有效管脚连接监测系统和方法

文档序号:7210574阅读:217来源:国知局
专利名称:有效管脚连接监测系统和方法
有效管脚连接监测系统和方法
背景技术
集成电路(integrated circuit, IC)在诸如硅之类的半导体材料的单晶圆上大量地生产。晶圆被切成许多块,其中的每一块都包含一集成电路,并且其中的每一块被称为管芯 (die)。集成电路管芯典型地通过引线接合或倒装芯片安装而安装到诸如球栅阵列(ball grid array, BGA)之类的载体基底。采用引线接合,把IC管芯上的小焊盘附连到BGA,例如,用小引线一端焊接或熔接到IC管芯焊盘,且另一端到BGA焊盘或连接点。采用倒装芯片安装,把IC管芯配置为具有预处理的接合焊盘的倒装芯片,在所述预处理的接合焊盘上典型地形成有焊料块,例如通过超声或回流焊接工艺,使得能够实现该倒装芯片到BGA焊盘或连接点的面朝下的附连。球栅阵列(BGA)经常被用在高管脚数的专用集成电路(ASIC)上,并且它们包括在用于把集成电路附连到印刷电路板(printed circuit board,PCB)的两个通常圆形的焊盘之间的焊料珠。在BGA基底、PCB和/或IC管芯本身上的诸如传输振动以及周期性机械和热负荷之类的各种应力可以致使焊料接点起裂,由此致使集成电路的各个管脚与该PCB 分开或者以其它方式松开。这些管脚连接故障典型地发生在BGA和PCB之间的焊球接点中, 但是对于引线接合配置和倒装芯片安装配置这二者而言他们也可能发生在IC管芯和BGA 之间的焊料接点。为了降低与起裂焊球接点相关联的管脚连接故障,有时用集成电路的有效(即功能)管脚不使用的假焊球来替代BGA的拐角焊球。因而,在拐角假焊球变得起裂、松动,或以其它方式损坏的情况下,该集成电路的性能不被危及。然而,损坏未必局限于拐角焊球接点。例如,尽管起裂焊球接点最初可能发生在BGA的拐角处,但是起裂状况趋向于朝着BGA 的中心向内传播,由此危及与集成电路的有效管脚相关联的非假焊球位置。此外,损坏也可能发生在与集成电路的有效管脚相关联的其它焊料接点中,诸如在引线接合和倒装芯片焊料接点中。


现在,通过示例,将参照附图来描述本实施例,其中 图1示出了按照实施例的有效管脚监测系统的示例;
图2示出了按照另一实施例的有效管脚监测系统的示例; 图3示出了按照实施例的监测至IC管芯的有效管脚的连接的方法的流程图; 图4示出了按照实施例的对在有效管脚监测系统中正监测到的波形的比较的示例; 图5示出了按照实施例的对在有效管脚监测系统中正监测到的波形的比较的另一示
例;
图6示出了按照实施例的监测至IC管芯的有效管脚的连接的方法的流程图。
具体实施例方式问题和解决方案概述如上所述,至管芯上的集成电路的管脚的连接故障经常是由在BGA基底上诸如传输振动以及其它机械和热负荷之类的应力引起的BGA和PCB之间的起裂焊球接点的结果。连接故障的其它潜在诱因包括但不局限于,BGA和IC管芯焊盘之间的断开引线接合,以及把IC 管芯耦合到BGA的其它焊料接点的损坏或起裂。处理此连接故障问题的一个方法已经是牺牲在BGA的诸如在拐角处之类的高应力区中的一个或多个焊球接点。牺牲的焊球接点为印刷电路组件增加了机械稳定性,同时当它们起裂时不影响IC功能性,这是因为它们与IC管芯上的有效管脚不相关联。然而,起裂的焊料接点和管脚连接故障总的来说可以发生在BGA的除了高应力区以外的地方。这样的故障影响IC管芯上的有效(即功能)管脚,并经常导致集成电路的性能降低或失效。因此,对至印刷电路组件中的IC管芯的有效/功能管脚的连接故障(例如,起裂的焊料接点等)的检测是重要的诊断工具,其可以帮助防止该领域中印刷电路板(例如, 笔记本计算机主板等)的显著故障诱因。然而,在功能系统中,尤其在间歇性故障的情况下, 对起裂的焊料接点和其它管脚连接故障的检测有些困难。本公开内容的实施例克服了在检测至IC管芯上的有效/功能管脚的连接故障过程中的困难。在一个实施例中,例如,一种用于监测至IC管芯的有效/功能管脚的连接的系统包括该IC的接合到BGA基底上的接合焊盘的I/O单元。印刷电路板(PCB)上测试点耦合到该接合焊盘,并且在该测试点和I/O单元之间形成导电通路。时钟波形通过电阻器被注入到测试点中。