旋转率传感器的制作方法

文档序号:6834328阅读:237来源:国知局
专利名称:旋转率传感器的制作方法
技术领域
本发明涉及一种用来检测旋转率的旋转率传感器。
背景技术
作为以往的旋转率传感器,有一种如特开平第11-287658号所记述的振动回转仪(vibration gyro)。在此振动回转仪中,振子的节点(node point)附近受到由コ字状的细线构成的支撑部件的支撑,而支撑部件的两端,被固定在由玻璃环氧树脂等构成的矩形安装基片上。安装基片被固定在因振子的振动所产生的安装基片的振动模式的节点部分,而保持在底座上。
然而,上述的振动回转仪,由于是使用通过减小系统全体的共振频率所产生的机械性的滤波效果,来实现振动分离的,所以,必须通过コ字状的细线,来支撑振子的节点附近。由于这种采用细线的支撑结构非常复杂,所以,存在的问题是,不仅缺乏信赖性,而且也非常经不起外加的撞击。
本发明的目的在于,提供一种能够经得住外加的撞击,且信赖性较高的旋转率传感器。

发明内容
本发明所提供的旋转率传感器,包括检测元件、以检测元件的驱动方向的共振频率来驱动控制该检测元件,并通过低通滤波器,输出与从检测元件得到的旋转率相对应的信号的电路单元、收纳检测元件和电路单元,并形成有向电路单元传输输出输入信号的线路的陶瓷或树脂制的气密封容器、被配置在气密封容器和用来安装该旋转率传感器的安装体之间的弹性体,其中,至少由检测元件、电路单元、气密封容器以及弹性体构成的机械系统的合成共振频率、以及相当于检测元件的驱动方向的共振频率和检测元件的旋转率检测方向的共振频率之差的施加旋转率频率,小于检测元件的驱动方向的共振频率及检测元件的旋转率检测方向的共振频率,电路单元内的低通滤波器的截止频率,也小于合成共振频率及施加旋转率频率。根据此结构,则可以提供一种能够经得住外加的撞击,且信赖性较高的旋转率传感器。


图1是本发明第1实施例的旋转率传感器的斜视图。
图2是图1所示的旋转率传感器沿I-I线的剖面图。
图3是构成图1所示的旋转率传感器的水晶音叉型振子的斜视图。
图4是图3所示的水晶音叉型振子的共振特性的示意图。
图5A是表示图1所示的旋转率传感器的水晶音叉型振子的频谱的示意图,图5B是表示图1所示的旋转率传感器的电路单元内的低通滤波器特性的示意图,图5C是表示通过图1所示的旋转率传感器的电路单元内的低通滤波器之后的频率-增益特性的示意图。
图6A是表示图4所示的水晶音叉型振子的共振特性的示意图,图6B是表示图1所示的旋转率传感器支撑系统的机械式的频率-增益特性的示意图。
图7是用来说明在图1所示的旋转率传感器被封装在基片上的状态下当施加了外部撞击的情况下的模式图。
图8是用来说明图7所示的气密封容器和硅橡胶的尺寸大小关系的模式图。
图9是图8所示的气密封容器和硅橡胶的大小之比和旋转率的相关图。
图10是图1所示的旋转率传感器支撑系统的其它的机械式的频率-增益特性的示意图。
图11是表示在图1所示的旋转率传感器上所施加的旋转率的变化特性的示意图。
图12是表示对应于图11所示的旋转率的变化而从旋转率传感器的电路单元输出的PWM输出的输出示意图。
图13是表示图1所示的旋转率传感器的水晶音叉型振子的质量和电路单元及气密封容器的合计质量的质量比、和输出温度漂移量之间的关系特性的示意图。
图14是本发明第2实施例的旋转率传感器的斜视图。
图15是本发明第3实施例的旋转率传感器的斜视图。
图16是本发明第4实施例的旋转率传感器的斜视图。
图17是图16所示的旋转率传感器沿II-II线的一部分剖面图。
图18A是表示图16所示的旋转率传感器的水晶音叉型振子的共振特性的示意图,图18B是表示图16所示的旋转率传感器支撑系统的机械式的频率-增益特性的示意图。
图19是表示硅橡胶的厚度和振动传输量的关系特性的示意图。
图20是本发明第5实施例的旋转率传感器的斜视图。
图21是基片和抽出头成为一体的旋转率传感器的斜视图。
图22是本发明第6实施例的旋转率传感器的斜视图。
图23是采用了线状导体切片的旋转率传感器的斜视图。
图24是本发明第7实施例的旋转率传感器的斜视图。
图25是本发明第8实施例的旋转率传感器的斜视图。
图26是本发明第9实施例的旋转率传感器的斜视图。
具体实施例方式
实施例1首先,就本发明实施例1的旋转率传感器进行说明。图1是本发明实施例1的旋转率传感器的斜视图,图2是图1所示的旋转率传感器沿I-I线的剖面图。另外,图1所示的X轴、Y轴、Z轴,分别是表示气密封容器2的宽度方向、长度方向、厚度方向的轴。
图1和图2所示的旋转率传感器1,包括气密封容器2、垫电极(padelectrodes)3、硅橡胶4以及导体部5。
气密封容器2为长方体形状,由陶瓷或环氧树脂系等树脂构成。垫电极3由金等构成,被设置在气密封容器2的下方,用来向旋转率传感器1提供电源以及取出输出。硅橡胶4与气密封容器2的底部形成为一体,作为弹性体而发挥其作用。另外,硅橡胶4也可以粘贴在气密封容器2的底部。
导体部5由第1垫电极5a、导体模板(conductor pattern)5b及第2垫电极5c组成,第1垫电极5a,设在硅橡胶4上面的与气密封容器2的垫电极3相对应的位置上,第2垫电极5c,设在其下面,用来与设置在基片等上的外部电极(图略)通电,而在侧面,则设有用来连接第1和第2垫电极5a、5c的导体模板5b。这样,尽管结构简单,但可以使承担机械支撑作用的硅橡胶4保持通电的功能。
第2垫电极5c被设置在硅橡胶4下面的四个角上。这样,在基片上封装本传感器时,因焊料的表面张力在四个角上发生作用,从而可以实现自行调整。
各导体部5,至少具有电源、输出、接地用的3个系统的电极功能,并且,还被配置成使输出用的垫电极位于电源用的垫电极和接地用的垫电极之间。这样,可以减少在基片上焊接该传感器时,因焊料的进入而引起的电极-地面之间的短路发生概率。
作为检测元件的水晶音叉型振子(crystal tuning-fork vibrator)6,被配置在气密封容器(airtight container)2内部的上方,台座9使用粘合剂等来支撑固定水晶音叉型振子6。在水晶音叉型振子6的下方设有层状的配线7,通过配线7,可将水晶音叉型振子6和电路单元8连接起来。电路单元8,例如由半导体裸片(semiconductor bare chip)组成,可通过引线接合或冲击(wire bonding or a bump)法,,而与设置在气密封容器2内的垫电极(图略)连接。电路单元8以驱动方向的共振频率,来驱动控制水晶音叉型振子6,将对应于从水晶音叉型振子6获得的旋转率的信号进行调整并输出。盖子10a、10b由金属等构成,在气密封容器2的内部充填了气体之后,通过对盖子10a、10b进行焊接或粘结,而将气密封容器2进行封闭,从而保持气密封容器2内的气体被密封。
