体系温度,在30-80℃范围内采用相同的充、放电制度测试负极储氢材料在不同温度下的储氢容量。
由表3可知,30℃时各铸态合金容量基本相当,但随温度升高,所有合金容量都逐渐降低,降低的幅度随合金成分的不同而不同。
合金成分由合金中Dy含量从0.5wt%增加到2.5wt%(原子比x约为0.065),合金的高温电化学容量先增加后降低,Dy含量为2.0wt%时(相当于原子比x约为0.052时)高温性能最好。这些含Dy元素的合金与Dy含量为0的对比例相比,容量提高。温度越高,容量提高的幅度越大,特别是较高温度时,如80℃时容量可由159mAh/g(0.0%Dy)提高到223mAh/g(2.0wt%Dy)。
综上所述,混合稀土镍基储氢合金(ML1-xDyx)1(NiCoMnAl)5中Dy元素的含量影响合金的高温充放电性能,特别是温度较高时,充、放电容量表现出一定的提高。
综上所述,添加重稀土金属Dy的储氢合金,可得到高温性能良好的适合高温镍氢电池使用的负极储氢材料。该材料在30~80℃范围内,具备明显高于市售储氢合金的较高的充、放电容量,其50℃时的电化学充、放电容量大于310mAh/g,70℃时容量达到260mAh/g以上。
表1混合稀土中各元素含量

表2.本发明实施例与现有技术的成分比较(wt%)

表3储氢合金在不同温度下的放电容量(mAh/g)
权利要求
1.一种镍氢电池用负极储氢材料,其特征在于其表达式为(Mm1-xDyx)1Ni3.55Co0.75Mn0.4Al0.3,其中0<x≤0.065,Mm为由La、Ce、Pr、Nd元素组成的稀土混合物。
2.根据权利要求1所述负极储氢材料,其特征在于x=0.052。
3.根据权利要求1所述的负极储氢材料,其特征在于所述材料在较高温度下具有良好的高温容量。
4.根据权利要求3所述的负极储氢材料,其特征在于所述温度是在30-80℃的温度范围。
5.根据权利要求2的负极储氢材料,其特征在于所述材料在80℃时容量提高到223mAh/g。
6.权利要求1-5之一的负极储氢材料用于制造镍氢电池的用途。
7.根据权利权要求6的用途,所述镍氢电池具有更好的高温性能。
全文摘要
本发明涉及制备高温镍氢电池的负极储氢材料。其特征在于其表达式为(Mm
文档编号H01M4/38GK1585166SQ20041004737
公开日2005年2月23日 申请日期2004年6月3日 优先权日2004年6月3日
发明者刘华福, 吴建民 申请人:刘华福
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1