在另一实施例中,一种监测至集成电路管芯的有效管脚的连接的方法包括通过电阻器把诸如时钟信号之类的第一波形注入到与有效管脚的输入/输出(I/O)单元相关联的导电路径上。该注入包括在该电阻器的第一管脚处注入第一波形,而使该电阻器的第二管脚耦合到该导电路径。监测在该第一管脚处注入的第一波形并且监测在该第二管脚处的第二波形。把第一波形和第二波形进行比较,并且当该第二波形与第一波形实质上相同时, 做出在该导电路径中存在断开的确定。在另一实施例中,一种监测至集成电路管芯的有效管脚的连接的方法包括通过电阻器把诸如时钟信号之类的第一波形注入到与该有效管脚的输入/输出(I/O)单元相关联的导电路径上。该注入包括在该电阻器的第一管脚处注入第一波形,而使该电阻器的第二管脚耦合到该导电路径。监测该电阻器的第二管脚处的第二波形,并且将其与按照该I/ 0单元的已知电气特性模拟的预定波形进行比较。当第二波形与该预定波形实质上不相同时,做出在该导电路径中存在断开的确定。说明性实施例
图1示出了有效管脚监测系统100的示例。该系统100被实现在把IC管芯102附连到封装基底104的印刷电路组件(PCA)上。在所示出的实施例中,基底104是球栅阵列(BGA) 基底。然而,也可以利用其它类型的封装基底。IC管芯102包括一个或多个集成电路106、 输入/输出缓冲器(I/O单元)108和有效管脚110。逼近IC管芯102的边缘的是管芯焊盘 112,其用来通过接合线116把有效管脚110耦合到BGA基底104上的BGA接合焊盘114。 每个管芯焊盘112被耦合到有效输入/输出管脚110,并且每个管芯焊盘112是用于经由其对应的有效管脚110载送I/O信号到和/或从IC管芯102。应该指出的是图1中所示的管芯焊盘112仅仅出于说明的目的,并且它们不意图指示将典型地存在于IC管芯上的信号焊盘的实际数目、大小或放置。另外,尽管图1中未示出,但是电源焊盘通常也会存在的,以用于把IC管芯102耦合到定位于诸如BGA 104之类的基底上的功率焊盘和接地焊盘。在传统意义上,有效管脚110未必是管脚,诸如被设计用于安装到印刷电路板的通孔或插口的双列直插式IC封装(dual in-line IC package, DIP)或插针网格阵列(pin grid array, PGA)上的管脚。相反,有效管脚110表示至I/O单元108和电路106的某功能方面的任何导电连接,诸如在图1和2中示出的管芯焊盘112和I/O单元108之间的有效管脚110。因此,理解的是有效管脚110可以表示现在或者将来可获得的用于集成电路封装的任何方式或布置的管脚,诸如像以单列直插式封装(single in-line package, SIP) 布置的管脚、以双列直插式封装(DIP)布置的管脚、以链齿状直插式封装(zig-zag in-line package, ZIP)布置的管脚、以插针网格阵列(PGA)布置的管脚、以塑料插针网格阵列 (plastic pin grid array, PPGA)布置的管脚以及以倒装芯片插针网格阵列(flip-chip pin grid array, FCPGA)布置的管脚等等。因此,在本实施例中,有效管脚110把每个管芯焊盘112耦合到输入/输出缓冲器,也叫I/O单元108。每个I/O单元108可以形成集成电路106的一部分,并且每个I/O 单元108包括用于处理相应管芯焊盘112和集成电路106之间的输入信号和/或输出信号的有源I/O电路(未示出)。通常对I/O单元108进行良好地建模并且已知其具有如在I/ 0缓冲器信息规范(I/O Buffer Information Specification, IBIS)中呈现的特定电压/ 电流特性。该IBIS呈现了 I/O单元设计的电气特性(例如,电压/电流性质)而没有提供所述单元设计的详细晶体管和工艺信息。因此,在对可兼容I/O单元进行建模过程中该IBIS 协助IC设计人员和模拟工具厂商。在图1中所示出的实施例中,每个管芯焊盘112通过接合线116进一步耦合到BGA 基底104上的相应BGA焊盘114。引线接合是用来把管芯连接到基底以提供用于信号和功率分布至管芯的电气路径的公知且常用的互连技术。典型地,形成称为焊球接合118的第一接合,其通过热能和超声能(即热超声接合)的使用把小直径接合线(例如,金丝)116附连到管芯焊盘112。