图3是图2所示的水晶音叉型振子的斜视图。图3所示的水晶音叉型振子6,是由单结晶水晶或接合水晶构成的共振型振子,其温度特性良好。例如,可以通过以原子间结合的水准,直接将有音叉形状的2片水晶板接合起来,制作成由接合水晶构成的共振型振子。
水晶音叉型振子6,包括2根臂11、12和连接臂11、12的底部13。由于底部13不存在用来分离振动的横梁结构或狭窄结构,所以,即使对于从混凝土面的上方1m处落下时的撞击(瞬间超过1万G的撞击),水晶音叉型振子6也不会发生损坏。
垫电极14,通过蒸镀铬和金而被形成在底部13上,分别与通过蒸镀铬和金而形成在臂11、12上的,用于驱动音叉的电极(图略)以及用来检测与旋转率相对应的信号的检测电极(图略)相连接。垫电极14还通过引线接合或冲击法而与设置在气密封容器2上的垫电极(图略)连接。
参照图1~图3,通过从电路单元8向水晶音叉型振子6上的垫电极14提供驱动信号,臂11、12则在X轴方向来回振荡。而且,一旦施加了围绕Y轴的旋转率ω,则在臂11、12的振幅速度矢量和旋转率矢量的矢量积方向(Z轴方向)上则产生与臂11、12的质量成比例的作用力(即,柯氏力(Coriolis’force)),而臂11、12则因此柯氏力的作用向检测旋转率的方向(Z轴方向)弯曲。与此弯曲量成比例的信号,通过水晶音叉型振子6上的检测电极被检测出来,在电路单元8内,根据驱动信号对此检测出的信号进行同步检波,通过放大同步检波后的信号,并在低通滤波器进行处理,则可以获得与旋转率相对应的传感器信号。
图4是图3所示的水晶音叉型振子的共振特性示意图,横轴表示频率,纵轴表示导纳(admittance)(即,振荡的容易程度)。
图4中的20、21分别表示图3所示的水晶音叉型振子6的驱动方向的共振频率(以下,简略为“fd”),以及旋转率检测方向的共振频率(以下,简略为“fs”),A表示相当于fd和fs之差的频率(以下称为“失谐频率”)。
在本实施例中,用10kHz作为水晶音叉型振子6的fd。通常,为了提高旋转率检测方向的灵敏度,而将水晶音叉型振子6的大小形状设计成fd和fs靠近,使检测方向的振动易于激发。水晶音叉型振子6,其失谐频率A越小,则越接近共鸣状态,从而可以使检测灵敏度提高。例如,在领航系统(navigation system)、滚式系统(rollover system)、新式AB S(advancedABS)(非锁定制动系统(antilock brake system))的场合下,最好将失谐频率A分别设定在200Hz~400Hz、300Hz~500Hz、300Hz~400Hz。
图5A是表示图1所示的旋转率传感器的水晶音叉型振子的频谱的示意图,图5B是表示图1所示的旋转率传感器的电路单元内的低通滤波器特性的示意图,图5C是表示图1所示的旋转率传感器的电路单元内的低通滤波器通过之后的频率-增益特性的示意图。在图5A~图5C中,20、21分别表示fd和fs,22a、22b分别表示调制边波(fd+fω)和调制边波(fd-fω),23表示相当于旋转率ω的频率fω,24是表示低通滤波器的截止频率的点,25是表示对于低通滤波器的频率的增益下降特性的直线,26表示跳动成分,各图的横轴是频率,纵轴是增益。
图5A表示的是频谱(frequency spectrum),该频谱用来说明在围绕水晶音叉型振子6的Y轴施加了频率为fω的旋转时的fd附近的调制边波。如图5A所示,一旦围绕水晶音叉型振子6的Y轴施加了相当于旋转率为ω的频率(fω)23,fd则因频率(fω)23而受到振幅调制,在fd的上下将产生调制边波(fd+fω)22a和调制边波(fd-fω)22b。此调制边波(fd+fω)22a和调制边波(fd-fω)22b的峰值量,由驱动方向(X轴方向)的振幅量、检测方向(Z轴方向)的机械式共振锐度(Q值)以及失谐频率A来决定。通过解调(检波及平滑)此调制边波(fd+fω)22a和调制边波(fd-fω)22b,可以得到与所施加的旋转率相对应的传感器输出。
图5B表示电路单元8内的低通滤波器的特性。如图5B所示,在进行解调时,为了抑制不必要的杂波成分,通常通过低通滤波器来对输出进行平滑。设定增益下降特性,以便可以按照表示低通滤波器的频率的增益下降特性的直线25,随着频率的增大,通过低通滤波器之后的输出则单调地减少。
例如,表示低通滤波器的截止频率的点24,在领航系统、滚式系统、新式ABS(非锁定制动系统)的场合下,最好各自设定在10Hz、50Hz、100Hz。而且,表示低通滤波器的频率的增益下降特性的直线25的次数,在领航系统、滚式系统、新式ABS的场合下,最好设定在2次~4次、3次~4次、3次~5次。
图5C表示在围绕水晶音叉型振子6的Y轴施加了相当于失谐频率A的旋转率时,通过低通滤波器之后的输出的频率-增益特性。如图5C所示,所施加的旋转率的频率(fω)23,一旦接近失谐频率A(=fd-fs),调制边波(fd-fω)22b则与fs重叠。此调制边波(fd-fω)22b成为起振力,在检测方向(Z轴方向)上产生与实际旋转率不相关的振荡信号。一旦将此信号进行解调,则在相当于失谐频率A(=fd-fs)附近的旋转率的频率(fω)的位置上,出现传感器输出的尖锐的峰值26。这就是所称的所谓跳动成分(beat component),是共振型旋转率传感器的共同现象。此跳动成分,通常是由上述的低通滤波器来抑制。
图6A是表示图4所示的水晶音叉型振子的共振特性的示意图,图6B是表示图1所示的旋转率传感器支撑系统的机械式的频率-增益特性的示意图。在图6A和图6B中,30表示传感器支撑系统(主要是由水晶音叉型振子6、电路单元8、气密封容器2以及硅橡胶4构成的机械系统)的传输特性曲线,31表示在支撑系统传输特性曲线30上取得峰值的共振频率,32表示失谐频率A(=fd-fs)=fω,33表示支撑系统传输特性曲线30上的fd附近的衰减量。
作为图6B所示的支撑系统传输特性,共振频率31最好在2kHz或2kHz以上、4kHz或4kHz以下,而在2kHz更为理想。而且,较为理想的是,图5A~图5C进行过说明的失谐频率A在200Hz或200Hz以上、500Hz或500Hz以下,表示低通滤波器的截止频率的点24在100Hz或100Hz以下,低通滤波的次数实际上设定在3次或3次以上。这样,由于在经得住外加撞击的同时,又可以较有效地抑制因施加旋转率的频率而容易产生的跳动成分,所以,传感器的检测频率区的输出信赖性得到了极大的提高。