然后形成称为针脚式接合120的第二接合,其把接合线116的相对端附连到BGA基底104上的BGA焊盘114。每个BGA焊盘114通过导电轨道(例如,轨道122)和/或经由延伸通过BGA基底 104之物电气连接到BGA基底104的相对侧或底侧上的第二对应BGA焊盘(未示出)。BGA基底104的相对侧上的每个第二 BGA焊盘(未示出)通过位于BGA封装基底104的相对侧上的焊球124连接到印刷电路板(PCB)焊盘126。焊球124由此提供了封装IC管芯102和PCB 128之间的外部电气连接。对于在有效管脚监测系统100上意图要被监测的IC管芯102的每个有效管脚 110,PCB 128上的串联电阻器130电气耦合到PCB焊盘126,该PCB焊盘126通过诸如电气路径132之类的导电路径进一步电气耦合到有效管脚110及其对应的I/O单元108。尽管针对电阻器130的大范围的值是可接受的,但是本实施例中的电阻器130具有1千欧的值。电阻器130的管脚1 134耦合到波形源138,而电阻器130的管脚2 136形成测试点 136并且耦合到PCB焊盘126。波形源138典型地定位成离开PCB 128,但是在一些实施例中也可能全部或部分地定位在PCB 128上。由源138生成的且在电阻器130的管脚1 134 处注入的诸如时钟信号之类的波形,沿着电气/导电路径132行进到IC管芯上的对应I/O单元108,除非在该路径132中存在断开。尽管导电路径132指示有效管脚110经由引线接合并且通过不定位在BGA基底104的拐角处的焊料接点124被耦合,但是正监测的有效管脚110可以通过BGA基底104和PCB 128之间的各个焊料接点124 (包括在BGA基底104 的拐角处的那些)被耦合。现在参考图2,以与图1中所示方式类似的方式将有效管脚监测系统100实现在印刷电路组件(PCA)上。因此,在图2的系统中,IC管芯102附连到BGA基底104,并且包括一个或多个集成电路106、输入/输出(I/O)单元108和有效管脚110。如上所述,有效管脚110表示至I/O单元108和电路106的某功能方面的任何导电连接,并且可以包括以任何方式或布置的管脚,诸如以单列直插式封装(SIP)布置的管脚、以双列直插式封装(DIP) 布置的管脚、以链齿状直插式封装(ZIP)布置的管脚、以插针网格阵列(PGA)布置的管脚、 以塑料插针网格阵列(PPGA)布置的管脚、以倒装芯片插针网格阵列(FCPGA)布置的管脚,寸寸。在图2的实施例中,IC管芯102被配置为倒装芯片并且以倒装芯片配置被附连到 BGA基底104。除了在制造过程中把管芯焊盘112制成更适合于进行焊接之外,图2中的IC 管芯102与图1中所示的IC管芯相同。在倒装芯片的制造过程中,焊料块200被沉积到管芯焊盘112上(最初在IC管芯102的顶侧),并且被用来把IC管芯102直接附连或接合到诸如BGA基底104之类的基底。因为管芯焊盘112和焊料块200在IC管芯102的顶侧上, 所以翻转IC管芯102并且以“面朝下”的方式安装到BGA基底104。焊料块200例如通过超声或回流焊接工艺把管芯焊盘112耦合到BGA基底104上的相应BGA焊盘114。在其它方面,图2的实施例与参考图1论述的实施例相同或类似。因此,对于在有效管脚监测系统100上意图要被监测的IC管芯102的每个有效管脚110,诸如电气路径132之类的导电路径被形成在电阻器130的管脚1 134和IC管芯102上的对应I/O单元108之间。再次,尽管大范围的值是可接受的,但是在本实施例中电阻器130具有1千欧的值。另外,电阻器130的管脚1 134耦合到波形源138,该波形源138典型地定位成离开 PCB 128。一些实施例中波形源138也可能全部或部分地定位在PCB 128上。在图2的实施例中,由波形源138生成并且在电阻器130的管脚1 134处注入的诸如时钟信号之类的波形,沿着电气路径132行进通过管脚2 136 (S卩,测试点136)至IC管芯102上的对应I/ 0单元108,除非在该路径132中存在断开。尽管导电路径132指示有效管脚110经由倒装芯片接合并且通过不定位在BGA基底104的拐角处的焊料接点124被耦合,但是正监测的有效管脚110可以通过BGA基底104和PCB 128之间的各个焊料接点124 (包括在BGA基底104的拐角处的那些)被耦合。