图7是用来说明在图1所示的旋转率传感器被封装在基片上的状态下而施加了外部撞击的情况的模式图。在图7中,40表示驱动方向(X轴方向)的撞击加速度,41表示旋转率检测方向(Z轴方向)的撞击加速度,42表示的是不取决于原来的旋转率,而是因外部的撞击加速度而围绕Y轴产生的撞击旋转力矩(impact angular-moment)。
如图7所示,在图1所示的气密封容器2的底部形成为一体的硅橡胶4,被粘结固定在作为安装体的封装基片43上。在本发明的传感器中,由于图3所示的水晶音叉型振子6、图6B所示的机械式的频率-增益特性以及图5C所示的电路的低通滤波特性是被组合在一起的,所以,不仅水晶音叉型振子6能够经得住落下撞击,而且,即使在被施加了相当于失谐频率A(=fd-fs)的旋转率的频率(fω)的情况下,也可以使跳动成分得以抑制。而且,如图6B所示,由于共振频率的峰值31被设定成大于相当于失谐频率A(=fd-fs)的旋转率频率(fω)32,所以,也不会在无意中使机械系统的共振所引起的跳动成分增加。还由于在fd附近的机械系统的衰减量33较大,所以,可以经得住来自外部的撞击加速度40、41、或撞击旋转力矩42等。例如,已经证实,在旋转率传感器1的质量为5g、硅橡胶4的硬度为30度、其厚度为0.5mm的情况下,向混凝土面落下时的撞击被衰减到大约不到1000G。
图8是用来说明图7所示的气密封容器和硅橡胶的尺寸大小关系的模式图。在图8中,La表示图7所示的气密封容器2的宽度(X轴方向、即与检测旋转率的检测轴垂直的方向的长度),Lb表示图7所示的气密封容器2的厚度(Z轴方向的长度)和硅橡胶4的厚度(Z轴方向的长度)合在一起的厚度。箭头B表示从外部施加于封装基片43上、与气密封容器2的宽度方向(X轴方向)平行的撞击加速度40(参照图7)的方向,通过此撞击加速度40,围绕Y轴而产生撞击旋转力矩42。
图9是图8所示的气密封容器和硅橡胶的大小之比和旋转率的相关图。如图9所示,在将图8所示的气密封容器2和硅橡胶4的尺寸比La/Lb为1.0时的外加撞击时的围绕检测轴的旋转力矩(偏力矩)ω’定为1.0时,一旦尺寸比La/Lb成为1.0以上,则气密封容器2就会慢慢地变成扁平形状,从而可以减轻外加撞击时的围绕检测轴的旋转力矩ω’的发生。
在此,就按照其他的设计方法而改变了图1所示的旋转率传感器的支撑系统,改变了支撑系统的机械式的频率-增益特性的情况来进行说明。
图10是图1所示的旋转率传感器支撑系统的其他的机械式的频率-增益特性的示意图。在图10中,34表示图1所示的旋转率传感器的其他支撑系统(主要是由水晶音叉型振子、电路单元、气密封容器以及硅橡胶构成的机械系统)的传输特性曲线,35表示在支撑系统传输特性曲线34上的共振频率的峰值,36表示失谐频率A(=fd-fs)=fω。
作为图10所示的支撑系统传输特性,共振频率的峰值35,最好在300Hz或300Hz以上、600Hz或600Hz以下,而在500Hz更为理想。而且,较为理想的是,图5A~图5C进行过说明的失谐频率A在1kHz或1kHz以上、2kHz或2kHz以下,表示低通滤波器的截止频率的点24在100Hz或100Hz以下,低通滤波的次数实际上设定在3次或3次以上。这样,由于在经得住外加撞击的同时,又可以较为有效地抑制因施加旋转率的频率而容易产生的跳动成分,所以,传感器的检测频率区的输出信赖性得到了极大的提高。
图11是表示在图1所示的旋转率传感器上施加的旋转率变化特性的示意图。图12是表示对应于图11所示的旋转率的变化而从旋转率传感器的电路单元输出的PWM输出的输出示意图。
当图11所示的旋转率被施加在图1所示的旋转率传感器1上时,从旋转率传感器1产生模拟输出。由于旋转率传感器1的电路单元8具有脉冲宽度处理转换器(图略),所以,对应于此输出,将产生以如图12所示的脉冲宽度,其占空系数(duty ratio)发生变化的PWM形式的输出。在此情况下,由于数码输出可以由用来调整输出与旋转率对应的信号的电路单元8送出,所以,利用微型计算机很容易处理这种输出。而且,又由于数码输出为PWM形式,所以不需要用A/D转换器,用1个数码通道(digital port)就可以处理这种PWM输出。
图13是表示图1所示的旋转率传感器的水晶音叉型振子的质量和电路单元及气密封容器的合计质量的质量比、和输出温度漂移量的关系特性的示意图。图13的横轴表示的是,用水晶音叉型振子6的质量m除电路单元8和气密封容器2的合计质量M的质量比M/m,纵轴表示的是旋转率传感器1的输出温度漂移量(deg/sec)。
如图13所示,由于质量比M/m达到5.0以上后,水晶音叉型振子6的振动则趋于稳定,遗漏振动量也减小,所以,旋转率传感器1的输出温度漂移量也被减小到10deg/sec以下。
如上所述,在本实施例中,虽然随着旋转率传感器1的小型化,水晶音叉型振子也小型化,但即使水晶音叉型振子小型化也不会招致因制造上的偏差而引起的旋转率传感器特性的恶化,而且,还可以廉价提供抗外部杂乱加速度或外加撞击,其信赖性也是较高的超小型旋转率传感器。尤其是可以廉价提供表面封装型的旋转率传感器。
另外,在本实施例中,是就采用了硅橡胶作为弹性体的例子进行了说明,但并不一定只局限于此,也可以使用各种各样的材料。
例如,也可以使用一种嵌入了金属细线而使沿厚度方向具有电传导性的板状橡胶。这样,只将本传感器压接封装在基片上,而不需要用焊接等连接手段,就可以确保传感器和基片之间的电连接,从而实现施工方法的合理化。
而且,也可以采用氨基甲酸酯或具有空孔的硅,这样,可以提高撞击的吸收效果。还可以采用含有磁性体或磁石的弹性材料,这样,可以在汽车车体或发动机表面等具有磁性的金属体上稳定地进行安装。还可以采用由纤维状的玻璃或树脂形成的薄片,这样,弹性体内的内部损耗可以明显加大,从而可以提高撞击的吸收效果。
而且,弹性体也可以为层叠结构,这样,由于弹性体是由层叠结构所构成,所以,通过使层之间的传输阻抗为不连续,则会产生振动反射,从而可以进一步提高振动衰减效果。另外,还可以在气密封容器的表面薄薄地粘贴上弹性体(例如,比气密封容器的厚度要薄地粘贴在气密封容器的底面以外的面上)。这种情况下,可以缓和在有其他的部件接触干涉气密封容器时所发生的撞击和振动。
而且,在本实施例中,作为检测元件,以采用了水晶音叉型振子为例进行了说明,但并不一定只局限于此,也可以使用其他的各种各样的材料。例如,可以采用一种在其表面设有PZT的压电模的硅片所形成的一端封闭型音叉振子,这样,可以简易地形成一端封闭型音叉振子的支撑部。而且,还可以采用一种H型振子,这样,可以抑制来自驱动部向检测部的不要信号的遗漏。另外,还可以采用一种通过蚀刻法而由硅片形成的射束型的振子,这样,易于实现传感器的小型化。还可以采用一种通过蚀刻法而由硅片形成的环形状的振子,这样可以提高机械式的Q值。
而且,也可以采用这样一种振子,用蚀刻法,从硅基片开始,将共振型振子臂、底部、支撑该底部的横梁、支撑该横梁的矩形的框架构成为一体,通过在臂的主要一面上蒸镀厚度为1μm以上5μm以下的PZT压电模而形成。在这种情况下,即可以达到薄型化,也可以实现高精度化。并且,最好还是电路在硅基片的同一面上形成为一体。在这种情况下,更容易实现小型化。
而且,也可以采用一种角柱形或圆柱形陶瓷制的振子。这样可以提高对旋转率的检测灵敏度。还可以采用一种使用了弹性表面波纹的振子。在这种情况下,明显的薄型化将成为可能。
在本实施例中,还就检测元件和电路单元分别被设置在分开的位置上的例子进行了说明,但并不一定只局限于此,例如,电路单元也可以是在由硅片构成的一端封闭型音叉振子的同一面上形成为一体。在这种情况下,就更加容易实现小型化。
实施例2图14是本发明第2实施例的旋转率传感器的斜视图。在图14中的与图1有相同结构的部分标有相同的序号,但其详细的说明则省略,只就不同的部分给以详细的说明。
图14所示的旋转率传感器1a的硅橡胶4a,是由图1所示的硅橡胶4在Y轴方向延长了的硅橡胶而构成的,同实施例1一样,作为弹性体而发挥其作用。突起50设置在硅橡胶4a上,而在封装基片60上形成孔62,用来给突起50定位并进行装收。导体部5a又形成在硅橡胶4a上,垫电极3则以突起50被插入在孔62中的状态,通过导电体5a而与形成在封装基片60上的导体模板61连接。
如上所述,本实施例由于设置了突起50和孔62,所以,通过将突起50插入孔62,可以准确地将旋转率传感器1a在封装基片60上的位置固定下来,从而可以防止旋转率传感器1a被错位地连接在基片上的错误连接。
实施例3图15是本发明第3实施例的旋转率传感器的斜视图。在图15中的与图1有相同结构的部分标有相同的序号,但其详细的说明则省略,只就不同的部分给以详细的说明。
图15所示的旋转率传感器1b的气密封容器2的底面上,粘结有硅橡胶70,而硅橡胶70与封装基片60a粘在一起。硅橡胶70由剖面为圆形的圆柱体的硅橡胶所构成,同实施例1一样,作为弹性体而发挥其作用。硅橡胶70的表面设有导体部5b,是为了连接由金等构成的垫电极3和设置在封装基片60a上的外部电极61a。
根据上述的结构,本实施例在封装基片60a上封装旋转率传感器1b时,旋转率传感器1b和封装基片60a之间会产生空隙,可以将各种零部件封装在此空隙中,从而可以实现封装效率的改善。
另外,作为硅橡胶70的剖面形状来说,并不只局限于上述之例,也可以用椭圆形等其他形状,硅橡胶的形状也并不只局限于上述之例,也可以用球形体等各种形状。而且,虽然是采用硅橡胶作为弹性体,但并不只局限于此例,也可以采用各种各样的材料,只要是具有弹性的材料。
实施例4图16是本发明第4实施例的旋转率传感器的斜视图,图17是图16所示的旋转率传感器沿II-II线的一部分剖面图。图16和图17中,在与实施例1至实施例3有相同结构的部分标有相同的序号,但其详细的说明则省略,只就不同的部分给以详细的说明。
图16和图17所示的旋转率传感器1c的软性基片(flexible substrate)80,包括用来封装旋转率传感器1c的封装单元80a、从封装单元80a引出配线的移行单元80b、在基片80上进行连接的接线端子单元80c。
导体模板81装置在软性基片80上,而第1导体切片84则与接线端子单元80c上的导体模板81连接。第1导体切片84为板状形的金属接线端子,是通过电阻焊接或超声波焊接而接合在接线端子单元80c上的。在这种情况下,即可以使接线端子单元80c的强度提高,也可以与连接器进行嵌合。另外,导体切片并不只局限于上述之例,也可以采用线状的金属接线端子,这种情况也可以得到同样的效果。而且,作为第1导体切片,还可以采用具有可弯曲性的线状或板状的金属端子。这种情况下,由于在接线端子单元80c,连接着具有可弯曲性的线状或板状的金属端子和导电模板,所以,可以控制机械振动特性,从而实现更能经得住撞击的传感器。
在软性基片80上,与垫电极3相对应地设置有连接片86,通过焊料87,而将垫电极3和连接片86进行通电。另外,虽然是为了使垫电极3和连接片86通电而使用了焊料87,但也可以使用其他的导电粘合剂。
移行单元80b设有孔82和切口83,而切口83与检测旋转率的检测轴平行。由于在移行单元80b上设有多个孔82,所以,可以利用孔82而缝在衣料或手套等上,以便检测例如人体活动、手的动作等。又由于在移行单元80b形成切口83,所以,即可以防止旋转率产感器1c的遗漏振动在软性基片80上传播,又可以不使后面要说明的硅橡胶88的振动绝缘功能因软性基片80的移行单元80b的刚性而受到损害。因此,由于在以简单的结构而获得振动绝缘效果的同时,也可以缩短软性基片的长度,所以,可以简单地设计传感器。另外,即使以狭窄部来取代切口83,而在移行单元80b形成薄壁,也可以得到相同的效果。
在接线端子单元80c设有第2导体切片85,用来将封装了旋转率传感器1c的软性基片80定位在封装基片60上而进行固定。第2导体切片85起着一个加强作用,以便机械应力不直接作用于焊接在封装基片60上的第1导体切片84。由此,可以抑制第1导体切片84发生断路,或者抑制固定在封装基片60上的第1导体切片84的焊接部分发生裂缝。而且,又因为在接线端子单元80c的附近,设有定位固定用端子的第2导体切片85,所以,即可以给必须通电的接线端子单元80c减轻机械的负担,又可以提高接线端子单元80c自身的定位准确度。
识别用的标记90设置在气密封容器2上,使用识别用标记90,是为了减小在以较高的精确度封装旋转率传感器1时发生的角度偏离。气密封容器2形成一种大致长方体的形状,由于在所述气密封容器的上面,使用了封装时的识别用标记90,所以,可以抑制自动封装时的角度偏离。
硅橡胶88被粘贴在软性基片80上,在封装基片60上进行封装时,不仅作为支撑部件而支撑着软性基片80及旋转率传感器1c,还可以作为振动绝缘部件而发挥其作用。在硅橡胶88上形成有硅橡胶构成的突起88a,同时,也形成有用来将硅橡胶88固定在封装基片60上的粘结层89。硅橡胶88,与上述实施例同样,可以作为弹性体而发挥其作用,而突起88a和粘结层89则作为固定部件发挥其作用。另外,作为固定部件并不只是局限于上述之例,也可以采用磁性薄片等的磁石,通过使用粘结层或磁石,可以简易而有效地将传感器固定在封装基片60上。