现在主要参考图3-5,现在将论述监测至IC管芯的有效管脚的连接的方法300。图 3示出了依照实施例的方法300的流程图。该方法300通常与上面相对于图1和2论述的有效管脚监测系统100的实施例相关联。如上所述,由源138生成并且在电阻器130的管脚1 134处注入的诸如时钟信号之类的波形,沿着电气路径132行进到IC管芯102上的对应I/O单元108,除非在该路径132中存在断开。该监测至有效管脚100的方法300通过监测沿着电气路径132 (S卩,测试点136)的信号以确定在该电气路径132中是否存在断开来执行。方法300在块302处开始,通过电阻器130将诸如时钟信号之类的第一波形注入到与IC管芯102的有效管脚110的I/O单元108相关联的导电路径132上。该第一波形在电阻器130的第一管脚134处被注入,这在该电阻器被耦合到该导电路径的第二管脚136 (即,测试点136)处产生第二波形。在图4中把在电阻器130的管脚1 134处要注入的适合的第一波形400示出为具有5伏的振幅和100兆赫的频率的时钟信号。然而,正如下文进一步论述的,第一波形400的振幅和频率可以显著地变化而不妨碍该监测至有效管脚110 的连接的方法。方法300在块304处继续,监测在电阻器130的第一管脚处的第一波形400和电阻器130的第二管脚处的第二波形402 (图4和5)。图4和图5分别示出了在电阻器130 的管脚1 134和管脚2 136处正监测的波形400和402的示例。如先前所述的,第一波形 400在电阻器130的管脚1 134处注入,这产生存在于电阻器130的管脚2 136处的第二波形402。因此,在方法300的块304处,监测波形400和402。在块306处,把电阻器130 的第一管脚和第二管脚处的监测波形400和402与彼此进行比较。图4和5进一步提供了在电阻器130的管脚1 134和管脚2 136处的监测波形400和402的比较的示例。在块308处,根据波形400和402的比较确定,当电阻器13的第二管脚2 136处的第二波形402与在电阻器130的第一管脚1 134处注入的第一波形400实质上相同时, 在该导电路径132中存在断开。图5示出了波形400和402的比较的示例,其图示了第二波形402与第一波形400实质上相同。如图5中所示出的示例,在电阻器130的管脚1 134 处注入的波形400具有5伏的电压振幅和100兆赫的频率。另外,在电阻器130的管脚2 136处的所得到的波形402实质上在波形400的顶部上,并且具有5伏的电压振幅和100 兆赫的频率。因而,图5中的波形400和402至少实质上相同。因此,图5中所图示的波形 400和402示出了这样的情景,在该情景中块308确定将是在导电路径132中存在断开,这指示至IC管芯102的被监测有效管脚110的连接照样是断开的,或是有缺陷的。当做出在该导电路径132中存在断开的确定时,应该注意的是,沿着该导电路径 132该断开可能在任何地方。尽管更可能的是该断开会发生在PCB 128和BGA基底104之间的焊球接点124处,但是该断开也可能发生在沿着导电路径132的任何数目的其它位置中。例如,沿着导电通道132监测到的断开还可能发生在引线接合接点116、118、120 (图 1)处,在倒装芯片安装的IC管芯102中的焊料块200连接(图2所示)处,在BGA基底104 或PCB 128上的导电轨道(诸如导电轨道122)的任何部分处,等等。因而,在确定导电路径 132中的断开的过程中,监测至IC管芯的有效管脚的连接的方法300将沿着该路径在任何地方检测这样的断开或故障。该方法300在块310处继续,该此处根据波形400和402的比较确定,当电阻器 130的管脚2 136处的第二波形402与在电阻器130的管脚1 134处注入的第一波形400 实质上不相同时,在该导电路径132中不存在断开。图4示出了波形400和402的比较的示例,其图示了第二波形402与第一波形400实质上不相同。如图4中所示的示例,在电阻器130的管脚1 134处注入的波形400具有5伏的电压振幅和100兆赫的频率。