第1导体切片84,被分别分配有电源、GND以及对应于旋转,使占空系数发生变化而进行输出的PWM输出(或者模拟输出)。对于被分配有电源供应的第1导体切片84和被分配有GND的第1导体切片84,在考虑信赖性而进行设计时,最好不让它们彼此邻接。
图18A是表示图16所示的旋转率传感器的水晶音叉型振子的共振特性的示意图,图18B是表示图16所示的旋转率传感器支撑系统的机械式的频率-增益特性的示意图,图19是表示硅橡胶的厚度和振动传输量的关系特性的示意图。
图18A和18B中,91表示旋转率传感器支撑系统(主要是由水晶音叉型振子6、电路单元8、气密封容器2、软性基片80、硅橡胶88、突起88a以及粘结层89组成的机械系统)的传输特性曲线,92表示支撑系统传输特性曲线91的0dB的水准,93表示支撑系统传输特性曲线91在共振频率上的第1峰值,94表示从0dB92开始衰减的衰减量,95表示从峰值93移动了位置的第2峰值,24是表示低通率波器的截止频率的点,32表示的是失谐频率A(=fd-fs)=fω。
如图18A和18B所示,通过具有振动绝缘效果的硅橡胶88,可以抑制在高频率区的水晶音叉型振子6(图略)的驱动方向的共振频率(fd)20附近的振动传输量,以便从虚线所示的0dB92变成为衰减量94。由于因此衰减量94而使振动遗漏减小,所以,遗漏振动的影响得以缓和。
第1峰值93,是由硅橡胶88的损失、硬度、厚度、形状或者水晶音叉型振子6的质量m、外形等来决定,根据想避开共振频率(fd)20的干涉等各种目的,可以设计成任意的频率。例如,一旦硅橡胶88的硬度增加,第1峰值93则向频率较高的第2峰值95侧移动。而且,又如图19所示,通过改变硅橡胶88的厚度,振动传输量发生变化,而图18B所示的衰减量94则可以变动。
而且,作为图18B所示的支撑系统传输特性,第1峰值93的共振频率在2kHz或2kHz以上、4kHz或4kHz以下,而在2kHz较为理想,失谐频率A在200Hz或200Hz以上、500Hz或500Hz以下,表示低通滤波器的截止频率的点24在100Hz或100Hz以下,而低通滤波的次数最好被实际设定在3次或3次以上。在这种情况下,由于即能经得住外来撞击,又可以更有效地抑制因施加旋转率的频率而容易产生的跳动成分,所以,极大地提高了在传感器检测频率区的输出的信赖性。
另外,作为支撑系统传输特性,并不只局限于上述之例,作为旋转率传感器1c的支撑系统(主要是由水晶音叉型振子6、电路单元8、气密封容器2、软性基片80、硅橡胶88、突起88a以及粘结层89组成的机械系统)的传输特性,也可以用图10所示的支撑系统传输特性,这种情况下,也可以得到与上述同样的效果。
根据上述的结构,本实施例不仅可以提高振动分离设计的自由度,也可以适应小型化、高信赖度化以及高精确度化。
实施例5图20是本发明第5实施例的旋转率传感器的斜视图。在图20中与实施例1至实施例4有相同结构的部分标有相同的序号,但其详细的说明则省略,只就不同的部分给以详细的说明。
图20所示的旋转率传感器1d的基片100,由玻璃环氧树脂构成,作为支撑部件而发挥其作用。在基片100上设有孔100a和切口100b。切口100b可以局部性地降低基片100的刚性,使介于抽出头(drawn-out lead)101而从外部传来的振动和旋转率传感器1c的遗漏振动难以传输。基片100上设有抽出电极100c,抽出电极100c,通过焊锡102而被焊接在已成形为曲柄型的抽出头101上。
另外,在本实施例中,是就采用了焊接来连接抽出头101和抽出电极100c的例子进行了说明,但采用电阻熔接、超声波熔接也是可能的。而且,还就将玻璃环氧树脂用于基片100上的例子进行了说明,但也可以采用成形树脂、陶瓷系的材料等,还可以采用内有空穴型(inner via hole type)的多层基片。
并且,基片和抽出头的结构也并不只局限于上述之例,还可以有如后面将要说明的各种改变了形式的结构。图21是基片和抽出头构成为一体的旋转率传感器的斜视图。图21所示的旋转率传感器1d’,采用的是基片和抽出头构成为一体的结构。这种情况下,可以实现旋转率传感器的低成本化。
实施例6图22是本发明第6实施例的旋转率传感器的斜视图。在图22中与实施例1至实施例5有相同结构的部分标有相同的序号,但其详细的说明则省略,只就不同的部分给以详细的说明。
图22所示旋转率传感器1e的基片109,由软性基片构成,在基片109上,即设有导体模板105,又设有多个孔110。并且,在延长了的基片109的一部分设有一个狭窄部111,基片109上的导体模板105与导体切片112连接。
根据上述的结构,在本实施例中,由于基片109的延长,则可以提高在各种物体上的装置自由度。例如,可以将旋转率传感器1e粘贴在箱子(图略)的箱面上,与脱离了基片109的电路基片(图略)连接。又由于在基片109上设有孔110,则可以缝在衣服或鞋子等上。还可以使设置在其它物体上的导销(图略)穿过孔110,并通过弯曲此导销而进行固定。在这种情况下,拆卸旋转率传感器1e就变得很简单了。进一步,又由于在基片109的一部分设有一个狭窄部111,所以,可以维持振动绝缘效果。
另外,导体切片也并不只局限于上述之例,还可以有如后面将要说明的各种改变了形式的结构。图23是采用了线状导体切片的旋转率传感器的斜视图。在图23所示的旋转率传感器1e′中,是用线状导体切片113代替了图22所示的导体切片112。这种情况下,由于导体切片113为线状,所以,与连接器进行嵌合就变得较为容易了。
并且,在本实施例中,虽然是就使用软性基片的例子进行了说明,但通过在支撑部件的移行单元,适当地将切口、多个孔、狭窄部和薄片进行组合搭配,就可以使用由厚度为0.1mm以上1mm以下的硬质玻璃环氧树脂构成的基片。在这种情况下,即可以更加提高气密封容器的封装性,又可以封装各种的电器零件,又可以与其它基片进行集成电路连接。
实施例7图24是本发明第7实施例的旋转率传感器的斜视图。图24所示的旋转率传感器,包括图20所示的旋转率传感器1d、基片120以及座架121,由2个旋转率传感器1d而构成多轴检测型的旋转率传感器。由于是在硬质基片的基片120上,使用作为固定部件的粘结层89而使2个旋转率传感器1d接近并进行封装,所以,传感器彼此之间难以相互干涉的多轴检测就成为可能。
并且,将2个旋转率传感器1d封装在基片120上,以便使2个旋转率传感器1d的旋转检测轴方向ω彼此相同,并将其装收在座架121中。根据此结构,本实施例可以比较监视朝着同一方向的传感器彼此的输出,从而可以构成具有冗长性的多轴检测型旋转率传感器。
又因为可以使2个旋转率传感器1d的各检测元件的驱动方向的共振频率大致相同,所以,没有必要特意设计各检测元件而使彼此有不同的共振频率,从而可以实现廉价的传感器。
而且,还可以配置2个旋转率传感器1d,以使其旋转检测轴方向ω彼此相反,只要能得到2个旋转率传感器1d输出的差动,就可以辨别公共杂波等。
根据以上所述结构,传感器输出的信赖性正在飞跃性地提高,例如,可以提供适用于汽车等对信赖性有较高要求的多轴检测型旋转率传感器。而且,也可以没有形状及成本方面的条件限制。
另外,本实施例是就2个旋转率传感器1d被封装成其旋转检测轴方向的ω彼此相同的例子进行了说明,但并不只局限于此,也可以根据用途,对3个以上的旋转率传感器进行封装,使其旋转检测轴方向ω彼此相同。而且,所使用的旋转率传感器也不只局限于上述之例,即使使用其它实施例的旋转率传感器,也可以得到相同的效果。关于这一点,下面所要说明的实施例也是同样的。
实施例8图25是本发明第8实施例的旋转率传感器的斜视图。图25所示的旋转率传感器,包括图20所示的旋转率传感器1d、基片120以及座架121,由2个旋转率传感器1d而构成多轴检测型的旋转率传感器。
将2个旋转率传感器1d封装在基片120上,而使2个旋转率传感器1d的旋转检测轴方向ω相互垂直,并将其装收在座架121中。根据此结构,在本实施例中,由于2个旋转率传感器1d的振动彼此分离和独立,所以,即使被配置在相互接近的位置上,也不会受到干涉等不良影响,从而可以实现高密度封装的多轴检测型旋转率传感器。
实施例9图26是本发明第9实施例的旋转率传感器的斜视图。图26所示的旋转率传感器,包括2个旋转率传感器1f、1f′、座架130以及粘贴薄片131,由2个旋转率传感器1f、1f′而构成多轴检测型的旋转率传感器。
箱式座架130由氨基甲酸酯构成,在座架130上形成2个空洞130a、130b,以便用来埋设其旋转检测轴方向ω相互垂直的2个旋转率传感器1f、1f′,座架130的底面设有作为固定部件的粘贴薄片131。
这样,由于使用由聚氨基甲酸酯构成的箱式座架130,所以,可使经得住撞击等的环境性能得到提高。又因为使用了为粘贴层的粘贴薄片131,则可以简单而有效地在安装体上进行固定。而且,还由于在座架130上设了2个空洞131a、131b,至少可以将旋转率传感器1f、1f′的气密封容器和封装单元多数装收在座架130内,所以,对于多个传感器,可以使经得住撞击等的环境性能进一步得到提高。并且,在座架130的上面,还形成了封装时的识别用标记90,可以抑制自动封装时的角度偏离。还由于在座架130内,2个旋转率传感器1f、1f′的旋转检测轴方向ω相互垂直,所以,可以实现在一个座架130内能够进行二轴检测的传感器。
另外,旋转率传感器1f是图22所示的旋转率传感器1e省略了硅橡胶88和粘结层89的传感器,而旋转率传感器1f′是图22所示的旋转率传感器1e省略了硅橡胶88、粘结层89以及狭窄部111的传感器,在其它点上,则与图22所示的旋转率传感器1e相同。
而且,由旋转率传感器1f、1f′的水晶音叉型振子、电路单元、气密封容器以及基片100、座架130及粘贴薄片131构成的支撑系统的传输特性,也被设定成与上述图6A及图6B或图10所示的支撑系统传输特性相同,并可以得到相同的效果。
根据上述结构,在本实施例中,虽然随着传感器的小型化,检测元件也小型化,但不会招致因制造上的偏差而引起的传感器特性的恶化,也可以廉价提供即使对于外部杂乱加速度或外加撞击,其信赖性也是较高的超小型多轴检测型旋转率传感器。尤其是可以廉价提供表面封装型的多轴检测型旋转率传感器。由于本实施例还设有粘贴薄片131,所以,多轴检测型旋转率传感器,可以有效地安装在除了所采用的产品支架等基片以外的部件上。
另外,在上述的说明中,是就采用了粘贴薄片131的例子进行了说明,但除了粘贴薄片以外,也可以采用磁性薄片等磁石,在这种情况下,可以简单而有效地将传感器固定在安装体上。而且,还就采用了由氨基甲酸酯构成的座架130的例子进行了说明,但并不只局限于此例,采用橡胶也是可行的。而座架130虽然是箱型,但也可以是筒型等各种各样地形状。而且,还就在座架130上设有2个空洞的例子进行了说明,但也可以根据用途而设置3个以上。而且,上述的各实施例,可以进行任意的组合,这种情况下,也可以得到各实施例的效果。
权利要求
1.一种旋转率传感器,其特征在于包括检测元件;电路单元,用来以所述检测元件的驱动方向的共振频率,来驱动控制该检测元件,并通过低通滤波器,输出与从所述检测元件得到的旋转率相对应的信号;陶瓷或树脂制的气密封容器,用来收纳所述检测元件和所述电路单元,并形成有用于向所述电路单元传输输入输出信号的线路;弹性体,被配置在所述气密封容器和用来安装该旋转率传感器的被安装体之间;其中,至少由所述检测元件、所述电路单元、所述气密封容器以及所述弹性体构成的机械系统的合成共振频率、以及相当于所述检测元件的驱动方向的共振频率和所述检测元件的旋转率检测方向的共振频率之差的施加旋转率频率,小于所述检测元件的驱动方向的共振频率和所述检测元件的旋转率检测方向的共振频率;所述电路单元的低通滤波器的截止频率,小于所述合成共振频率及所述施加旋转率的频率。
2.根据权利要求1所述的旋转率传感器,其特征在于所述弹性体,具有用来与形成在所述气密封容器中的线路进行通电的导体部,并与所述气密封容器的外侧表面的至少一面相连接;由所述检测元件、所述电路单元、所述气密封容器以及所述弹性体构成的机械系统的合成共振频率,小于所述检测元件的驱动方向的共振频率和所述检测元件的旋转率检测方向的共振频率,且大于相当于所述检测元件的驱动方向的共振频率和所述检测元件的旋转率检测方向的共振频率之差的施加旋转率的频率;所述电路单元的低通滤波器的截止频率,小于所述施加旋转率的频率。
3.根据权利要求2所述的旋转率传感器,其特征在于所述合成共振频率,在2kHz或2kHz以上、4kHz或4kHz以下;所述检测元件的驱动方向的共振频率,在10kHz或10kHz以上;所述施加旋转率的频率,在200Hz或200Hz以上、500Hz或500Hz以下;所述低通滤波器的截止频率,在100Hz或100Hz以下;所述低通滤波的次数,实际上在3次或3次以上。
4.根据权利要求1所述的旋转率传感器,其特征在于所述弹性体,具有用来与形成在所述气密封容器中的线路进行通电的导体部,并与所述气密封容器的外侧表面的至少一面相连接;相当于所述检测元件的驱动方向的共振频率和所述检测元件的旋转率检测方向的共振频率之差的施加旋转率的频率,小于所述检测元件的驱动方向的共振频率和所述检测元件的旋转率检测方向的共振频率,且大于由所述检测元件、所述电路单元、所述气密封容器以及所述弹性体构成的机械系统的合成共振频率;所述电路单元的低通滤波器的截止频率,小于所述合成共振频率;