然而,电阻器130的管脚2 136处的所得到的第二波形402相对于波形400实质上被劣化了,并且具有显著更低的电压振幅。因而,图4中的波形400和402至少在振幅上,并且典型地也在形态上显著地变化了。因此,图4中所图示的波形400和402示出了这样的情景,在该情景中块308确定会是在该导电路径132中不存在断开,这指示至IC管芯102的被监测有效管脚110的连接是完整且无损伤的。电阻器130的管脚2 136处的劣化波形(例如,图4的波形402)的特性主要是与其电压/电流特性是已知的I/O单元108的电气相互作用的结果。如上所述,该IBIS使各个I/O单元的电气特性(例如,电压/电流性质)已知,并且由此使得能够对IC设计应用中的I/O单元进行建模。另外,在本有效管脚监测系统100和方法300、600(图6)中,已知I/ 0单元特性使得能够实现对电阻器130的管脚2 136处的第二波形的模拟。也就是说,给出 I/O单元108的已知电气特性,就可以模拟和生成电阻器130的管脚2 136处的(劣化)波形的外观和其它特性。电阻器130的值在较小的程度上也影响电阻器130的管脚2 136处的波形的特性。例如,当在至I/O单元108的导电路径132中不存在断开时,电阻器130的较大值趋向于进一步减小管脚2 136处的波形的振幅。因而,虽然本文把电阻器130的值示出为1千欧,但是其它值也是可能的,并且可以基于在电阻器130的管脚1处注入的波形的特性、I/ 0单元108的特性以及电阻器130的值,容易地模拟电阻器130的管脚2 136处的第二波形。然而,注意,对于电阻器130的大范围的值而言,当在该导电路径132中不存在断开时, 轻易地确定电阻器130的管脚2 136处的劣化波形。因而,有效管脚监测系统100和方法 300,600 (图6)提供了对在导电路径132中是否存在断开以及至IC管芯102的被监测有效管脚110的连接是否无损伤的容易确定。如上所述,尽管本文把在电阻器130的管脚1 134处注入的波形的频率示出为100 兆赫,但是在不妨碍有效管脚监测系统100和方法300、600 (图6)确定在导电路径132中是否存在断开以及因而确定至IC管芯102的被监测有效管脚110的连接是否无损伤的能力的情况下,该频率可以广泛地变化。在本公开内容中,个人计算机的主板是预期系统100 和方法300、600所在的环境。然而,各种其它应用是可能的,并且在大多数时候100兆赫的频率会工作良好。总的来说,取决于正监测的IC管芯的时钟频率,非限制性范围10兆赫至 200兆赫适合于大多数应用。现在主要参考图6,将论述监测至IC管芯的有效管脚的连接的另一方法600。图6 示出了依照实施例的方法600的流程图。该方法600与上面相对于图1和2论述的有效管脚监测系统100的实施例相关联。方法600开始于块602处,通过电阻器130把诸如时钟信号之类的第一波形注入到与IC管芯102的有效管脚110的I/O单元108相关联的导电路径132上。第一波形在电阻器130的第一管脚134处被注入,这在该电阻器耦合到该导电路径的第二管脚136处产生第二波形。方法600在块604处继续,监测电阻器130的第二管脚136处的第二波形(例如, 波形402,图4和5)。在块606处,如本文上面所论述的,把电阻器130的第二管脚136处的监测波形402和依据I/O单元108的已知电气特性模拟的预定波形进行比较。在块608 处,根据预定波形和电阻器130的第二管脚136处的波形402的比较确定,当第二管脚136 处的波形402与预定波形实质上不相同时,在该导电路径132中存在断开。因而,在此情形下,知道的是,至IC管芯102的被监测有效管脚110的连接是断开的或无损伤的,这是因为在电阻器130的第二管脚136处的波形不具备与根据与该I/O单元108的电气相互作用将预期的相同的劣化特性(即,如在模拟波形中会出现的)。该方法600在块610处继续,在此处,根据预定波形和电阻器130的第二管脚136处的波形402的比较确定,当电阻器130的管脚2 136处的第二波形402与预定波形400 实质上相同时,在该导电路径132中不存在断开。因而,在此情形下,知道的是,至IC管芯 102的被监测有效管脚110的连接是未断开的(即,是无损伤的),这是因为电阻器130的第二管脚136处的波形具备与根据与I/O单元108的电气相互作用将预期的相同的劣化特性 (即,如在模拟波形中会出现的)。