5.根据权利要求4所述的旋转率传感器,其特征在于所述合成共振频率,在300Hz或300Hz以上、600Hz或600Hz以下;所述检测元件的驱动方向的共振频率,在10kHz或10kHz以上;所述施加旋转率的频率,在1kHz或1kHz以上、2kHz或2kHz以下;所述低通滤波器的截止频率,在100Hz或100Hz以下;所述低通滤波的次数,实际上在3次或3次以上。
6.根据权利要求2所述的旋转率传感器,其特征在于在所述弹性体的一个面上,与所述气密封容器的导体部相对应的位置上,设置有第1垫电极,而在另一个面上,则设置有用来与外部进行通电的第2垫电极,在侧面,设置有连接所述第1垫电极和第2垫电极的导体模板。
7.根据权利要求6所述的旋转率传感器,其特征在于所述第2垫电极,设置在所述弹性体另一面的至少四个角上。
8.根据权利要求6所述的旋转率传感器,其特征在于所述第1垫电极和第2垫电极,至少包括电源、输出、接地用的3个系统的垫电极,输出用的垫电极,被配置在电源用的垫电极和接地用的垫电极之间。
9.根据权利要求2所述的旋转率传感器,其特征在于所述气密封容器的垂直于检测旋转率的检测轴方向的宽度La,与所述气密封容器和所述弹性体的合计厚度Lb之比La/Lb,在1.0以上。
10.根据权利要求2所述的旋转率传感器,其特征在于在所述弹性体上设置了一个突起,可插合在封装该弹性体的基片上设置的孔中。
11.根据权利要求2所述的旋转率传感器,其特征在于所述弹性体,由一种片状的橡胶构成,在此片中嵌入金属细线,以便在厚度方向具有导电性。
12.根据权利要求2所述的旋转率传感器,其特征在于所述弹性体,由氨基甲酸酯或具有空孔的硅所构成。
13.根据权利要求2所述的旋转率传感器,其特征在于所述弹性体,由含有磁性体或磁石的弹性材料所构成。
14.根据权利要求2所述的旋转率传感器,其特征在于所述弹性体,是一种由纤维状的玻璃或树脂构成的片体。
15.根据权利要求2所述的旋转率传感器,其特征在于所述弹性体,由截面为椭圆形或圆形的多个柱形体或球形体所构成。
16.根据权利要求2所述的旋转率传感器,其特征在于在所述弹性体上,形成有与检测旋转率的检测轴平行的切口或薄片部。
17.根据权利要求2所述的旋转率传感器,其特征在于在所述弹性体上,粘贴有具有粘性的部件,用来将该弹性体固定在基片上。
18.根据权利要求2所述的旋转率传感器,其特征在于所述检测元件,是一种由单结晶水晶或接合水晶构成的共振型振子。
19.根据权利要求18所述的旋转率传感器,其特征在于所述共振型振子,是一端封闭型的音叉振子。
20.根据权利要求18所述的旋转率传感器,其特征在于所述共振型振子,是H型振子。
21.根据权利要求2所述的旋转率传感器,其特征在于所述检测元件,是一种由硅片通过蚀刻法而形成的射束型振子。
22.根据权利要求2所述的旋转率传感器,其特征在于所述检测元件,是一种由硅片通过蚀刻法而形成的环状振子。
23.根据权利要求2所述的旋转率传感器,其特征在于所述检测元件,是一种从硅基片开始,,通过蚀刻法将共振型振子臂、底座、支撑所述底座的横梁、支撑所述横梁的矩形框架形成为一体,在所述共振型振子臂的主要一面上,形成厚度为1μm以上5μm以下的PZT压电膜的振动元件。
24.根据权利要求23所述的旋转率传感器,其特征在于在所述硅基片的同一个面上,电路被一体形成。
25.根据权利要求2所述的旋转率传感器,其特征在于所述检测元件,是一种角柱形或圆柱形陶瓷制的振子。
26.根据权利要求2所述的旋转率传感器,其特征在于所述检测元件,是使用了弹性表面波的振子。
27.根据权利要求2所述的旋转率传感器,其特征在于所述电路单元,发送数码输出。
28.根据权利要求27所述的旋转率传感器,其特征在于所述数码输出,是PWM形式的输出。
29.根据权利要求2所述的旋转率传感器,其特征在于所述弹性体,被贴在所述气密封容器的表面。
30.根据权利要求2所述的旋转率传感器,其特征在于所述检测元件的质量m,与所述电路单元和所述气密封容器的合计质量M之比M/m,在5.0或5.0以上。
31.根据权利要求1所述的旋转率传感器,其特征在于还包括,支撑部件和固定部件,其中,所述支撑部件具有与所述气密封容器的外侧表面的至少一面相接触,将所述气密封容器进行电连接的封装单元、与外部进行通电的接线端子单元、使所述封装单元和所述接线端子单元之间通电的导电模板、其硬度已被降低的软性移行单元,而所述固定部件则被固定在所述弹性体上,用来将旋转率传感器固定在所述被安装体上;其中,所述弹性体,被安装在所述被安装体和所述支撑部件的封装单元之间;由所述检测元件、所述电路单元、所述气密封容器、所述支撑部件、所述弹性体以及所述固定部件构成的机械系统的合成共振频率,小于所述检测元件的驱动方向的共振频率及所述检测元件的旋转率检测方向的共振频率,且大于相当于所述检测元件的驱动方向的共振频率和所述检测元件的旋转率检测方向的共振频率之差的施加旋转率的频率;所述电路单元的低通滤波器的截止频率,小于所述施加旋转率的频率。
32.根据权利要求31所述的旋转率传感器,其特征在于所述合成共振频率,在2kHz或2kHz以上、4kHz或4kHz以下;所述检测元件的驱动方向的共振频率,在10kHz或10kHz以上;所述施加旋转率的频率,在200Hz或200Hz以上、500Hz或500Hz以下;所述低通滤波器的截止频率,在100Hz或100Hz以下;所述低通滤波的次数,实际上在3次或3次以上。
33.根据权利要求1所述的旋转率传感器,其特征在于还包括,支撑部件和固定部件,其中,所述支撑部件具有与所述气密封容器的外侧表面的至少一面相接触,将所述气密封容器进行电连接的封装单元、与外部进行通电的接线端子单元、使所述封装单元和所述接线端子单元之间通电的导电模板、其硬度已被降低的软性移行单元,而所述固定部件则被固定在所述弹性体上,用来将旋转率传感器固定在所述安装体上;其中,所述弹性体,被安装在所述被安装体和所述支撑部件的封装单元之间;相当于所述检测元件的驱动方向的共振频率和所述检测元件的旋转率检测方向的共振频率之差的施加旋转率的频率,小于所述检测元件的驱动方向的共振频率及所述检测元件的旋转率检测方向的共振频率,且大于由所述检测元件、所述电路单元、所述气密封容器、所述支撑部件、所述弹性体以及所述固定部件构成的机械系统的合成共振频率;所述电路单元的低通滤波器的截止频率,小于所述合成共振频率。
34.根据权利要求33所述的旋转率传感器,其特征在于所述合成共振频率,在300Hz或300Hz以上、600Hz或600Hz以下;所述检测元件的驱动方向的共振频率,在10kHz或10kHz以上;所述施加旋转率的频率,在1kHz或1kHz以上、2kHz或2kHz以下;所述低通滤波器的截止频率,在100Hz或100Hz以下;所述低通滤波的次数,实际上在3次或3次以上。
35.根据权利要求31所述的旋转率传感器,其特征在于在所述移行单元设有多个孔。
36.根据权利要求31所述的旋转率传感器,其特征在于在所述移行单元设有切口或狭窄部。
37.根据权利要求31所述的旋转率传感器,其特征在于在所述接线端子单元附近,设有定位的固定用端子。
38.根据权利要求31所述的旋转率传感器,其特征在于通过电阻焊接或超声波焊接,将线状或板状的金属端子接合端子单元的导体切片上。
39.根据权利要求31所述的旋转率传感器,其特征在于所述固定部件为粘贴层或磁石。
40.根据权利要求31所述的旋转率传感器,其特征在于所述气密封容器,呈大致长方体的形状,在所述气密封容器的上面,形成有安装时用来识别用的标记。
41.根据权利要求31所述的旋转率传感器,其特征在于所述支撑部件的移行单元,至少设置有切口、狭窄部及多个孔中的其中之一,由厚度为0.1mm或0.1mm以上1mm或1mm以下的硬质基片所构成。
42.根据权利要求41所述的旋转率传感器,其特征在于所述弹性体具有层叠结构。
43.根据权利要求41所述的旋转率传感器,其特征在于所述接线端子单元的具有可弯曲性的线状或板状的金属端子,被连接在所述导电模板上。
44.根据权利要求41所述的旋转率传感器,其特征在于所述固定部件为粘贴层或磁石。
45.根据权利要求41所述的旋转率传感器,其特征在于所述气密封容器,呈大致长方体的形状,在所述气密封容器的上面,形成有封装时进行识别用的标记。
46.根据权利要求31所述的旋转率传感器,其特征在于所述旋转率传感器,包括多个旋转率传感器;所述多个旋转率传感器,是利用所述固定部件,被贴近封装在硬质基片上的。
47.根据权利要求46所述的旋转率传感器,其特征在于所述多个旋转率传感器中的至少2个,被配置成其检测轴实际上指向同一方向。
48.根据权利要求46所述的旋转率传感器,其特征在于所述多个旋转率传感器的各检测元件的驱动方向的共振频率,实质上是相同的。
49.根据权利要求1所述的旋转率传感器,其特征在于还包括,支撑部件和固定部件,其中,所述支撑部件具有与所述气密封容器的外侧表面的至少一面相接触,将所述气密封容器进行电连接的封装单元、与外部进行通电的接线端子单元、使所述封装单元和所述接线端子单元之间通电的导电模板、其硬度已被降低的软性移行单元,而所述固定部件则被固定在所述弹性体上,用来将旋转率传感器固定在所述被安装体上;其中,所述弹性体,包含由聚氨基甲酸酯或橡胶构成的筒型或箱型的座架,该座架设置了至少可以收纳保存所述气密封容器和所述封装单元的空洞;所述接线端子单元至少要伸出到所述座架的外面;由所述检测元件、所述电路单元、所述气密封容器、所述支撑部件、所述座架以及所述固定部件构成的机械系统的合成共振频率,小于所述检测元件的驱动方向的共振频率及所述检测元件的旋转率检测方向的共振频率,且大于相当于所述检测元件的驱动方向的共振频率和所述检测元件的旋转率检测方向的共振频率之差的施加旋转率的频率;所述电路单元的低通滤波器的截止频率,小于所述施加旋转率的频率。
50.根据权利要求49所述的旋转率传感器,其特征在于所述合成共振频率,在2kHz或2kHz以上、4kHz或4kHz以下;所述检测元件的驱动方向的共振频率,在10kHz或10kHz以上;所述施加旋转率的频率,在200Hz或200Hz以上、500Hz或500Hz以下;所述低通滤波器的截止频率,在100Hz或100Hz以下;所述低通滤波的次数,实际上在3次或3次以上。
51.根据权利要求1所述的旋转率传感器,其特征在于还包括,支撑部件和固定部件,其中,所述支撑部件具有与所述气密封容器的外侧表面的至少一面相接触,将所述气密封容器进行电连接的封装单元、与外部进行通电的接线端子单元、使所述封装单元和所述接线端子单元之间通电的导电模板、其硬度已被降低的软性移行单元,而所述固定部件则被固定在所述弹性体上,用来将旋转率传感器固定在所述被安装体上;其中,所述弹性体,包含由聚氨基甲酸酯或橡胶构成的筒型或箱型的座架,该座架设置了至少可以收纳保存所述气密封容器和所述封装单元的空洞;所述接线端子单元至少要伸出到所述支架的外面;相当于所述检测元件的驱动方向的共振频率和所述检测元件的旋转率检测方向的共振频率之差的施加旋转率的频率,小于所述检测元件的驱动方向的共振频率及所述检测元件的旋转率检测方向的共振频率,且大于由所述检测元件、所述电路单元、所述气密封容器、所述支撑部件、所述支架以及所述固定部件构成的机械系统的合成共振频率;所述电路单元的低通滤波器的截止频率,小于所述合成共振频率。
52.根据权利要求51所述的旋转率传感器,其特征在于所述合成共振频率,在300Hz或300Hz以上、600Hz或600Hz以下;所述检测元件的驱动方向的共振频率,在10kHz或10kHz以上;所述施加旋转率的频率,在1kHz或1kHz以上、2kHz或2kHz以下;所述低通滤波器的截止频率,在100Hz或100Hz以下;所述低通滤波的次数,实际上在3次或3次以上。
53.根据权利要求49所述的旋转率传感器,其特征在于所述固定部件为粘贴层或磁石。
54.根据权利要求49所述的旋转率传感器,其特征在于在所述座架的上面,形成有封装时的识别用标记。
55.根据权利要求49所述的旋转率传感器,其特征在于在所述座架内,设有至少可以收纳多个所述气密封容器和所述封装单元的空洞。
56.根据权利要求55所述的旋转率传感器,其特征在于所述座架内的检测元件,被配置成相互垂直。
全文摘要
本发明提供一种旋转率传感器,它包括检测元件、电路单元、气密封容器及弹性体,其中,由这些零部件构成的机械系统的合成振动频率、以及相当于检测元件的驱动方向的共振频率和检测元件的旋转率检测方向的共振频率之差的施加旋转率的频率,小于检测元件的驱动方向的共振频率及检测元件的旋转率检测方向的共振频率,而且,电路单元的低通滤波器的截止频率,也小于合成共振频率及施加旋转率的频率。
文档编号H01L41/18GK1609556SQ20041008529
公开日2005年4月27日 申请日期2004年10月15日 优先权日2003年10月17日
发明者野添利幸, 吉内茂裕, 川崎周作, 地头所典行, 大内智 申请人:松下电器产业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1