权利要求
1.一种监测至集成电路(IC)管芯的有效管脚的连接的方法,其包括通过电阻器把第一波形注入到与IC管芯的有效管脚的输入/输出(I/O)单元相关联的导电路径上,其中所述第一波形在所述电阻器的第一管脚处被注入,并且所述电阻器的第二管脚耦合到所述导电路径;监测在所述第一管脚处的所述第一波形和在所述第二管脚处的第二波形;比较所述第一管脚处的所述第一波形和所述第二管脚处的所述第二波形;和当所述第二管脚处的所述第二波形与所述第一管脚处的所述第一波形实质上相同时, 确定在所述导电路径中存在断开。
2.如权利要求1所述的方法,还包含当所述第二管脚处的所述第二波形相比于所述第一管脚处的所述第一波形被劣化时,确定在所述导电路径中不存在断开。
3.如权利要求2所述的方法,其中确定在所述导电路径中不存在断开包括确定所述第二管脚处的所述第二波形实质上匹配于依据所述I/O单元的已知电气特性模拟的预定波形。
4.如权利要求1所述的方法,其中所述注入第一波形包括注入具有100兆赫的频率和 5伏的振幅的时钟信号。
5.如权利要求1所述的方法,其中所述IC管芯引线接合到球栅阵列(BGA)基底,并且所述有效管脚通过位于所述BGA基底和印刷电路板之间的所述BGA基底的拐角处的焊料接点耦合到所述导电路径。
6.如权利要求1所述的方法,其中所述IC管芯被倒装芯片接合到球栅阵列(BGA)基底,并且所述有效管脚通过位于所述BGA和印刷电路板之间的所述BGA的拐角处的焊料接点耦合到所述导电路径。
7.—种监测至集成电路(IC)管芯的有效管脚的连接的方法,其包括通过电阻器把第一波形注入到与IC管芯的有效管脚的输入/输出(I/O)单元相关联的导电路径上,其中所述第一波形在所述电阻器的第一管脚处被注入,并且所述电阻器的第二管脚耦合到所述导电路径;监测所述电阻器的第二管脚处的第二波形;比较所述第二管脚处的所述第二波形和依据所述I/O单元的已知电气特性模拟的预定波形;和当所述第二管脚处的所述第二波形与所述预定波形实质上不相同时,确定在所述导电路径中存在断开。
8.如权利要求7所述的方法,其中所述预定波形是基于所述I/O单元的已知电气特性、 所述电阻器的已知值和所述第一波形的特性的模拟波形。
9.如权利要求7所述的方法,还包括当所述第二管脚处的所述第二波形与所述预定波形实质上相同时,确定在所述导电路径中不存在断开。
10.如权利要求7所述的方法,其中所述预定波形表示在所述第一管脚处注入的所述第一波形的劣化版本。
11.如权利要求7所述的方法,还包括基于所述I/O单元的已知电气特性、所述电阻器的已知值和所述第一波形的特性模拟所述预定波形。
12.一种用于监测至集成电路(IC)管芯的有效管脚的连接的系统,其包括IC管芯的输入/输出(I/O)单元,所述I/O单元接合到球栅阵列(BGA)基底上的接合焊盘;印刷电路板(PCB)上的测试点,其耦合到所述接合焊盘并且在所述测试点和所述I/O 单元之间形成电气连接通路;和通过电阻器被注入到所述测试点中的时钟波形。
13.如权利要求12所述的系统,其中所述I/O单元和所述接合焊盘之间的接合是引线接合。
14.如权利要求12所述的系统,其中所述IC管芯被倒装芯片接合到所述BGA基底,并且所述I/O单元和所述接合焊盘之间的接合是焊料接点。
15.如权利要求12所述的系统,其中所述电阻器近似为1千欧并且所述时钟波形近似为100兆赫。
全文摘要
一种用于监测至集成电路(IC)管芯的有效管脚的连接的系统,包括IC管芯的输入/输出(I/O)单元,其中,该I/O单元被接合到球栅阵列(BGA)基底的接合焊盘。该系统包括印刷电路板(PCB)上的测试点,其耦合到接合焊盘,并且在该测试点和I/O单元之间形成电气/导电通路。该系统包括通过电阻器注入到该测试点中的时钟波形。
文档编号H01L21/66GK102473659SQ200980160633
公开日2012年5月23日 申请日期2009年7月24日 优先权日2009年7月24日
发明者A. 西迪奎 A., 戴 F. 申请人:惠普开发有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1